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Abstract

We present a denotational model of impredicative Hoare Type Theory, a very expressive dependent
type theory in which one can specify and reason about mutable abstract data types.

The model ensures soundness of the extension of Hoare Type Theory with impredicative polymor-
phism; makes the connections to separation logic clear, and provides a basis for investigation of further
sound extensions of the theory, in particular equations between computations and types.

1 Introduction

Dependent types provide a powerful form of specification for higher-order, functional languages. For exam-
ple, using dependency, one can specify the signature of an array subscript operation as sub : ∀α.Πx:αarray.Πy:{i:nat |
i < x.size}.α, where the type of the third argument, y, refines the underlying type nat using a predicate
that ensures that y is a valid index for the array x.

Dependent types have long been used in the development of formal mathematics, but their use in prac-
tical programming languages has proven challenging. One of the main reasons is that the presence of any
computational effects, including non-termination, exceptions, access to store, or I/O – all of which are in-
dispensable in practical programming – can quickly render a dependent type system unsound.

The problem can be addressed by severely restricting dependencies to only effect-free terms (as in for
instance DML [25]). But the goal of our work is to try to realize the full power of dependent types for
specification of effectful programs. To that end, we have been developing the foundations of a language that
we call Hoare Type Theory or HTT [18, 17], which we intend to be an expressive and explicitly annotated
internal language, providing a semantic framework for elaborating more practical external languages.

HTT starts with a pure, dependently typed core language and augments it with an indexed monadic type
of the form {P}x:A{Q}. This type encapsulates and describes effectful computations that may diverge or
access a mutable store. The type can be read as a Hoare-like partial correctness specification, asserting that
if the computation is run in a heap satisfying the pre-condition P , then if it terminates, it will return a value
x of typeA and leave a heap described byQ. Through Hoare types, the system can enforce soundness in the
presence of effects. The Hoare type admits small footprints as in separation logic [21, 19], where the pre-
and postconditions only describe the part of the store that the program actually uses; the unspecified part is
automatically assumed invariant.

The most distinguishing feature of HTT in comparison with other recent proposals for Hoare and separa-
tion logics for higher-order languages [5, 15, 26, 16] is that specifications in HTT are integrated with types.
In Hoare logic, it is not possible to abstract over specifications in the source programs, aggregate the logical
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invariants of the data structures with the data itself, compute with such invariants, or nest the specifications
into larger specifications or types. These features are essential ingredients for data abstraction and informa-
tion hiding, and, in fact, a number of works have been proposed towards integrating Hoare-like reasoning
with type checking. Examples include tools and languages like Spec# [3], SPLint [13], ESC/Java [12], and
JML [10].

Our prior work on HTT [18, 17] addresses several of the main challenges for languages for integrated
programming and verification [10]: (1) we allow effectful code in specifications by granting such code
first-class status, via the monad for Hoare triples; (2) we control pointer aliasing, by employing the small
footprint approach of separation logic; and (3) we use higher-order logic to allow for a uniform approach
to programming and verification of imperative modules (aka mutable abstract data types), as suggested for
separation logic in [6, 7]. In our earlier work on HTT we proved soundness of the type theory via mostly
operational methods, by proving progress and type preservation results. The operational proof was combined
with a very crude denotational model, which just served to show that the assertion logic of HTT was sound.
To deal with dependent types the operational proofs relied heavily on sophisticated techniques involving
so-called hereditary substitutions [24].

In this paper we define a realizability model for an extension of Hoare Type Theory with impredica-
tive polymorphism. Apart from the inherent interest in obtaining a denotational model, which provides an
alternative more abstract conceptual understanding of the theory, the model serves the following purposes:

• Using the model we can prove soundness of an extension of Hoare Type Theory with impredicative
polymorphism. Impredicative polymorphism is important for data abstraction (we show an examples
below) and for representing certain compiler transformations, such as closure conversion, in HTT. It
is well-known that the operational methods involving hereditary substitutions mentioned above do not
easily scale to impredicative polymorphism.

• The model makes the connections to separation logic more transparent. Indeed, to bring out the
connections very clearly, we have decided to present the type theory using a syntax for computations,
which is fairly close to the one employed in separation logic.

• The model can be used to investigate which equality rules for computations the theory can soundly be
extended with. We present some simple examples in Section 4.

It is non-trivial to construct sound models of sophisticated dependent type theories such as HTT. Models
for various fragments of dependent type theories have been studied intensively in categorical type theory;
see, e.g., [14] and the references therein. Thus we shall make use of results from categorical type theory to
prove that we construct a sound model of impredicative HTT, but we shall always write out the definitions
in explicit terms so as to make the paper reasonably self contained. Before proceeding with the technical
development proper we now give an intuitive overview of the development.

HTT is a dependent type theory with types and kinds, where types are included in the kinds, and where
types and kinds can both depend on kinds. Thus contexts Γ assign kinds to variables and there are judgments
Γ ` τ : Type and Γ ` A : Kind to conclude that τ is a well-formed type in context Γ and that A is a well-
formed kind in context Γ. Type and kind formers include dependent product (Π) and dependent sum (Σ). In
the extension with impredicative polymorphism that we consider in this paper, we have that Type is a kind.
Thus this part of pure impredicative HTT is what is sometimes called (weak) Full Higher-order Dependent
Type Theory (FhoDTT) [14]. In addition to types and kinds, HTT also includes a logic for reasoning about
terms in context. Thus there is a judgment Γ ` P : Prop for concluding that P is a well-formed proposition
and a judgment Γ | P1, . . . , Pn ` P for logical entailment. The logic is higher-order, so Prop is a kind. In
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Jacobs’s terminology we thus have a Higher-order Dependent Predicate Logic over (weak) Full Higher-order
Dependent Type Theory [14]. The characteristic feature of HTT is that it includes a type for computations
Γ ` {P} x : τ {Q} : Type. Here P and Q are propositions in context Γ and Γ, x : τ , respectively.
The intuition is that elements of this type consist of computations, which, given a heap satisfying P either
diverges or produces a value of type τ and a heap in Q. Note that computations can diverge; term formers
for computations include a fixed point term.

The great benefit of impredicative polymorphism is that for any type τ , Πα : Type.τ is also a type,
even if τ depends on α. Thus terms of this polymorphic type can be returned by computations and stored in
memory. Prop is also a kind. So again ΠP : Prop.τ is a type where τ may depend on P . This enables us to
abstract over predicates in computation types. Using that ΣP : Prop.τ is a type, we can pack computations
with abstract invariants and hide implementation details. As an illustration of both of these features consider
the following type of abstract stacks:

stacktype =
Πα : Type.Σβ : Type.Σinv : β × α list→ Prop.
/ ∗ new ∗ / (−).{emp}s : β{inv(s, [])} ×
/ ∗ push ∗ / Πs : β.Πx : α.

(l : α list).{inv(s, l)}u : 1{inv(s, x :: l)} ×
/ ∗ pop ∗ / Πs : β.

(x : α, l : α list).
{inv(s, x :: l)}y : α{inv(s, l) ∧ y =α x} ×

/ ∗ del ∗ / Πs : β.
(l : α list).{inv(s, l)}u : 1{emp}

The contexts before the precondition in the computation types, e.g., (l : α list) for push, universally binds
auxiliary / logical variables used in the specifications. A term of type stacktype accepts a type α and
produces a stack of elements of this type. Such a stack consists of

• β, an abstract type to be thought of as α stack.

• inv, an abstract invariant that expresses that objects of type β represents functional stacks (as de-
scribed by α list).

• Operations new, push, pop, and del. Notice, that push, pop, and del require an element of type β,
and that the only way to obtain one such is to invoke new.

Since stacktype is itself a type due to impredicativity, we can have stacks of stacks. Note that in separation
logic parlance the types are tight. For instance, the precondition for new is simply emp, which means that
new does not rely on the input heap; the frame rule ensures that new can also be used with the following
type (−).{emp ∗ R}s : β{inv(s, []) ∗ R}, for any R. Further observe that implementors of the above
abstract stack type are free to choose both the representation type β and the representation predicate inv.
For example, an implementation using linked lists could take β to be Nat (since we use Nat as the type of
locations) and inv(s, l) to be the predicate that holds if s points to a linked list representation of l. A simple
example client that creates a new Nat stack, pushes 4, pops it again to return it and deletes the stack would
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then look like this:

C = λS : stacktype.
do SNat ← ret S(Nat) in
unpack SNat as (β, inv, new, push, pop, del) in
do s← new in

do s4 ← push(s)(4) in
do n4 ← pop(s4) in
del(s4); ret n4

Then C has type ΠS : stacktype.(−).{emp}n : Nat{emp ∧ n =Nat 4}.
Computations are not only needed for accessing the store but also for nontermination as the pure frag-

ment does not include fixed points. As an example of a simple fixed point computation (not using the store),
consider the factorial function fac : T , where T = Πn : Nat.(−).{emp}m : Nat{emp ∧m =Nat n!}:

fac = fix f(n) in case n of

zero⇒ ret 1 or

succ y ⇒ dom← f(y) in retm× succ y

We will show in detail why it has the claimed type in Section 2.11 We can implement another version of
factorial using the store but with the same type, in the following manner. First we define a term facS : TS ,
where TS = Πl : Nat.(n : Nat).{l 7→Nat n}u : 1{l 7→Nat n!}:

facS = fix f(l) in let t =!Natl in

case t of

zero⇒ l :=Nat 1 or

succ y ⇒ do ly ← allocNat y in

f(ly); do ty ←!Natly in

l :=Nat ty × succ y; dealloc ly

Given this we can implement the factorial function as

fac′ = λn : Nat.do l← allocNat n in

facS(l); do r ←!Natl in dealloc l; ret r

Now fac′ has the same type T as fac. Using the model, we can prove that fac =T fac′ (see Section 4), so
we can use them interchangeably when reasoning in the logic. This could not be done in earlier versions of
HTT.

Our model is a realizability model, built over a universal domain V , which is sufficiently rich to model
divergent computations. The domain V also includes a subdomain of computations, called T(V ).

The model for the weak FhoDTT part of HTT is mostly standard (see, e.g.,[14, Examples 11.6.5
and 11.6.7]): types are interpreted as chain-complete partial equivalence relations (complete pers) over
V and kinds are interpreted as so-called assemblies (aka ω-sets) over V . The category of assemblies is an
extension of the category of sets and functions which contains the category of complete pers as a full sub-
category. The latter ensures that we soundly model that types are included among the kinds. Moreover, the
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collection of all complete pers form a set and hence an assembly, and thus we model that Type is a Kind.
Terms with type Πx : τ.σ are modeled as set-theoretic functions between the set of equivalence classes for
the pers interpreting τ and σ which are realized by an element in V . That is, there is a continuous function
from V to V that maps related elements in the first per to related elements in the second per. In reality, the
model is a bit more complicated since we have to deal with families of types and kinds to model that types
and kinds depend on kinds. Hence everything is indexed/fibred over the category of assemblies.

The propositions in HTT correspond to what is often called assertions in Hoare and separation logic.
Hence we model propositions using the power set of heaps, as is standard in separation logic. It is a model
of classical logic. Formally, we prove that the standard BI-hyperdoctrine [6] over Set can be extended to
one over assemblies, and this guarantees that we get a sound model of the higher-order assertion logic of
separation logic (now for dependent types and kinds). We write out the interpretation in concrete terms.

Finally, computation types are modeled roughly as follows. A computation type Γ ` (∆).{P}x :
τ{Q} : Type is modeled as an admissible per of continuous functions from Heap to V × Heap (or, rather,
as a family of such, indexed over the interpretation of Γ). A per is admissible if it relates the bottom
element to itself and is complete. Admissibility is needed for interpreting fixed points. An interesting
issue is what per one should use on heaps. We have decided to use a per which equates two heaps if they
have the same domain. This ensures that allocation of new heap cells, modeled here as taking the least
unallocated address, will preserve the partial equivalence relation (see Section 3.5 for a discussion of this
choice). This description is a bit rough for the following reasons. First, the interpretation ensures that
computations can only access memory that is either described by the precondition P or allocated during
the computation. Second, the interpretation uses the chain-complete closure of the post-condition Q. This
ensures that the computation type really is interpreted as an admissible per. Taking the admissible closure
is an alternative to restricting propositions to a fragment that always generates admissible pers or using test-
functions/biorthogonality [9] to force admissibility. Third, the interpretation builds in the frame rule from
separation logic, essentially by interpreting Γ ` (∆).{P}x : τ{Q} : Type as Γ ` ∀R : Prop.(∆).{P ∗
R}x : τ{Q ∗ R} : Type, at the modeling level. This idea comes from [8, 9]; type theoretically the ideas
was also used in the earlier formulations of HTT [18, 17].

In HTT every pure term can also be viewed as a computation. In the model this holds because pure terms
are modeled via continuously realized functions, and such can, of course, also be extended to continuous
computations. Note that a cruder set-theoretic model of the pure fragment of HTT, with types as sets with
bounded cardinality and kinds as all sets, would not work: then we would not be able to extend every pure
term (any function, not necessarily continuous) to a continuous computation.

This completes our informal overview of the model. Along the way we have given some pointers to
related work on models of separation logic and categorical models of dependent type theory. Other very
related work include the recent step-indexed model by Appel et. al. [2]. In loc. cit. Appel et. al. describe
a model that can be used to model types for imperative languages. The model of Appel et. al. is for a
much simpler type system than the one we consider since we deal with dependent types involving pre- and
postconditions. Appel et. al. do, however, include a treatment of recursive types; we have left that for future
work, since it is more complicated in our setting, exactly because our types are much more expressive qua
the use of pre- and postconditions and dependency. In contrast with Appel et. al. we further include a logic
to reason about terms; so far it is not well-understood how to model logics in step-indexed models.

The remainder of the paper is organized as follows. In Section 2 we present the language of impred-
icative HTT. The model is then presented in Section 3. In Section 4 we show how to derive some sound
equations from the model, and in Section 5 we conclude and describe future work.
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2 Language

In this section we present our formulation of impredicative HTT. As mentioned in the introduction we
have adapted the earlier formulations of HTT so as to make the connections with separation logic more
transparent. We will explain the changes below along with the presentation of the language. We include
some examples in Section 2.11.

2.1 Grammar

The grammar for HTT includes a grammar for types and kinds; in earlier presentations of HTT they were
called monotypes and types, respectively. As mentioned in the introduction, there is a kind Type of all types
and a kind Prop of all propositions.

On the term level we have pure terms and computations, which can be effectful. Computations are
not a separate syntactic category but rather terms of a certain class of types, namely all types of the form
(Γ).{P}x : τ{Q}.

The grammar for types, kinds, propositions, terms and computations is as follows:

Types τ, σ, ρ ::= Nat | 1 | ΠTx : A.τ | ΣTx : A.τ |

(Γ).{P}x : τ{P}

Kinds A,B ::= τ | Type | Prop | ΠKx : A.A | ΣKx : A.A

Prop′s P,Q,R ::= > | ⊥ |M =A M | P ∧ P | P ∨ P |

P ⊃ P | ¬P | ∀x : A.P | ∃x : A.P |

emp |M 7→τ M | P ∗ P | P −∗ P

Terms M,N ::= x | zero | succM | recNat(M,M) | () |

λKx : A.M | λTx : A.M |M M |

(M,M)K | (M,M)T | fstM |

sndM | unpackM as (x, y) inM

caseM of zero⇒M or succ x⇒M

fix f(x) inM | retM |

!τM |M :=τ M | do x←M inM |

allocτ M | deallocM

and the language sports the following sequents, which will be explained in the following:

Γ ` A : Kind Γ ` A = A : Kind
Γ ` τ : Type

Γ ` P : Prop Γ ` P : PureProp
Γ `M : A Γ `M = M : A

Γ | Θ ` P
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To express the pre- and post conditions of computations in terms of propositions, we define a convenient
macro:

M 7→τ − = ∃x : τ.M 7→τ x

The model that we present in the Section 3 also accommodates coproducts of types and kinds, but we
have omitted these from this paper.

2.2 Structural Rules

Here are the structural rules. We let J denote anything that can appear on the right side of a turnstile `:

Γ ` A : Kind
proj

Γ, x : A ` x : A

Γ `M : A Γ, x : A,∆ ` J
sub

Γ,∆[M/x] ` J [M/x]

Γ, x : A, y : A,∆ ` J
cont

Γ, x : A,∆[x/y] ` J [x/y]

Γ ` A : Kind Γ ` J
weak

Γ, x : A ` J

Γ ` B : Kind Γ, x : A, y : B,∆ ` J
ex

Γ, y : A, x : B,∆ ` J

2.3 Contexts

A context Γ = x1 : A1, . . . , xn : An is a list of kinded variables. Since any type is also a kind, we do
not have a separate type context. We also use ∆ to range over contexts. These are the rules for context
formation:

∅ Ctx
Γ ` A : Kind

x /∈ Γ
Γ, x : A Ctx

To use any of the following rules, one must first establish Γ Ctx.
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2.4 Kind Judgments

Rules for establishing Γ ` A : Kind are as follows:

Γ ` τ : Type
ext

Γ ` τ : Kind

Type
∅ ` Type : Kind

Prop
∅ ` Prop : Kind

Γ, x : A ` B : Kind
ΠK

Γ ` ΠKx : A.B : Kind

Γ, x : A ` B : Kind
ΣK

Γ ` ΣKx : A.B : Kind

Γ, x : A ` B : Kind Γ ` A = A′ : Kind
eqctx

Γ, x : A′ ` B : Kind

Note that types are included into kinds via ext.

2.5 Type Judgments

Rules for establishing Γ ` τ : Type are as follows:

Nat
∅ ` Nat : Type

1
∅ ` 1 : Type

Γ, x : A ` τ : Type
ΠT

Γ ` ΠTx : A.τ : Type

Γ, x : A ` τ : Type
ΣT

Γ ` ΣTx : A.τ : Type

Γ,∆ ` τ : Type Γ,∆ ` P : Prop Γ,∆, x : τ ` Q : Prop
spec

Γ ` (∆).{P}x : τ{Q} : Type

Note that the language supports dependent products and sums of families of both kinds A and types τ . The
sums for kinds ΣK are strong, the sums for types are weak, c.f. the discussion regarding the elimination
rules below.

2.6 Proposition Judgments

Rules for establishing Γ ` P : Prop are as follows:

Γ ` > : Prop Γ ` ⊥ : Prop
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Γ `M = N : A
exteq

Γ `M =A N : Prop

Γ `M : A Γ ` N : A
eq

Γ `M =A N : Prop

emp
Γ ` emp : Prop

Γ `M : Nat Γ ` τ : Type Γ ` N : τ
7→

Γ `M 7→τ N : Prop

Γ ` P : Prop Γ ` Q : Prop
∗

Γ ` P ∗ Q : Prop

Γ ` P : Prop Γ ` Q : Prop
−∗

Γ ` P −∗ Q : Prop

Γ ` P : Prop Γ ` Q : Prop op ∈ {∧,∨,⊃}

Γ ` P op Q : Prop

Γ ` P : Prop

Γ ` ¬P : Prop

Γ, x : A ` P : Prop Q ∈ {∀,∃}

Γ ` Qx : A.P : Prop

The judgment Γ ` P : PureProp holds if Γ ` P : Prop and, moreover, P does not contain emp, 7→, ∗, −∗ .

2.7 Logical Entailment Rules

Entailment is formulated in a judgment of the form Γ | Θ ` P where Θ is a list of propositions P1, . . . , Pn

such that, for all i, Γ ` Pi : Prop and, moreover, Γ ` P : Prop.
We write Γ ` P for Γ | > ` P .
We have the standard rules for classical higher-order predicate logic together with the standard rules for

separation logic. In particular, we have extensionality of entailment for propositions (two propositions are
equal at kind Prop iff they entail each other) and extensionality for functions.

2.8 Typing Rules

Rules for establishing Γ `M : A are as follows:

Pure Terms
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Γ ` zero : Nat

Γ `M : Nat

Γ ` succ M : Nat

Γ `M : A Γ, x : A ` N : A
rec

Γ ` recNat(M, N) : Πn : Nat.A Γ ` () : 1

Γ, x : A `M : B

Γ ` λKx : A.M : ΠKx : A.B

Γ, x : A ` τ : Type Γ, x : A `M : τ

Γ ` λT x : A.M : ΠT x : A.τ

Γ `M : ΠK,T x : B.A Γ ` N : B

Γ `M N : A[B/x]

Γ `M : A Γ ` N : B[M/x]

Γ ` (M, N)K : ΣKx : A.B

Γ `M : A Γ, x : A ` τ : Type Γ ` N : τ [M/x]

Γ ` (M, N)T : ΣT x : A.τ

Γ, x : A ` σ : Type Γ, x : A, y : σ `M : B

Γ, z : ΣT x : A.σ ` unpack z as (x, y) in M : B

Γ `M : ΣKx : A.B

Γ ` fst M : A

Γ `M : ΣKx : A.B

Γ ` snd M : B[fst M/x]

Note that there are two sets of elimination rules for sums (one with unpack z as (x, y) inM and one with
fst and snd ). The first one is used for the weak sums over families of types, i.e., for sums ΣTx : A.σ (a
type) and and the second one is used for the strong sums over families of kinds, i.e., for sums ΣKx : A.B
(a kind). In the following section describing the model we explain why we get these different kinds of
elimination rules when we show the concrete interpretation of sums. We sometimes leave out the superscript
K and T , when there is no risk of confusion.

Computations
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Γ `M : (∆).{P}y : σ{S} Γ, ∆, x : τ ` Q : Prop

Γ, y : σ ` N : (∆).{S}x : τ{Q}
seq

Γ ` do y ←M in N : (∆).{P}x : τ{Q}

Γ, ∆ ` τ : Type Γ `M : τ
dia

Γ ` ret M : (∆).{emp}x : τ{emp ∧ x =τ M}

Γ ` τ : Type Γ `M : Nat
lookup

Γ `!τM : (y : τ).{M 7→τ y}x : τ{M 7→τ y ∧ x =τ y}

Γ ` τ : Type Γ `M : Nat Γ ` N : τ
update

Γ `M :=τ N : (−).{M 7→σ −}x : 1{M 7→τ N}

Γ ` τ : Type Γ `M : τ
alloc

Γ ` allocτ M : (−).{emp}x : Nat{x 7→τ M}

Γ ` τ : Type Γ `M : Nat
dealloc

Γ ` dealloc M : (−).{M 7→τ −}x : 1{emp}

Γ `M1 : (∆).{P ∧M =Nat zero}x : τ{Q} Γ `M : Nat

Γ, y : Nat `M2 : (∆).{P ∧M =Nat succ y}x : τ{Q}
case

Γ ` case M of zero⇒M1 or succ y ⇒M2 : (∆).{P}x : τ{Q}

Γ, f : ΠT y : A.(∆).{P}x : τ{Q}, y : A `M : (∆).{P}x : τ{Q}
fix

Γ ` fix f(x) in M : ΠT y : A.(∆).{P}x : τ{Q}
Since we have recursion over the natural numbers in the pure fragment, one might ask why the factorial
example in the introduction is coded via a combination of fix and case and perhaps even question the need
for a case rule for computations. It has been included for the following reason: when reasoning about each
branch of a case, the pre-condition will contain information about which branch it is. This allows us to
conclude that fac indeed does compute the factorial in its post-condition (se Section 2.11 for details).

We often abbreviate do y ←M in N to M ;N when y does not occur in N .

11



2.9 Structural Rules for Computations

Γ `M : (∆).{R}x : τ{S} Γ, ∆ ` P ⊃ R Γ, ∆ ` S ⊃ Q
consequent

Γ `M : (∆).{P}x : τ{Q}

Γ `M : (∆).{P}x : τ{Q} Γ, ∆ ` R : Prop
frame

Γ `M : (∆).{P ∗ R}x : τ{Q ∗ R}

Γ `M : (∆).{P}x : τ{Q} Γ, ∆ ` R : PureProp
∧−frame

Γ `M : (∆).{P ∧R}x : τ{Q ∧R}

Γ `M : (∆).{P}x : τ{Q} Γ, ∆ ` σ : Kind
weakening

Γ `M : (∆, y : σ).{P}x : τ{Q}

Γ, ∆ ` P : Prop Γ, ∆, x : τ ` Q : Prop

Γ `M : (∆, y : σ).{P}x : τ{Q}
strengthening

Γ `M : (∆).{P}x : τ{Q}
The ∧-frame rule is not standard in separation logic and indeed is not valid in standard models of separation
logic, where term variables can be mutable. The intuitive reason for why the rule holds in our model is that
the propositionR is assumed to be pure (not involving the heap) and, moreover, that all our term variables are
immutable. In other words R can only speak about immutable variables so if it holds before a computation
is executed, then it also holds after the computation is executed since the variables are not mutated.

2.10 External Equality

The external equality rules for terms, types, kinds, and propositions correspond to the least congruence
relation derived from the following equations.

(λK,Tx : A.M)N = M [N/x] : ΠK,Tx : A.B
M = λK,Tx : A.Mx : ΠK,Tx : A.B

fst (M,N) = M : A
snd (M,N) = N : A[M/x]

unpack z as (x, y) in (x, y) = z : τ
unpack (M,N) as (x, y) inK = K[M/x,N/y] : τ

M = (fstM, sndM) : ΣKx : A.B
recNat(M,N)(zero) = M : A

recNat(M,N)(succ (n)) = N(recNat(M,N)(n)) : A
do x←M in ret x = M : (∆).{P}x : τ{Q}

do x← retM in N = N [M/x] : (∆).{P}y : τ{Q}
do x← (do y ←M in N) inK =
do y ←M in (do x← N inK) : (∆).{P}x : τ{Q}
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2.11 Examples

As mentioned in Section 1, we can code the factorial function fac : Πn : Nat.(−).{emp}m : Nat{emp ∧
m =Nat n!} as

fac = fix f(n) in case n of

zero⇒ ret 1 or

succ y ⇒ dom← f(y) in retm× succ y

Let us discuss why it has the claimed type. For convenience let T denote Πn : Nat.(−).{emp}m :
Nat{emp ∧m =Nat n!}. We begin with the two branches, starting with the zero case. Since n : Nat ` 1 :
Nat we get

n : Nat ` ret 1 : (−).{emp}x : Nat{emp ∧ x =Nat 1}.
Using ∧−frame we obtain

n : Nat ` ret 1 : (−).
{emp ∧ n =Nat 0}x : Nat{emp ∧ x =Nat 1 ∧ n =Nat 0}

By consequence we can weaken the post-condition slightly to obtain

n : Nat ` ret 1 : (−).{emp ∧ n =Nat 0}x : Nat{emp ∧ x =Nat n!}.

We can then weaken the context to f : T, n : Nat.
For the succ case we can similarly conclude that

y : Nat,m : Nat ` retm× succ y : (−).
{emp ∧m =Nat y!}x : Nat{emp ∧ x =Nat (succ y)!}

which by weakening, ∧−frame and consequent gives

f : T, n : Nat, y : Nat,m : Nat ` retm× succ y : (−).
{emp ∧m =Nat y! ∧ n =Nat succ y}x : Nat{emp ∧ x =Nat n!}

Now, using ∧−frame, we can show

f : T, n : Nat, y : Nat ` f(y) : (−).
{emp ∧ n =Nat succ y}m : Nat
{emp ∧m =Nat y! ∧ n =Nat succ y}

Thus we can run the two in sequence to obtain

f : T, n : Nat, y : Nat ` dom← f(y) in retm× succ y : (−).
{emp ∧ n =Nat succ y}x : Nat{emp ∧ x =Nat n!}

The case rule now gives that

case n of

zero⇒ ret 1 or

succ y ⇒ dom← f(y) in retm× succ y

has type T in context f : T, n : Nat. Thus, by the fix rule, also fac has type T .
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3 Model

In this section we define our realizability model. We begin by describing the universe of realizers; next we
define a structure for modeling the pure type theory (kinds and types); a structure for modeling the logic
(props); and finally we explain how computations are modeled.

3.1 Universe of Realizers

Let Cppo⊥ denote the category of chain-complete pointed partial orders and strict continuous functions.
Recall that one can solve recursive domain equations in Cppo⊥ for locally continuous bifunctors on Cppo⊥.
We take our universe of realizers to be a domain V satisfying a recursive domain equation in Cppo⊥. To
define V we first recall a number of objects in Cppo⊥ and locally continuous (bi)functors on Cppo⊥.

In Cppo⊥, we find the following objects:

1⊥: {⊥, ∗} with ⊥ < ∗.

N⊥: The flat naturals. The set of natural numbers, all related to themselves, none related to any other,
augmented with a bottom element.

E: {⊥, err} with ⊥ < err. The lifted error value. Isomorphic to 1⊥.

We further find the following functors:

(: strict continuous function space.

⊕: smash sum.

⊗: smash product.

H: V 7→ {h ∈ Cppo⊥(N⊥, V ) | supp(h) is finite}, where supp(h) is the set {x ∈ dom(h) | h(x) 6= ⊥},
ordered in the following way: h < h′ ⇔ supp(h) = supp(h′) ∧ ∀n ∈ supp(h).h(n) < h′(n). The
functorial action is by composition.

T: V 7→ H(V )⊥ ( V ⊗H(V )⊥ ⊕ E.

The domain of realizers is a domain V satisfying the following recursive domain equation in Cppo⊥:

V ∼= 1⊥ ⊕ N⊥ ⊕ (V × V )⊥ ⊕ (V → V )⊥ ⊕ T(V )⊥

where V → V is the set of continuous functions from V to V . Note that (V × V )⊥ ' V⊥ ⊗ V⊥ and
V → V ' V⊥ ( V , so the above recursive domain equation really can be solved in Cppo⊥.

To denote elements in V we shall make use of the following injection maps, mapping elements into the
appropriate summand and then, via the above isomorphism, into V .

in1: 1→ V

inN: N→ V

in×: (V × V )→ V

in→: (V → V )→ V

inT: T(V )→ V

We use these maps so that whenever we write in→(f), say, we know that f is a function and not the added
bottom element of (V → V )⊥.
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Lemma 1 V is a total combinatory algebra.

Proof.
This follows since V → V is a retract of V . �

3.2 Semantic Operations on Heaps

Elements of H(V ) are total functions albeit with finite support. We wish to think of them as partial functions
in order to model separation logic. This is accomplished by interpreting h(n) = ⊥ as “n is not allocated in
h”. Here we describe some definitions reflecting this interpretation.

Firstly we can express that two heaps are “equally defined”. For h, h′ ∈ H(V ) we define the relation

h
↓
= h′ as h and h′ having the same support.

We can then define the ∗-operator on “disjoint” heaps. For heaps h1, h2 ∈ H(V ) such that supp(h1) ∩
supp(h2) = ∅, we define h1∗h2 as the heap with support supp(h1)∪supp(h2) satisfying (h1∗h2)|supp(h1) =
h1 ∧ (h1 ∗ h2)|supp(h2) = h2. In other words, h1 ∗ h2 is the (disjoint) amalgamation of h1 and h2.

For h ∈ H(V ), it makes sense to ask for “the least unallocated cell of h”. leastfree(h) is defined as
min{n ∈ N | h(n) = ⊥}.

Updating the heap cell n is by redefining the value at n. For h ∈ H(V ), n ∈ N and d ∈ V , we define
the heap h[n 7→ d] by

λm ∈ N.ifm = n then d else h(m).

Allocation is then given by updating a cell that was previously unallocated with an element different
from ⊥ and deallocation of cell n in h results in h[n 7→ ⊥].

3.3 Types and Kinds

In this section we describe the FhoDTT structure needed for interpreting types and kinds. As mentioned in
the introduction, the structure is reasonably standard; it is a variation over the one described in, e.g., [14,
Examples 11.6.7]; we use another universe of realizers and we use complete pers instead of extensional pers.

First we describe the category Asm(V ) of assemblies over V , which will be used for modeling contexts:

Definition (Asm(V )):

Objects: (X,E), where X is a set, and E : X → P(V ), such that for all x ∈ X , E(x) 6= ∅.

Morphisms: f : (X,E) → (X ′, E′), where f : X → X ′ is a set-theoretic function, such that there
exists a realizer α for it, i.e

∃α : V → V.∀x ∈ X.∀d ∈ E(x).α(d) ∈ E(f(x))

Note that Asm(V ) is an extension of the category of sets and functions: there is a full and faithful
functor ∇ : Set → Asm(V ), which maps a set X to (X,E) with E(x) = V . Functor ∇ is right adjoint
to Γ : Asm(V ) → Set, defined by Γ(X,E) = X , that is, there is a one-to-one correspondence between
morphisms (X,E)→ ∇(Y ) in Asm(V ) and functions X → Y in Set.
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Kinds in context are modeled as objects in a category
UFam(Asm(V )) which is the total category of the fibration

UFam(Asm(V ))

��
Asm(V )

(1)

Let us explain what this means concretely. For every object (X,E) in Asm(V ), there is a category, called
the fibre over (X,E) and denoted by UFam(Asm(V ))(X,E). It is defined as follows:

Definition (UFam(Asm(V ))(X,E)):

Objects: ((Ax, EAx))x∈X families of assemblies over V indexed by X , i.e. for all x ∈ X , (Ax, EAx)
is an object of Asm(V ).

Morphisms: (fx)x∈X :((Ax, EAx))x∈X → ((Bx, EBx))x∈X , where for all x ∈ X , fx : Ax → Bx and
there exists a uniform realizer α ∈ V → V → V , i.e.

∀x ∈ X.∀e ∈ E(x).∀a ∈ Ax.d ∈ EAx(a)⇒
α(e)(d) ∈ EBx(f(a)).

Thus objects in the fibre over (X,E) are families of assemblies indexed overX and morphisms between two
such families are uniformly realized morphisms between members of the family. The functor in (1) maps
an indexed family to its indexing object (X,E). The fact that the functor is a fibration means in particular
that whenever we have a family ((Ay, EAy))y∈Y in the fibre over (Y,EY ) and a morphism u : (X,EX)→
(Y,EY ) in Asm(V ), then we can reindex the family to be a family ((Af(x), EAf(x)

))x∈X over (X,EX).
This indexed structure is needed to interpret kinds in context: if context Γ is interpreted as object (X,E)

in Asm(V ), then kind Γ ` A : Kind is interpreted as an object in the fibre over (X,E), i.e., as a family of
assemblies indexed over X .

The fibration of uniform families of assemblies is equivalent to the standard codomain fibration over
assemblies, denoted Asm(V )→ → Asm(V ).

Types in context are modeled as objects of the total category of the fibration

UFam(CPer(V ))

��
Asm(V )

(2)

of which the fibre over (X,E) is given by

Definition (UFam(CPer(V ))(X,E)):

Objects: (Rx)x∈X families of chain-complete partial equivalence relations over V indexed by X , i.e.
for all x ∈ X , Rx is a chain-complete per over V .

Morphisms: (fx)x∈X :(Rx)x∈X → (Sx)x∈X , where for all x ∈ X , fx : V/Rx → V/Sx in Set (here
V/Rx is the set of equivalence classes of Rx) and there exists a uniform realizer α : V → V → V ,
i.e.

∀x ∈ X.∀e ∈ E(x).∀v ∈ |Rx|.α(e)(v) ∈ fx([v]Rx).
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There is a full and faithful fibred inclusion from UFam(CPer(V )) to UFam(Asm(V )), which maps a
family of pers to a family of assemblies. It works simply by viewing every per as an assembly, which can
be done as follows. Suppose R is a per; then the corresponding assembly is (V/R,E), where V/R is the
set of equivalence classes of R and E is the identity function. In fact, the inclusion has a fibred left adjoint:

Lemma 2 The fibred inclusion of UFam(CPer(V )) into
UFam(Asm(V )) has a fibred left adjoint.

Proof.
The proof proceeds by showing that UFam(CPer(V )) forms a fibred reflective subcategory of UFam(Per(V ))
and then composing with the well-known fibred reflection between UFam(Per(V )) and UFam(Asm(V ))
(see, e.g., [14, 1.2.6 and 1.8.7]). For the former, we just present the proof that the inclusion of CPer(V )
into Per(V ) has a left adjoint; it lifts easily to uniform families. The left adjoint maps a per R to R, the
least complete per containing R. For adjointness, we need to show that morphisms from R to S, with S
a complete per, are in one-to-one correspondence with morphisms from R → S. To this end, one gives a
construction of R by transfinite recursion and then shows the correspondence by transfinite induction, as
in [1, Section 15.7]. �

We now present the formal statement which ensures that the structures defined above can be used to
model soundly the pure type and kind fragment of HTT. After that, we explain how types and kinds are
modeled concretely.

Theorem 1 The categories and functors in the diagram

UFam(CPer(V ))

))SSSSSSSSSSSSSS
� v 55 UFam(Asm(V ))
uu

��

' // Asm(V )→

vvmmmmmmmmmmmm

Asm(V )

constitute a split weak FhoDTT [14, Ch. 11] with a fibred natural numbers object in UFam(CPer(V )),
which is also a fibred natural numbers object in UFam(Asm(V )).

Proof.
As in [14, Example 11.6.4], using Lemmas 1 and 2. In the fibre over (X,E), the natural numbers object is
the constant family of pers (Rx)x∈X given by Rx = {(inN(n), inN(n)) | n ∈ N}. �

Corollary 1 The pure type and kind fragment (excluding computation types) of HTT is sound wrt. the
interpretation in the above FhoDTT.

We now explain in concrete terms how pure types, kinds, and terms are interpreted in the FhoDTT. For
a context Γ, let KindΓ denotes the set of syntactic kinds A such that Γ ` A : Kind and TypesΓ denotes
the set of syntactic types τ such that Γ ` τ : Type. For a kind A in KindsΓ, let TermsA denote the set
of syntactic terms M such that Γ ` M : A. The interpretation of contexts, types, kinds, and pure terms is
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given by functions:

[[−]]Ctxs : Ctxs→ Asm,
[[−]]Kinds : ΣΓ∈CtxsKindsΓ → UFam(Asm(V ))[[Γ]]Ctxs ,

[[−]]Types : ΣΓ∈CtxsTypesΓ → UFam(CPer(V ))[[Γ]]Ctxs ,

[[−]]Terms : ΣΓ∈CtxsΣA∈KindsΓTermsA →
UFam(Asm(V ))[[Γ]]Ctxs(1, [[A]]Kinds).

Note that [[−]]Ctxs appears in the domain of the other functions. This is feasible since the functions are
defined by simultaneous induction on the derivation and in order to derive that, say, a certain type is a type,
one first has to derive that the appropriate context is a context. Thus [[−]]Ctxs will be defined per the induction
hypothesis. For the same reason [[−]]Kinds can be used in the domain of [[−]]Terms.

The empty context is interpreted as the terminal object in Asm(V ):

[[∅]]Ctxs = 1 = ({∗}, ∗ 7→ V )

and if [[Γ]]Ctxs = (X,E) and [[Γ ` A : Kind]]Kinds = ((Ax, EAx))x∈X then [[Γ, x : A]]Ctxs is

(Σx∈XAx, (x, a) 7→ {(d, d′) ∈ V × V | d ∈ E(x) ∧ d′ ∈ EAx(a)})

Thus context formation is modeled by dependent sum.
We now describe the interpretation of kinds.

ext is modeled by the inclusion from UFam(CPer(V )) to
UFam(Asm(V )).

Type is modeled as an object in the fibre UFam(Asm(V ))1 over the terminal object 1 in Asm(V ), i.e., as
an object in Asm(V ), namely the object ∇(Obj(CPer(V )), where Obj(CPer(V )) is the set of all
chain-complete pers over V .

Prop is modeled by ∇P(H(V )) (a full explanation will be given in the next subsection).

ΠK is modeled by dependent product: If [[Γ ` A : Kind]]Kinds = ((Ax, EAx))x∈X and [[Γ, x : A ` B :
Kind]]Kinds = ((B(x,a), EB(x,a)

))(x,a)∈Σx:X.Ax
then [[Γ ` ΠKx : A.B : Kind]]Kinds is given by

({f ∈ Πa∈AxB(x,a) | EΠx(f) 6= ∅}, EΠx)x∈X ,

where EΠx is given by

f 7→ {in→(g) | ∀a ∈ Ax.e ∈ EAx(a)⇒ g e ∈ EB(x,a)
(f(a))}.

ΣK is modeled by dependent sum: If [[Γ ` A : Kind]]Kinds = ((Ax, EAx))x∈X and [[Γ, x : A ` B :
Kind]]Kinds = ((B(x,a), EB(x,a)

))(x,a)∈Σx:X.Ax
then [[Γ ` ΣKx : A.B : Kind]]Kinds is given by

(Σa∈AxB(x,a), (a, b) 7→
{in×(d, e) | d ∈ EAx(a) ∧ e ∈ EB(x,a)

(b)})x∈X .
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eqctx External equality of kinds is interpreted by equality in the model, so the interpretation of Γ, x : A′ `
B : Kind is the same as the interpretation of Γ, x : A ` B : Kind.

We now describe the interpretation of the pure types:

Nat is modeled by the flat naturals, i.e ({(inN(n), inN(n)) | n ∈ N})

1 is modeled by the terminal object in CPer(V ), i.e., as
({(in1(∗), in1(∗))}).

ΠT is modeled by dependent product: If [[Γ ` A : Kind]]Kinds = ((Ax, EAx))x∈X and [[Γ, x : A ` τ :
Type]]Types = (R(x,a))(x,a)∈Σx:X.Ax

then [[Γ ` ΠTx : A.τ : Type]]Types is given by

{(in→(f), in→(g)) | ∀a ∈ Ax.e ∈ EAx(a)⇒ f(e) R(x,a) g(e)}

ΣT is modeled by dependent sum: If [[Γ ` A : Kind]]Kinds = ((Ax, EAx))x∈X and [[Γ, x : A ` τ :
Type]]Types = (R(x,a))(x,a)∈Σx:X.Ax

then [[Γ ` ΣTx : A.τ : Type]]Types is given by

{(in×(d, e), in×(d′, e′)) | ∃a ∈ Ax.d, d′ ∈ EAx(a) ∧ e R(x,a)e′}.

Note the use of the chain completion (the reflection into UFam(CPer(V ))). We need to use the chain-
completion to get a chain-complete per and the elements in the chain-completion are not necessarily
pairs of realizers for the constituent types. It is because of the use of this chain-completion that these
sums are only weak, i.e., that the associated elimination rule is the rule for unpack, rather than rules
involving fst and snd. Indeed, if we try to apply the first-projection realizer to a realizer for an
element of the above sum, then we will not be sure to end up with a realizer for A (we only know that
we’ll get something in the chain-completion of A).

An external equality judgment of kinds Γ ` A = B : Kind holds if A and B are interpreted as the same
objects in the fibre over the interpretation of Γ. Likewise for external equality of types Γ ` τ = σ : Type.
The soundness corollary 1 means that any external equality judgment that can be derived holds.

Lemma 3 For any type Γ ` σ : Type, no per in the family [[Γ ` σ : Type]]Types relates ⊥ to itself.

Proof.
By induction on the derivation of Γ ` σ : Type. �
The above lemma shows that any well-typed term corresponds to a proper value in the model, even the
diverging computation. The computation types relate the least element of T(V ) to itself.

We now describe the concrete interpretation of terms. For Γ ` M : A, [[Γ ` M : A]]Terms gives
a morphism in the fibre category UFam(Asm(V ))[[Γ]]Ctxs from the terminal object 1 to [[A]]Kinds. Such a
morphism can be described by a continuous function that maps realizers for the context to realizers for A:
Assume that [[Γ]]Ctxs = (X,EX) and that [[A]]Kinds = (Yx, EYx)x∈X . Then a morphism

(fx)x∈X : ({∗}, ∗ 7→ {in1(∗)})x∈X → (Yx, EYx)x∈X

has a uniform realizer α, such that

∀x ∈ X.∀e ∈ EX(x).∀a ∈ {∗}.∀d ∈ {in1(∗)}.α(e)(d) ∈ EYx(f(a))
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Since a is always ∗ in the above equation we can simplify it a bit. If we denote f(∗) by [[M ]] and write
α(e)(in1(∗)) as just α(e), the requirement becomes

∀x ∈ X.∀e ∈ EX(x).α(e) ∈ EYx([[M ]])

In the case that A is a type, [[M ]] will be the equivalence class of the complete per [[A]]Types. In this case f is
uniquely defined by α. Otherwise [[M ]] will just be an element of Yx, and the subset of V , EYx([[M ]]), may
overlap with other subsets returned by EYx . Thus, we must provide both [[M ]] and α, unless we know A to
be a type.

The interpretation of terms of pure types and kinds [[Γ `M : A]]Terms is as follows:

[[Γ ` zero : Nat]]Terms = λe.inN(0)
[[Γ ` succM : Nat]]Terms

= λe.case [[Γ `M : Nat]]Terms(e) of
inN(m)⇒ inN(m+ 1)
otherwise⇒ ⊥

[[Γ ` recNat(M,N)]]Terms

= λe.in→(λv.case v of inN(x) ⇒ f(x)
otherwise ⇒ ⊥),

where f(0) = [[Γ `M ]]Terms(e)
and f(n+ 1) = [[Γ ` N ]]Terms(e)(f(n))

[[Γ ` () : 1]]Terms = λe.in1(∗)
[[Γ ` λT,Kx : A.M : ΠT,Kx : A.B]]Terms

= λe.in→(λx.[[Γ, x : A `M : B]]Terms(e, x))
[[Γ `M N : A[B/x]]]Terms

= λe.case [[Γ `M : Nat]]Terms(e) of
in→(f)⇒ f([[Γ ` N : Nat]]Terms(e))
otherwise⇒ ⊥

[[Γ ` (M,N)T,K : ΣT,Kx : A.B]]Terms

= λe.let d = [[Γ `M : A]]Terms(e) in
in×(d, [[Γ, x : A ` N : B]]Terms(e, d))

[[Γ, z : ΣTx : A.σ ` unpack z as (x, y) inM : τ ]]Terms

= λ(e, (x, y)).[[Γ, x : A, y : σ `M : τ ]]Terms((e, x), y)
[[Γ ` fstM : A]]Terms

= λe.case [[Γ `M : ΣKx : A.B]]Terms(e) of
in×(m,n)⇒ m

otherwise⇒ ⊥
[[Γ ` sndM : A]]Terms

= λe.case [[Γ `M : ΣKx : A.B]]Terms(e) of
in×(m,n)⇒ n

otherwise⇒ ⊥
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Most of the interpretations are straightforward. The interpretation of unpack works because of the follow-
ing. The realizers x and y come from the interpretation of the weak sum, hence from the chain-completion
(c.f., the explicit description of the interpretation of sums). But since [[Γ, x : A, y : σ ` M : τ ]]Terms is
a continuous realizer, it also works for elements x and y possibly added via the chain-completion process.
Formally this is exactly what Lemma 2 guarantees (see the proof sketch of the lemma).

This completes the description of the interpretation of the non-structural rules for pure types and kinds.
The structural rules are interpreted using the basic fibrational structure of an FhoDTT. Here we just discuss
a simple example; see [14] for details. Suppose that Γ is interpreted by (X,EX), that Γ ` A : Kind
is interpreted by the family (Yx, EYx)x∈X over (X,EX), that Γ ` M : A is interpreted by m : 1 →
(Yx, EYx)x∈X over (X,EX), and Γ, x : A ` B : Kind is interpreted by (Z(x,y), F(x,y))(x,y)∈Σx:XYx

. Then
Γ ` B[M/x] : Kind is interpreted by the family (Z(x,m(x)), F(x,m(x)))x∈X .

We say that an external judgment of kinds Γ ` M = N : A holds if M and N are interpreted as the
same morphism. The soundness corollary 1 means that any external equality judgment of terms that can be
derived using the rules in Sections 2.10 holds.

3.4 Logic

As in separation logic, the logic is really a logic of heaps and hence propositions will be modeled as subsets
of H(V ). Again, we begin with the abstract description of the structure needed and then follow it by a
concrete description of the interpretation.

We obtain the structure needed for interpreting the logic as follows. First, the power set of heaps
P(H(V )) ordered by inclusion is a BI-algebra in Set. We now embed it into Asm(V ) via the functor ∇
to get ∇(P(H(V ))). One can now show that the object is an internally complete BI-algebra in Asm(V ).
Hence, as explained in [6], there is a canonical BI-hyperdoctrine P = Asm( ,∇(P(H(V )))), which soundly
models classical higher-order separation logic. Note that the fibre over an object (X,E) in P is the set of
morphisms in Asm(V ) from (X,E) to ∇(P(H(V ))), which, as mentioned earlier, is in one-to-one corre-
spondence with functions from X to P(H(V )) in Set. In line with the earlier presentations of structures for
types and kinds, we turn P into a fibration via the Grothendieck construction to get the fibration

Fam(P(H(V )))

��
Asm(V )

(3)

of which the fibre over (X,E) is the poset given by

Definition (Fam(P(H(V )))(X,E)):

Objects: φ : X → P(H(V )) functions from X to P(H(V )).

Morphisms: φ ≤ ψ iff for all x ∈ X , φ(x) ⊆ ψ(x).

Theorem 2 The fibration in (3) is a BI-hyperdoctrine with quantification along all maps in the base cate-
gory.1

1The phrase “with quantification along all maps in the base category” means that there are left and right adjoint along all
reindexing functor u∗, for all morphisms u in the base. This ensures that the logic quantifiers can be interpreted over the dependent
type theory (c.f. [14, Section 11.2]). In the definition of BI-hyperdoctrine given in [6] we only asked for quantifiers with respect to
simple projections since that suffices for interpreting logic over a non-dependent type theory.
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Proof.
Each fibre is a BI-algebra since it is defined pointwise over the BI-algebra P(H(V )). Clearly, ∇(P(H(V )))
is a generic object. For every u : (X,EX)→ (Y,EY ) in Asm(V ), there is a right adjoint ∀u to reindexing
along u, given by ∀u(φ)(y) = {h ∈ H(V ) | ∀x ∈ X.u(x) = y ⊃ h ∈ φ(x)}. The Beck-Chevalley
condition is easily seen to hold. Existential quantifiers are given similarly. �

Corollary 2 The interpretation of the logic in the above BI-hyperdoctrine is sound.

We now describe the interpretation of the proposition judgments concretely. For a context Γ, let PropsΓ
denote the set of syntactic predicates P such that Γ ` P : Prop. The interpretation function has the type

[[−]]Props : ΣΓ∈CtxsPropsΓ → Asm([[Γ]]Ctxs,∇P(H(V ))).

Assume that [[Γ]]Ctxs = (X,E). Then the proposition judgments are interpreted as follows:

[[Γ ` emp : Prop]]Props
x = {λn.⊥}

[[Γ `M 7→τ N : Prop]]Props
x = {h | h(m) ([[τ ]]Types

x )= n},
where [[Γ ` N : τ ]]Terms

x = n and [[Γ `M : Nat]]Terms
x = m

[[Γ ` P ∗Q : Prop]]Props
x =

{h | ∃h1 ∈ [[Γ ` P : Prop]]Props
x , h2 ∈ [[Γ ` Q : Prop]]Props

x .

h = h1 ∗ h2}
[[Γ ` P −∗ Q : Prop]]Props

x =
{h | ∀hP ∈ [[Γ ` P : Prop]]Props

x .h ∗ hP ∈ [[Γ ` Q : Prop]]Props
x }

[[Γ ` > : Prop]]Props
x = H(V )

[[Γ ` ⊥ : Prop]]Props
x = ∅

[[Γ `M =A N : Prop]]Props
x =

{h | [[Γ `M ]]Terms
x = [[Γ ` N ]]Terms

x }
[[Γ ` P ∧Q : Prop]]Props

x =
[[Γ ` P : Prop]]Props

x ∩ [[Γ ` Q : Prop]]Props
x

[[Γ ` P ∨Q : Prop]]Props
x =

[[Γ ` P : Prop]]Props
x ∪ [[Γ ` Q : Prop]]Props

x

[[Γ ` P ⊃ Q : Prop]]Props
x =

{h | h ∈ [[Γ ` P : Prop]]Props
x ⇒ h ∈ [[Γ ` Q : Prop]]Props

x }
[[Γ ` ¬P : Prop]]Props

x = H(V ) \ [[Γ ` P ]]Props
x

[[Γ ` ∀y : A.P : Prop]]Props
x

= {h | ∀y ∈ [[Γ ` A : Kind]]Kinds
x . h ∈ [[Γ, y : A ` P ]]Props

(x,y) }
[[Γ ` ∃x : A.P : Prop]]Props

x

= {h | ∃y ∈ [[Γ ` A : Kind]]Kinds
x . h ∈ [[Γ, y : A ` P ]]Props

(x,y) }

In the display above, we use the following convention when presenting the semantics for the quantifiers.
Note that [[Γ ` A : Kind]]Kinds is a uniform family of assemblies over (X,E), so [[Γ ` A : Kind]]Kinds

x is
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an assembly (Y,EY ). When we write y ∈ [[Γ ` A : Kind]]Kinds
x , we mean that y ∈ Y . Note that y may, of

course, depend on x.
Let Γ be a context and suppose that [[Γ]]Ctxs = (X,E). We say that a logical entailment Γ | P1, . . . , Pn `

P holds if, for all x ∈ X , [[Γ ` P1 ∧ · · ·Pn]]Props(x) ⊆ [[Γ ` P ]]Props(x). The soundness corollary
(Corollary 2) means that any logical entailment that can be derived using the rules for logical entailment in
Section 2.7 holds.

Now it should also be clear why the kind Prop was interpreted as∇(P(H(V )) earlier.

Lemma 4 Let Γ ` P : PureProp, and suppose that [[Γ]]Ctxs = (X,E). Then the interpretation of P is a
function φ from X to P(H(V )) satisfying that φ(x) is either the empty set of the set of all heaps, for all x in
X .

3.5 Computations

We now describe how computations are interpreted in the model. As mentioned in Section 1, a computation
type (∆).{P}x : τ{Q} is modeled as an admissible per of realizers in T(V ), that given heaps satisfying
the precondition P do not produce error and upon termination leaves a heap satisfying the postcondition
Q. The context ∆ is implicitly quantified, so that this behaviour should be adhered to for all instantiations
of ∆. Formally it looks like this. Assume [[Γ]]Ctxs = (X,E) and [[Γ,∆]]Ctxs = (Σx∈XYx, F ). Then
[[Γ ` (∆).{P}x : τ{Q} : Type]]Types is the family of pers (Sx)x∈X with fields given by d ∈ |Sx| iff
d = inT(f) and

∀y ∈ Yx.∀E ∈ PropΓ,∆.∀h ∈ [[Γ,∆ ` (P ∗ E)]]Props
(x,y) .

(f(h) 6= err) ∧
(
f(h) = (vf , hf )⇒

vf ∈ |[[Γ,∆ ` τ : Type]]Types
(x,y) | ∧

hf ∈ [[Γ,∆, x : τ ` (Q ∗ E)]]Props
(x,y,vf )

)
So suitable realizers are elements of T(V ) that for any extension P ∗ E of P takes heaps satisfying
P ∗ E to heaps satisfying the chain completion of Q ∗ E and do not produce error. Thus the frame
rule is baked into the interpretation of computations. The actual per is then given by inT(f) Sx inT(g) iff
inT(f), inT(g) ∈ |Sx| and

∀y ∈ Yx.∀E ∈ PropΓ,∆.∀h, h′ ∈ [[Γ,∆ ` (P ∗ E)]]Props
(x,y) .

h
↓
= h′ ⇒
f(h) ↓⇔ g(h′) ↓ ∧

(
f(h) = (vf , hf ) ∧ g(h′) = (vg, hg)⇒

vf [[Γ,∆ ` τ : Type]]Types
(x,y) vg ∧ hf

↓
= hg

)
So two realizers denote the same computation if they both fulfill the specification and on heaps with equal
support gives results related in the interpretation of the return type and heaps with equal support.

Lemma 5 Let [[Γ]]Ctxs = (X,E) and [[Γ ` (∆).{P}x : τ{Q} : Type]]Types = (Sx)x∈X . Then for all
x ∈ X Sx is a chain-complete per relating inT(λh.⊥) to itself and relating only elements in (the image of)
T(V ). As such it is an admissible per over T(V ).

Proof.
Sx is easily a per. It trivially relates only elements in T(V ) and inT(λh.⊥) to itself and it is chain complete
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because the interpretation of τ is chain complete as is the chain completion of the interpretation of Q ∗ E
and the relation

↓
=. �

As mentioned in the introduction, the reason we require that computations should produce heaps with
equal support (given suitable heaps with equal support) is that then allocation can simply be modeled by
taking the least unallocated address (see the semantics of alloc below). An unfortunate consequence of
this choice is that two computations that intuitively behave in the same way but allocate cells in different
order may not be equated by the model. We believe that the model can be refined by using realizers in
FM-domains [23, 22, 4], such that support would then be up to a permutation of the locations in the heap.
(Indeed, FM-domains have already been applied in a recent parametric model for separation logic [9].) We
leave this refinement for future work, however.

We now describe how terms of computation types are interpreted in the model. Recall that for a compu-
tation type (∆).{P}x : τ{Q}, we can give the interpretation of Γ ` M : (∆).{P}x : τ{Q} by giving the
realizer α.

We first consider the structural rules for computations. We begin with the frame rule. Assume [[Γ]]Ctxs =
(X,E) and that [[Γ ` M : (∆).{P}x : τ{Q}]]Terms is realized by α. Then [[Γ ` M : (∆).{P ∗ R}x :
τ{Q∗R}]]Terms is also realized by α since, for all x ∈ X , the field of [[Γ ` (∆).{P}x : τ{Q} : Type]]Types

x

is included in the field of [[Γ ` (∆).{P ∗ R}x : τ{Q ∗ R} : Type]]Types
x (here we use that the frame rule

is baked into the interpretation of computation types). The remaining structural rules are also interpreted by
using the same realizer (for the consequence rule we use that the chain-completion operation is monotone).
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Now for the non-structural rules. Assume [[Γ]]Ctxs = (X,E) and that [[M ]] is given by α and [[N ]] is
given by β when they are of computation types and m and n otherwise. Then

[[Γ ` do y ←M in N : (∆).{P}x : τ{Q}]]Terms

= λe.λh.case α(e)(h) of
(vM , hM ) ⇒ β(e, vM )(hM )

err ⇒ err

⊥ ⇒ ⊥
[[Γ ` retM : (∆).{emp}x : τ{emp ∧ x =τ M}]]Terms

= λe.λh.(m(e), h)
[[Γ `!τM : (y : τ).{M 7→τ y}x : τ{M 7→τ y ∧ x =τ y}]]Terms

= λe.λh.if h(m(e)) = ⊥ then err else (h(m(e)), h)
[[Γ `M :=τ N : (−).{M 7→ −}x : 1{M 7→τ N}]]Terms

= λe.λh.(∗, h[m 7→ n])
[[Γ ` allocτ M : (−).{emp}x : Nat{x 7→τ M}]]Terms

= λe.λh.let l = leastfree(h) in (l, h[l 7→ m])
[[Γ ` deallocM : (−).{M 7→τ −}x : 1{emp}]]Terms

= λe.λh.if h(m) = ⊥ then err else (∗, h[m 7→ ⊥])
[[Γ ` caseM of zero⇒M1 or succ y ⇒M2 :

(∆).{P}x : τ{Q}]]Terms = λe.λh.

ifm(e) = inN(0) then α1(e)(h) else α2(e,m− 1)(h)
[[Γ ` fix f(x) inM : ΠT y : σ.(∆).{P}x : τ{Q}]]Terms

= λe.fixedpointof λf.λy.α(e, f, y))

Note that the realizers for computations are as should be expected. Consider, for example, lookup !M , whose
realizer is λe.λh.if h(m(e)) = ⊥ then err else (h(m(e)), h). Given a realizer e in EX(x) (intuitively,
a realizer for Γ), it produces a computation that when given a heap h yields error if the location m(e) is not
allocated in h and otherwise the value stored in h at m(e), along with h. The realizer e is needed, as always,
because the type theory is dependent.

For fixed points, the realizer is obtained by the usual least fixed point construction, which applies since
λf.λy.α(e, f, y) is indeed an endofunction of the pointed domain V → T (V ), when α is the realizer for
[[Γ, f : ΠT y : σ.(∆).{P}x : τ{Q}, y : σ `M : (∆).{P}x : τ{Q}]]Terms.

Theorem 3 The interpretation of computations is well-defined, i.e., any well-typed computation term Γ `
M : (∆).{P}x : τ{Q} is interpreted as a morphism 1→ [[Γ ` (∆).{P}x : τ{Q} : Type]]Types in the fibre
over [[Γ]]Ctxs. Moreover, the external equality rules for computations hold.

Proof.
Well-definedness is proved by induction. The monadic external equality rules for computations (the last four
rules in Subsection 2.10) hold since the interpretation of computation types really does involve a categorical
monad. The essential point is that there is an adjunction between the category of admissible pers over T(V )
and CPer(V ); this adjunction gives rise to a monad on CPer(V ). �
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Notice that the above theorem expresses that well-typed programs do not produce error: If [[Γ]]Ctxs =
(X,EX) and [[Γ ` M : (∆).{P}x : τ{Q}]]Terms = m then, for all x ∈ X , all e ∈ EX(x), m(e) is in
[[Γ ` (∆).{P}x : τ{Q} : Type]]Types

x . Thus m(e) is a realizer in T(V ), which given a heap satisfying
P does not produces err. If m(e) then terminates (does not give ⊥), it returns a value and a heap in the
chain-completion of Q.

Let us discuss the use of the chain-completion briefly.
When computations are typed with a post condition Q that is not chain-complete, the interpretation can

be counterintuitive because the resulting heap may not be in Q (but, of course, it will be in Q’s chain-
completion). As an example we consider the function from [11, Section 5.1]. It takes some recoding due to
the monadic presentation of HTT.

Let Nat⊥ = (−).{emp}x : Nat{emp}. We then have the following terms

Ω : Nat⊥ = diverging
zero⊥ : Nat⊥ = ret zero

succ ⊥ : Πn : Nat⊥.Nat⊥
= λn : Nat⊥.dom← n in ret succm

We can now describe partial functions. Let T = Πn : Nat.Nat⊥ then non-totality can be described by the
predicate

nt = ∃n : Nat.f(n) =Nat⊥ Ω

with the free variable f : T . From this we can build a type of non-total functions

nontotal = (−).{emp}f : T{emp ∧ nt(f)}.

Given a partial function we can produce one that is defined in more places via the term exp : Πf : T.T
given by:

λf : T.λn : Nat. case n of zero⇒ zero⊥

or succ y⇒ do t← f(y) in succ ⊥(t)

If f is defined at n then exp(f) is defined at n + 1 as well as on 0. However, if f is non-total then so is
exp(f), so we can write a term expand : Πp : nontotal.nontotal:

expand = λp : nontotal.do f ← p in ret exp(f)

To type this function we use that nt(f) ⊃ nt(exp(f)). Now taking a fixed point of expand should leave us
with the identity function, which is certainly a total function. The fixed point does leave us with the identity
function, but we can give it the type Πu : 1.nontotal:

fix f(u) in do p← f(u) in expand(p) : Πu : 1.nontotal

where f is of type Πu : 1.nontotal.
This may seem disturbing and highlights the fact that for a post-condition Q the chain-completion of

Q may be difficult to guess. The reason that Q is not chain-complete already is that we used existential
quantification over an infinite set in the predicate nt, and it is well-known from domain theory that chain-
complete predicates are not closed under such existentials. Of course, there are two ways to deal with this
issue. One is simply to ban postconditions that are not chain-complete (and there are well-known ways
to do so by restricting the grammar for propositions; see, e.g., [11]). Another, which we have chosen
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here, is to formally chain-complete the post-condition in the model. This has the following advantage:
If the post-condition Q is already chain-complete then chain completing it does not change it, of course.
Thus in this case the heap possibly resulting from the computation will in fact satisfy Q. This holds, even
if subcomputations have been specified using pre- and postconditions that are not chain-complete, qua
soundness. For example, since the interpretation of emp is chain complete, we can conclude that any
computation of type (−).{emp}x : τ{emp} must deallocate any memory that it allocates, just as we would
expect. Moreover, if you prefer a more standard interpretation, then you can just restrict yourself to using
only chain-complete predicates; then our interpretation will indeed be the standard one.

4 Reasoning via the model

We now exemplify reasoning via the model. For reasons of space, we only include two simple examples.
The model can be used to show that terms are propositionally equal. As a simple example, we now argue

that the two implementations of factorial fac and fac′ presented in the introduction are propositionally equal
at their type T = Πn : Nat.(−).{emp}m : Nat{emp ∧ m =Nat n!}. Looking at the interpretations in
the model they both, when applied to a number n, give a computation that takes the empty heap λm.⊥ to
(n!, λm.⊥), even though fac′ allocates and deallocates local storage during its computation. Thus they are
related in the interpretation of T . This means that they are propositionally equal, i.e − ` fac =T fac′.

We can also use the model to show types propositionally equal. Consider the two computation types

T1 = (x : σ, y : τ).{P}r : ρ{Q} and
T2 = (z : Σx : σ.τ).{unpack z as (x, y) in P}

r : unpack z as (x, y) in ρ
{unpack z as (x, y) in Q}

Intuitively they contain the same terms, since computations do not depend on the logic variables. This
intuition is reflected in the model as the two types are interpreted as the same family of pers. This can be
seen by comparing their fields. Assume Γ ` T1 : Type and Γ ` T2 : Type and that [[Γ]]Types = (X,E).
Consider then inH(f) ∈ [[T1]]x. For all realizers d, d′ with ((x, d), d′) in [[Γ, x : σ, y : τ ]]Ctxs and r in
[[Γ, x : σ, y : τ ` ρ]]Types

((x,d),d′), f must satisfy the computational requirements imposed by [[P ]]Props
((x,d),d′),

[[Q]]Props
(((x,d),d′),r) and [[τ ]]Types

((x,d),d′). This happens iff for all realizers d′′ with (x, d′′) in [[Γ, z : Πx : σ.τ ]]Ctxs

and r in [[Γ, z : Πx : σ.τ ` unpack z as (x, y) in ρ]]Types
((x,d′′), f satisfies the computational requirements

imposed by
[[unpack z as (x, y) in P ]]Props

((x,d′′), [[unpack z as (x, y) inQ]]Props
(((x,d′′),r) and [[unpack z as (x, y) in τ ]]Types

((x,d′′).
Thus we can conclude that the two types are propositionally equal, i.e., T1 =Type T2. Their interpre-

tations contain the same realizers, so we could add two rules to the calculus stating that Γ ` M : T1 iff
Γ `M : T2.

5 Conclusion and Future Work

We have developed a realizability model for impredicative Hoare Type Theory, a very expressive dependent
type theory in which one can specify and reason about mutable abstract data types. The model is used to
establish the soundness of the type theory. Moreover, the model can be used to discover new equations
between terms and types; we have presented a few simple examples.
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We are presently working on a simple implementation of a tool for HTT, which will make it easier to
experiment with larger examples.

Our model also accommodates certain kinds of subset kinds and types. For a kind A we can model the
subset kind {x : A | P}, for all propositions P . For a type τ we can model the subset kind {x : τ | P},
for all chain-complete propositions P ; it also seems possible to model subset types {x : τ | P}, for all
propositions P by using the chain-completion. The subset kinds / types will not be full subset kinds / types,
however, for the same reason that we do not have full subset types for the standard separation logic BI-
hyperdoctrine over Set [6]. Future work includes investigating how to model recursive types, as needed
for the specification of programs that recurse through the store [20]. It would also be interesting to refine
the model using, e.g., FM-domains to get a more abstract model of allocation leading to more equalities
among terms, c.f. the discussion in Section 3.5. Another avenue for future work is to explore the soundness
of higher-order frame rules [8]. This seems to involve a further level of indexing over a Kripke structure
similar to the one in [8]. Finally, it would also be interesting to investigate relational parametricity for the
impredicative polymorphism.

References
[1] R. Amadio and P.-L. Curien. Domains and Lambda Calculi, volume 46 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 1998.
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