
Detecting differences between versions of
Microsoft Dynamics NAV

Morten Rhiger

IT University Technical Report Series TR-2010-129

ISSN 1600–6100 September 2010

Copyright c© 2010, Morten Rhiger

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 9788779492219

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Detecting differences between versions of
Microsoft Dynamics NAV

Morten Rhiger

The IT University of Copenhagen
Rued Langgaards Vej 7

DK-2300 Copenhagen S, Denmark

E-mail: mir@itu.dk
Homepage: www.itu.dk/people/mir

August 12, 2010

Abstract

Microsoft Dynamics NAV is an Enterprise Resource Planning system developed by Mi-
crosoft. NAV is customized to specific countries, industrial segments, and enterprises by
software developers both from the Microsoft Cooperation and from a chain of indepen-
dent partners.

In NAV, customizations are implemented as source-code modifications. This cus-
tomization mechanism is flexible, since customizations are not limited to specific models
imposed by implementation language or external customization tools. Therefore, it di-
rectly contributes to maintaining and enlarging the set of countries, industrial segments,
and enterprises reachable by NAV. However, the customization mechanism of NAV im-
poses a significant cost of migrating customizations between different versions of the
core product.

This reports describes tools developed with the purpose of detecting and character-
izing customizations applied to Microsoft Dynamics NAV. We propose to detect cus-
tomizations by identifying differences between original and customized versions of NAV.
In order to enable analyzes of the detected customizations, we furthermore suggest that
differences are represented as hierarchically structuredtree alignments.

The primary components of the tools are an implementation of by Jiang, Wang, and
Zhang’s algorithm for computing tree alignments and its use in a tool that detects changes
between two different version of Microsoft Dynamics NAV. The report serves both as a
manual to using the tools and to modifying the tools. The tools described in this re-
port were implemented by the author between August 2008 and July 2009 when he was
associated with a research project on Evolvable Software Products1 involving the IT Uni-
versity of Copenhagen and Microsoft Dynamics, Vedbæk, Denmark.

1http://www.itu.dk/research/sdg/doku.php

Contents

1 Introduction and motivation 7
1.1 Microsoft Dynamics NAV . 7

1.1.1 The NAV ecosystem . 8
1.1.2 The NAV architecture . 10

1.2 Detecting changes . 12
1.3 Managing changes in NAV . 14
1.4 Outline of the report . 15

2 Tree alignments 17
2.1 Preliminary definitions . 17
2.2 Definition of tree alignments . 17
2.3 Alternative definitions of tree alignments 19
2.4 Tree alignments as source code diffs . 22

3 Implementation of a tree alignment algorithm 25
3.1 A tree alignment library . 25

3.1.1 Class Node . 25
3.1.2 Class Tree . 26
3.1.3 Class Interval . 27
3.1.4 Class Alignment . 28
3.1.5 Class Align . 29
3.1.6 Interface ICostProvider . 29
3.1.7 Interface IActionListener 30
3.1.8 Example usage . 30

3.2 A standalone tree alignment application 32
3.2.1 Example usage . 32

4 Implementation of a change-detection tool for NAV 35
4.1 Design . 35

4.1.1 Input . 35
4.1.2 Output format . 36

3

4.1.3 Alternative output format . 38
4.2 Implementation . 39

4.2.1 Class CodePath . 39
4.2.2 Interface ICodeProvider . 41
4.2.3 Class FileCodeProvider 42
4.2.4 Class BufferedCodeProvider 42
4.2.5 Class DiffComparer . 42
4.2.6 Class DiffComparerAgainstFile 43
4.2.7 Class DiffComparerAgainstMemory 43
4.2.8 Class ChoppingParserCallbacks 43

4.3 Command-line options recognized by navdiff 43
4.3.1 Example usage . 45

5 Preliminary analyzes of NAV 47
5.1 Properties of individual NAV version . 47

5.1.1 Number of code pieces in W1 47
5.1.2 Size of code pieces in W1 . 47
5.1.3 Number of business objects in W1 48

5.2 Difference between NAV versions . 48
5.2.1 Number of code pieces added by GDLs 48
5.2.2 Number of business objects added by GDLs 48
5.2.3 Number of modification points in GDLs 48
5.2.4 Hotspots . 48

6 Conclusions 55

Bibliography 57

A Raw analyzes 61
A.1 Number of codepieces pr. version . 61
A.2 Number of objects pr. version . 62
A.3 Number of modification points pr. derived version 63
A.4 Hotspots . 64

4

List of Figures

1.1 The upgrade problem for Microsoft Dynamics NAV 9
1.2 NAV object classes . 10
1.3 NAV object sections . 11
1.4 Example code paths . 11
1.5 Simple software-merging scenario . 13

4.1 Schema describing the output of navdiff 37
4.2 Common classes of navdiff . 40

5.1 Number of code pieces of specific size ranges 49
5.2 Number of code pieces less than specific sizes 49
5.3 Number of statements within code pieces of specific size ranges 50
5.4 Number of statements within code pieces less than specific sizes 50
5.5 Number of code pieces pr. (derived) NAV version 51
5.6 Number of business objects pr. (derived) NAV version 51
5.7 Number of modification point pr. derived NAV version 53
5.8 Hotspots over 39 derived versions of NAV 53

5

Chapter 1

Introduction and motivation

A software system is subject to recurring modifications that extend the system with new
features, adapt it to new environments, eliminate its weaknesses and errors, or other-
wise improve the system [11]. When several different groups of developers maintain a
software system, they face the challenge of managing these modifications in such a way
that the modifications can be combined in the final system while reducing the coupling
between them.

Modern programming languages provides features to help maintaining and combin-
ing different developers modifications. However, in situations where linguistic features
are either not present or not sufficient, the most flexible solution is probably to represent
modifications as changes to the source code and then merge, either manually or using
automated merge tools, the different developers modifications into the final system.

This report is about detecting changes in the source code of the Microsoft Dynamics
NAV software system. The primary goal of this work has been to investigate new features
that can help managing source-code modifications in NAV.

1.1 Microsoft Dynamics NAV

Microsoft Dynamics NAV is an Enterprise Resource Planning (ERP) system targeted at
small and medium-sized businesses. NAV provides support for a wide range of business
aspects, including financial management, sales and purchase, supply-chain management,
marketing, and customer relationship management. NAV is highly customizable and has
been used by companies in various different industrial segments, ranging from manufac-
turing and distribution, over construction, to governmental organizations.

Microsoft does not directly sell NAV to end customers. Instead, independent Value-
Added Resellers (VAR) customize a general version of NAV to meet the specific re-
quirements of businesses within a particular country or industrial segment. There are
two distinguishing features of the NAV customization model, namely that (1) many as-

7

pect of NAV can be customized, including the client layer that controls the end-user
experience, the business logic layer that implements common business routines, and the
database layer, and that (2) many customizations are implemented as source code modifi-
cations [20]. (There are also customizations that are implemented as changes to metadata,
such as additions of new fields to the database or modifications of exisiting fields. Since
these customizations are conceptually simpler, they are often preferred over code modifi-
cations. In this report, we assume that the combination of such metadata customizations
can be dealt with automatically. Therefore, we do not investigate the nature of these
customizations in this report, but concentrate on source code modifications.)

Much of the success of NAV can be attributed to the flexibility that its customization
mechanism provides. But in this mechanism also lies one of the greatest challenges of
NAV: a significant burden (and cost) is imposed upon developers when migrating cus-
tomizations applied to one general version of NAV to the next version of NAV. This situ-
ation is commonly referred to as the upgrade problem for NAV [24]. A simple instance
is described in Figure 1.1 on the facing page. The current lack of built-in support for
migrating customizations in NAV forces partners to either migrate manually or to merge
textual exports of the business logic using untrusted third-party merge tools. Since both
Microsoft, independent partners, and end customers modify and augment the behavior
of NAV, all NAV developers in the development chain, from Microsoft via its partners to
customers, are affected by the upgrade problem.

In this report, we let the term (source code) modification refer to one local change in
source code from one version to another, as perceived by a particular model. A change
can be either an addition, a deletion, or an update. The location of the change will be
referred to as its point of modification. We let customization refer to a set of modifications
that constitute a logical unit.

1.1.1 The NAV ecosystem

Several different partners and developers contribute to a final implementation of NAV. In
the following list, these partners appear in same order as in a typical development chain.

Global Development and Localization (GDL): These are part of the Microsoft orga-
nization modifying the core NAV product (W1) to meet culture- and language-
specific requirements of specific countries. Historically, most GDL partners started
out as independent partners, but have since then been acquired by Microsoft.

Independent Software Vendors (ISVs): These are independent partners that typically
extends the core NAV product with features (so-called vertical solutions) for a
specific industrial segment (such as transportation, rental, or food and beverage
industries) or for a specific task (such as data analysis or customer-relationship
management).

8

(1) ��
W1 version 4.1

(2)

))TTTTTTTTTTT

(3)

��

DE version 4.1

���
�
�
�
�

W1 version 5.0

))TTTTTTT

⊕
(4)

��
DE version 5.0

Microsoft is responsible for products in the left part of the diagram. An independent Global
Development and Localization (GDL) branch of Microsoft situated in Germany is responsible
for products on the right. (In the diagram, time proceeds downwards.)

Microsoft develops version 4.1 of the core NAV product (called W1) and releases the source
code of the business logic (1). The GDL partner customizes this product to the German market
(2). These customizations involve culture- and language-specific modifications and adaptations
to German law and conventions. All adaptations are implemented as modifications to the
business logic source code.

After some time (typically two years), Microsoft releases the next major version of the
NAV product (3). The GDL partner is now faced with the challenge of combining their
customizations to the old version 4.1 with the new version 5.0 (4). Currently, the total cost of
this migration (e.g., (4)) can be as much as 30% of the cost of the original adaptation (e.g., (2)).

(In order to simplify the description, this example illustrates the upgrade problem from the
perspective of a GDL “partner.” In reality, however, GDL (e.g., (2) and (4) in the diagram) is
increasingly being performed by Microsoft. ISV partners address less artificial instances of the
upgrade problem.)

Figure 1.1: An instance of the upgrade problem for Microsoft Dynamics NAV.

Value-Added Resellers (VARs): These are independent partners that typically combine
a localized version of NAV with standalone modules into a product targeted either
at a specific industrial segment or at one enterprise. VAR partners resell NAV
products and provides consultancy services to customers.

Local Developers: The final system may be subject to further fine-tunings while run-
ning. The company who has bought the NAV product sometimes has the rights

9

and abilities to implement these fine-tunings itself.

There are more than 3 500 certified independent ISV and VAR partners worldwide,
with an estimated total number of employees of more than 100 000 [19]. Together, these
partners served more than 1 000 000 customers in 2006 [15]. A typical VAR partner
employs 20–30 developers and consultants [19]. It is generally believed that few VAR
partners are technically skilled IT professionals [3].

1.1.2 The NAV architecture

For a comprehensive architectural overview of NAV, consult Hvitved’s forthcoming Ph.D.
thesis [6]. For the rest of this technical report, however, the following description of NAV
is sufficient.

NAV consists of a general framework that provides access to an extensible database
of (business) “objects.” This framework cannot be modified by partners. (Managing
the different versions of the framework is thus not considered a problem.) The classes
of business objects supported by NAV are listed in Figure 1.2. Reports, Forms, and
Menusuites belong in the client layer, Codeunits belong in the business logic layer, and
Dataports, XMLports, and Tables belong in the database layer. The particular purposes
of the different classes are not relevant for this report.

Client layer


Reports
Forms
Menusuites

Business logic layer
{

Codeunits

Database layer


Dataports
XMLports
Tables

Figure 1.2: NAV object classes

Each business object has a name and a number. Numbers are unique within each class
of object (but business objects of different classes may have the same number). Objects
definitions are divided into sections of metadata and code that appear in the textual file
format for the NAV application object types. The kind of sections allowed in an object

10

depends on its class. The sections supported by NAV are listed in Figure 1.3. Again, The
particular purposes of the different sections are not relevant for this report.

CODE CONTROLS DATAITEMS ELEMENTS
EVENTS FIELDGROUPS FIELDS KEYS
MENUNODES OBJECT-PROPERTIES PROPERTIES RDLDATA
REQUESTFORM REQUESTPAGE

Figure 1.3: NAV object sections

All business objects may have embedded code attached at various places. For ex-
ample, a table contains code in triggers that are activated when entries in the table are
inserted, modified, or deleted. Frequently used code may be structured into procedures.
All objects may contain such procedures, but large (and commonly used) procedures are
usually stored in Codeunit objects. Embedded code pieces are implemented in a proce-
dural language called C/AL.

The location of an embedded code piece (or a scalar metadata value) in the business
objects can be uniquely identified by a path, similar to a fully qualified identifier in a mod-
ular programming language. The individual elements in such a path may include the class
of an object, the number of an object, the name of the section inside an object, the num-
ber of a field in a table, the name of a trigger, the name of a procedure, etc. Code paths
denote leaves in a tree containing the modular structure of NAV. Some example paths are
shown in Figure 1.4. The last three paths in this figure identify named procedures as part
of a business object definition. The remaining paths identify triggers. Note that some
legal paths (such as the intermediate paths Table/14 and Table/14/PROPERTIES
from Figure 1.4) do not identify code pieces.

Table/14/PROPERTIES/OnDelete
Table/14/FIELDS/5703/OnValidate
Form/99000959/CONTROLS/2/OnPush
Table/37/CODE/CheckWarehouse
Codeunit/80/CODE/DivideAmount
Codeunit/80/CODE/Increment

Figure 1.4: Example code paths

Version 5.0 of the uncustomized NAV (called W1), consists of 3 579 business objects
implementing the business logic of the application containing a total of 11 509 procedures

11

and 18 551 code pieces in triggers. Version 5.0 of the GDL customizations add up to 600
objects, 1 800 procedures, and 4 500 triggers to W1.

Many customizations can be performed by modifying scalar properties in the data-
base. One example could be modifying a numerical value for the “Discount Percentage”
for a specific “Payment Term.” Another example could be adding, deleting, or modifying
fields in the table of Payment Terms. These changes are easy to identify. (An experimen-
tal version of a tool managing customizations of scalar properties has been developed by
Microsoft Dynamics, for the AX ERP system.) However, most customizations require
modifications to the business logic implemented by embedded C/AL code pieces.

All customization may be applied to a running version of NAV, via its integrated
development environment C/SIDE. Once applied, it is generally impossible to roll back
a modification. It is possible to export and import some or all of the business objects
to and from text-based or XML-based formats. This ability is utilized by Microsoft and
by some partners to maintain external repositories of modifications. In such settings,
modifications are less often performed on a running version of NAV.

1.2 Detecting changes

The NAV upgrade problem is an example of software merging: Two independent branches
or derivatives (in Figure 1.1, W1 version 5.0 and DE version 4.1) of a common ancestor
(in Figure 1.1, W1 version 4.1) must be combined. The most successful approach to
merging is probably those that merges the differences between one branch and the com-
mon ancestor into the second branch [13]. This is know as a three-way merge. Generally,
the result of merging two branches is not uniquely defined. Consequently, three-way
merging of software can not be fully automated. In particular, when the two branches
modify the same feature in the common ancestor in different ways, a software merging
system must chose one modification over the other. The decision of which branch should
take priority must often be resolved by a programmer with insight in both branches, al-
though (partially) automated methods for prioritizing exists [13].

Tools that successfully detect differences between two documents dates back at least
to the first implementation of the UNIX diff tool [5]. To make them scale, diff and
its cousins use dynamic programming to solve variations of the longest common subse-
quence problem between the sequence of lines in the two documents [14, 17, 23]. UNIX

diff works well as a subroutine in three-way merge tools [8]. As an example of its use,
consider the programs in Figure 1.5. UNIX diff computes the following differences be-
tween the two “old” files in Figure 1.5(a) and Figure 1.5(b).

2a3
> } else {

This instruction states that the customized file (b) can be obtained by adding (“a”) line
three (“3”) from the customized file after line two in the old file (“2”). If we ask UNIX

12

1 if (x == 0) {
2 print(y);
3 print(x);
4 }

1 if (x == 0) {
2 print(y);
3 } else {
4 print(x);
5 }

(a) Old program (b) Customized old program

1 if (y < x) {
2 print(y);
3 print(x);
4 }

1 if (y < x) {
2 print(y);
3 } else {
4 print(x);
5 }

(c) New program (d) Customized new program, de-
rived automatically from (a), (b),
and (c)

Figure 1.5: Simple software-merging scenario

diff to include the (1-line) context surrounding the modification, then the result is the
following instruction in unified diff format.

--- a.txt 2009-06-30 11:43:44.531250000 +0200
+++ b.txt 2009-06-30 11:43:49.671875000 +0200
@@ -2,2 +2,3 @@

print(y);
+} else {

print(x);

These differences can be merged into the new file in Figure 1.5(c) automatically and
without conflicts, using the GNU patch tool. The result is shown in Figure 1.5(d). (The
same result can be achieved by passing files in part (b), (a), and (c) in Figure 1.5 to the
GNU diff3 tool.) The scenario just described is common in software merging [13] where
it is typically driven by a revision control system [22].

Diff-like tools that perform line-by-line comparison based on the longest common
subsequence problem are less satisfying when the inputs are structured documents and,
in particular, when the differences computed are subject to additional mechanical analy-
sis. Any general attempt to analyze program structure, types, the flow of control or data,
software metrics, etc. seems to require correctly structured programs fragments as input.

13

Neither of the two outputs from diff shown above lend themselves towards further me-
chanical analysis. It is possible to recover the structure and context of the modification
by considering the original files. In this report, we suggest a different approach where
the differences of two programs is represented as a tree alignment [7]. A tree alignment
is itself a tree that contains both version being compared, as well as the locations where
they differ. We argue that, for the purpose of analysis, tree alignments are superior to
traditional sequence-based diffs.

1.3 Managing changes in NAV

The aim of the work documented in this report has been to address the following chal-
lenges.

Characterizing code modifications: If most code modifications match a small set of
common patterns, then it might be possible to manage most code modifications
using only a few techniques. Part of the work presented in this report has been
aimed at providing insight into actual code modifications applied to NAV internally
at Microsoft and externally by independent partners in order to detect such patterns.

Identifying patterns of code modifications seems difficult, if not impossible, with-
out an in-depth understanding not only of the core version of NAV but also of a
large set of derived versions. Since no single person has this overview, the “shapes”
of potential code-modification patterns are currently unknown.

We have attempted to address this issue by studying a particular approach to man-
aging code modifications and by identifying existing code pieces that fit within this
approach.

Managing code modifications: Any successful customization mechanism for NAV must
be compatible with all existing customized versions of NAV. Migrating existing
code to a new customization mechanism should preserve as much of the original
program as possible.

We have studied a customization mechanism that allows new code to be “attached”
to existing procedures in a way that syntactically separates the new code from
the existing procedure. The mechanism is similar to a simple variant of Aspect-
Oriented Programming (AOP) [9] in which join points (the source locations in
the existing program at which to add additional code) denote at most one source
location and are limited to ends of procedures.

An existing code modification fits within this customization mechanisms when it
amounts to adding a sequence of statements at the end of a single procedure. Due
to the requirements of join points, variables local to the existing procedure can

14

be made available to the additional code by passing them “by reference” to the
additional code.

To provide additional insight into actual code modifications, we have widened the
search for common code-modification patterns to include any location where a
piece of code is added, removed, or updated. Some of the code modifications
detected can be handled using the AOP-like approach, whereas others cannot.

Two or more code modifications may logically belong to the same customization,
even if they are applied at different procedures or modules. We have not addressed
the challenge of grouping together such code modifications.

The following additional issue emerged during the present study but has not been
addressed in this report.

Querying code modifications: The tools described in this report are aimed at detecting
differences between two versions of NAV. However, they do not help in catego-
rizing, characterizing, analyzing, or otherwise managing the differences. In par-
ticular, the tools do not identify any common pattern of code modifications, even
if there are any. Part of the reason for this is, as discussed above, due to the lack
of known patterns to search for. We have identified the need for tools that allow
developers to get an understanding of a large code base (of which some parts may
be derived versions of others); the use of such tools in the presence of Microsoft
Dynamics NAV is future work.

1.4 Outline of the report

The rest of this report is organized as follows. In Chapter 2 we review the less constrained
tree-to-tree edit problem and argue that solutions to this problem are good representations
of differences between two pieces of source code. In Chapter 3, we describe an imple-
mentation of a tool (astalign) that uses Jiang, Wang, and Zhang’s [7] algorithm to
solve such less constrained tree-to-tree edit problems. This tool can be used to compute
differences between any two trees (and not only source code) and it can either be invoked
as a command-line tool or be used as a library by other applications. In Chapter 4 we
use the astalign library to implement an application (navdiff) that compute dif-
ferences between comparable code pieces from different version of Microsoft Dynamics
NAV. (Both astalign and navdiff are implemented in C#.) In Chapter 5 we present
a set of preliminary analyzes of differences between versions of Microsoft Dynamics
NAV. In Chapter 6 we conclude.

15

Chapter 2

Tree alignments

The tree-alignment problem is one of several tree edit problems which identify minimal
sets of differences between two hierarchically structured documents and that measure
the minimal distance between two such documents in terms of how much they differ. In
this chapter we present the notion of the tree alignment problem, which is a particular
instance of the tree edit problem.

2.1 Preliminary definitions

A rooted tree is a triple 〈N,E, r〉 consisting of a set N of nodes, a subset E of N ×N of
edges, and a distinguished root node r ∈ N . (Formally, E is an injective binary relation
such that, for all n ∈ N , (r, n) ∈ E∗, where E∗ is the reflexive, transitive closure of
E.) A tree is ordered if, for each node n ∈ N , there exists a total ordering ≤ among
its children {m | (n,m) ∈ E}. A tree is labeled if there is a mapping ` from nodes to
a set of labels L. A preorder traversal sequence lists the nodes (or labels) of a tree in
accordance with their preorder numbering.

2.2 Definition of tree alignments

Let T1 = 〈N1, E1, r1〉 and T2 = 〈N2, E2, r2〉 be two ordered rooted trees. An alignment
of T1 and T2 is a labeled, ordered, and rooted tree A whose labels are from (N1 ×N2)∪
(N1×{−})∪ ({−}×N2) (where “−” is a special blank symbol) such that the preorder
traversal sequence of A projected to the first (second, resp.) component can be obtained
from the preorder traversal sequence of T1 (T2, resp.) by only inserting blanks. We
require that the root of the alignment is labeled by (r1, r2). Intuitively, an alignment
of T1 and T2 is a tree that contains both T1 and T2, in the sense that erasing the first
(second, resp.) component of the pairs in the nodes of A and subsequently contracting
paths involving “−” results in T2 (T1, resp.).

17

As an example, the set of possible alignments of the two trees

T1 =

n1

n2

n3 n4

n5

n6

and T2 =

n7

n8

n9

n10

n11

n12

n13 n14

with preorder traversal sequences n1, n2, n3, n4, n5, n6 and n7, n8, n9, n10, n11, n12,
n12, n13, n14 includes

A =

(n1, n7)

(− , n8)

(n2, n9)

(n3, −) (n4, n10)

(n5, n11)

(−, n12)

(n6, n13) (−, n14)

with preorder traversal sequence (n1, n7), (−, n8), (n2, n9), (n3,−), (n4, n10), (n5, n11),
(−, n12), (n6, n13), (−, n14) and

A′ =

(n1, n7)

(n2, −)

(n3, −) (n4, n8)

(−, n9)

(−, n10)

(n5, −)

(n6, −)

(−, n11)

(−, n12)

(−, n13) (−, n14)

with preorder traversal sequences (n1, n7), (n2,−), (n3,−), (n4, n8), (−, n9), (−, n10),
(n5,−), (n6,−), (−, n11), (−, n12), (−, n13), (−, n14).

The nodes in an alignment are interpreted as operations that map the first tree into the
second. A node (n1, n2) denotes an update of the label of node n1 to the label of node
n2, a node (−, n2) denotes an addition of node n2, and a node (n1,−) denotes a deletion
of node n1.

Nodes in an alignment are associated with a cost of performing the corresponding
operations. A cost function over the nodes in the alignment may take the labels of the

18

corresponding nodes in the original trees into account. We let c be a mapping from
(N1×N2)∪ (N1×{−})∪ ({−}×N2) to real-valued costs. The cost of an alignment is
the sum of the costs of its nodes. An optimal alignment of two trees is an alignment with
least cost. (There may be more than one optimal alignment.) Intuitively, the alignment
with the least cost is the one that maps the first tree into the second using the cheapest set
of operations. The purpose of a tree alignment algorithm is to find the optimal alignment
of two trees.

Let L = {a, b, c, . . .} and `(n1)= `(n7)=a, `(n2)= `(n9)=b, `(n3)=c, `(n4)=
`(n10) =d, `(n5) = `(n11) =e, `(n6) = `(n13) = f, `(n8) =g, `(n12) =h, and `(n14) =
i. Then the two trees defined above can be drawn with their labels, as follows. (This
notation is often preferred when labels uniquely define nodes.)

T1 =

a

b

c d

e

f

and T2 =

a

g

b

d

e

h

f i

If we assume that c(n, n′) = 0 when `(n) = `(n′), c(n, n′) = 2 when `(n) 6= `(n′) and
both c(−, n) = 1 and c(n,−) = 1, then alignment A has cost 4 and alignment A′ has
cost 12. Alignment A is an optimal alignment of the trees T1 and T2 with respect to this
cost function. With labels instead of nodes, A looks as follows.

A =

(a, a)

(− , g)

(b, b)

(c, −) (d, d)

(e, e)

(−, h)

(f, f) (−, i)

Notice that the number of nodes in an alignment of two trees with nodes N1 and N2

is between max(|N1|, |N2|) and |N1| + |N2| and that both of the original trees can be
reconstructed given the alignment only.

The notion of tree alignments and an algorithm to find optimal alignments was in-
troduced by Jiang, Wang, and Zhang [7]. The time complexity of the algorithm is in
O(|N1| × |N2| × (D1 +D2)

2) for trees with nodes N1 and N2 and where the degree Di

of tree Ti is the maximum number of children of any node in the tree.

2.3 Alternative definitions of tree alignments

There are several alternative definitions of tree alignments.

19

• Tree alignments may be characterized as the result of first adding blank nodes in
the two trees until they have the same structure, and the overlaying the trees [1,7].

• Tree alignments (and other tree-to-tree correction problems) can also be defined
in terms of a relation between nodes in one tree and nodes in the other. For-
mally, the triple 〈M,T1, T2〉 is an ordered edit distance mapping[1, 21] from
T1 = 〈N1, E1, r1〉 to T2 = 〈N2, E2, r2〉 whenM is a subset ofN1 × N2 such
that for any(n1,m1), (n2,m2) ∈ M ,

1. n1 = n2 if and only ifm1 = m2,

2. pre(n1) < pre(n2) if and only if pre(m1) < pre(m2), wherepre(n) is the
preorder number associated with noden, and

3. n2 ≺ n1 if and only ifm2 ≺ m1, wheren ≺ n′ if and only ifn′ is an ancestor
of n.

Conditions 1–3 gives rise to a notion of (unconstrained) tree-to-tree edit prob-
lem [21]. An alignment corresponds to aless constrainededit [10, 12], which,
in addition to conditions 1–3, require that for(n1,m1), (n2,m2), (n3,m3) ∈ M
such that none ofn1, n2, andn3 are ancestors of the others,

4. lca(n1, n2) � lca(n1, n3) = lca(n2, n3) if and only if lca(m1,m2) �
lca(m1,m3) = lca(m2,m3), wherelca(n, n′) denotes theleast common an-
cestorof nodesn andn′.

(Less constrained edits lift one of the restrictions ofconstrainededits [18, 25], a
notion we do not consider further in this report.)

As an example, alignmentA above corresponds to the mapping

〈T1, T2, {(n1, n7), (n2, n9), (n4, n10), (n5, n11), (n6, n13}〉

which can be draw as the following diagram.

a

b

c d

e

f

a

g

b

d

e

h

f i

20

• Tree alignments are equivalent toordered sequences of edit operationsin which
every addition precede all deletions [1,7].

Such an ordered script is an operational description of how one tree can be trans-
formed into the other. In that sense, edit scripts correspond to the output of a
traditional DIFF. An ordered edit script must include information about the lo-
cation at which an operation is applied. An ordered edit script corresponding to
alignmentA above might be specified as follows.

1. Add noden8 labeled g under noden1/n7,

2. add noden12 labeled h under noden5/n11,

3. add noden14 labeled i under noden12, and then

4. delete noden3.

Notice that if deletions were allowed to precede additions,then the ordered edit
script

1. Delete node c, and then

2. add node c′ between node a and nodes b and d.

would transform the tree

a

b c

d e

into

a

c′

b d

e .

The corresponding edit mapping is{(a,a), (b,b), (d,d), (e,e)} which we may dis-
play as the following diagram.

a

b c

d e

a

c′

b d

e .

An alignment would have to have a node(b,b) under a node(−, c′) and a node
(e,e) under a node(c,−). But, according to the diagram, it should also have a
node(d,d) underbothnodes(−, c′) and(c,−), which is not possible.

21

2.4 Tree alignments as source code diffs

There are several variations in the design that must be addressed when using a tree align-
ment as a vehicle for detection changes in source code.

A programming language is associated with several different notions of equivalences
among its programs. Listed in decreasing order of “strength”, some of the most common
notions of equivalences are as follows.

Lexical equivalences: The representation of two programs contains identical sequences
of symbol.

Syntactical equivalences: The abstract syntax trees of two programs are identical.

α-equivalence: Syntactical equivalence modulo renaming of variables.

Semantic equivalence: Two programs have the same behavior.

UNIX diff is lexical, with lexical entities being the lines of the source programs. De-
tecting changes between programs is a generalization of deciding whether program are
equivalent. Therefore, a particular change-detection tool employs a particular underlying
notion of equivalence. Another implication of this is that identifying semantic changes
between two programs is undecidable.

An equivalence relation can be “weakened” by composing it with a normalization
phase that maps programs to canonical elements of a “weaker” equivalence class. For
example α-equivalence can be emulated by syntactical equivalence by consistently re-
naming variables.

It seems evident that tree alignments should be based on the abstract syntax trees of
two source program, rather than on their concrete syntax. Specialized notions of equality
may also be considered. For syntactic equivalence, it might, for example, be relevant to
consider two programs to be equal when their abstract syntax trees are identical modulo
inconsequential reordering of declarations (such as the fields of a class) or statements.

Another factor that affects the detection of changes between documents is the gran-
ularity of changes. This is the extent of the smallest entities that can be modified sep-
arately. Typical examples are characters, words or tokens, or lines. When comparing
source code, the most relevant entities are probably tokens, expressions, or statements
but larger entities such as methods, classes, or modules might also be considered. For
imperative programming languages such as derivatives of C or Pascal, comparing source
programs line by line corresponds in many cases to comparing statement by statement.
The success of this approach is demonstrated by the widespread use of UNIX diff in
software repositories.

Modular programming language enable a particular optimization when detecting
changes. If we let “module” denote any named block of source code (such as methods,

22

procedures, classes, or namespaces) and if we assume that modules are never renamed
and that code is never moved between modules, then all changes are “intramodular” and
can be detected by applying a change-detection tool only on modules of the same (fully
qualified) name in the two programs being compared. This approach will greatly improve
the performance of change-detection tools that use comparison algorithms that are non-
linear. (It should be mentioned that the assumption that procedures are never renamed
has been questioned [4], but that we find that this property holds in NAV.)

23

Chapter 3

Implementation of a tree alignment
algorithm

This chapter describes align.dll, a general-purpose library implementing Jiang, Wang,
and Zhang’s tree alignment algorithm [7], and astalign, a stand-alone application
demonstrating how the library may be used.

Two aspects of the library can be configured by supplying additional code: The
costs of adding, deleting, updating, and copying nodes and labels (consult the interface
ICostProvider below) and a set of actual actions to apply during a traversal of a
generated alignment (see interface IActionListener below).

The library and the stand-alone application are both written in C#.

3.1 A tree alignment library

The tree-alignment library contains classes representing trees (Tree, Node), intervals
over sequences of trees (Interval), and alignments (Alignment) and a main class
(Align) that builds an internal representation of the alignment of two trees. In ad-
dition, two interfaces control how the library may be configured (ICostProvider,
IActionListener).

3.1.1 Class Node

This inductively defined class provides an implementation of nodes of labeled ordered
trees. Objects of this class are never created by the alignment algorithm. The labels of
trees represented as objects. They are never generated or modified by the alignment
algorithm.

Methods and properties of class Node:

• public Node(object label, params Node[] children)

25

(Constructor) Creates a node with a given label. The constructor may take child
nodes as argument. Thus, trees can be constructed bottom-up. Further children
may be added (to the right of existing children) using the Add method. Thus, trees
represented as Nodes can also be constructed top-down.

• public void AddChild(Node n)

Adds a sub tree to the right of the right-most children of this Node.

• public override string ToString()

Returns a written representation of the subtree under this Node.

• public object Label

(Readonly property) Yields the label of this Node.

• public int Size

(Readonly property) Yields the size of the subtree rooted under this Node.

• public int Degree

(Readonly property) Yields the number of children of this node (its degree).

• public int Depth

(Readonly property) Yields the depth of the subtree rooted under this Node.

• public int OutDegree

(Readonly property) Yields the maximum degree among all subtrees rooted under
this Node.

• public IEnumerable<Node> Children

(Readonly property) Yields an enumeration of the children of this Node.

3.1.2 Class Tree

This class provides a sequentialized view of the nodes of a tree. In this view, nodes are
indexed by their postorder number, starting from 1. This is the datastructure that the
alignment algorithm operates on. The labels of trees represented as objects. They are
never generated or modified by the alignment algorithm.

To construct a Tree, one must first construct a tree represented by a Node and then
pass this representation to the constructor of the Tree class. (In earlier version of the
library, the internal Trees used by the algorithm were unsuitable for use in parsers. The
distinction between class Tree and class Node has since been blurred.)

Methods and properties of class Tree:

26

• public Tree(Node root)

(Constructor) Creates a new Tree given the root of a tree of Nodes.

• public object Label(int i)

Returns the label of node i (using postorder numbering).

• public int NumberOfChildren(int i)

Returns the number of children of node i (using postorder numbering).

• public int[] Children(int i)

Returns an array of the postorder numbers of children of node i (using postorder
numbering).

• public bool Equals(Tree other)

This method compares two trees. This is a fast way of filtering out pairs of trees that
are identical, before applying the (rather expensive) alignment algorithm. (This
method is never invoked by the alignment library.)

• public void dump()

Prints a representation of this Tree to the standard output port.

• public object Root

(Readonly property) Yields the label of the root of this Tree.

• public int Size

(Readonly property) Yields the number of nodes in this Tree.

• public int Depth

(Readonly property) Yields the depth of this Tree.

• public int OutDegree

(Readonly property) Yields the degree of this Tree.

3.1.3 Class Interval

This static class provides a bijective mapping from

{(i, j) | 1 ≤ i ≤ j < max}

to integers in the range [1; 12max (max + 1)]. In the alignment algorithm, pairs (i, j)
denote intervals over the children of a node with max children. The class Interval
enables such intervals to stored in a one-dimensional array and be indexed by integers.

Methods and properties of class Interval:

27

• public static int Index(int max, int i, int j)

This method provides the mapping from {(i, j) | 1 ≤ i ≤ j < max} to [1; 12max (max+
1)]. This method has the property that

index(max , i, j + 1) = index(max , i, j) + 1

for 1 ≤ i ≤ j < max . (The alignment algorithm relies on this property. If the
Index method is ever modified, this property must be preserved.)

• public static int Size(int max)

This method returns 1
2max (max + 1).

3.1.4 Class Alignment

Object of this class are representations of the alignment of two trees. Such an alignment
is itself a tree where each node contains a pair of an old node (or null) and a new
node (or null). If the old node part is null, then this alignment node designates an
addition; and dually, if the new node part is null, then this alignment node designates
a delete. (Either the old node or the new node must be non-null.) Objects of this class
are generated by the alignment algorithm.

Methods and properties of class Alignment:

• public Alignment(object n1, object n2, Alignment[] ch)

Constructs an Alignment node with a given sequence of children. Either n1 or
n2 may be null, but not both. This method is used by the library to construct an
Alignment.

• public object info

This is an unused field. It may be used during traversals of the alignment to hold
synthesized attributes. This field is never accessed by the library.

• public object OldLabel

(Readonly property) The label (or null) from the old tree associated with this
Alignment node. Notice that this property yields a label, not a Node.

• public object NewLabel

(Readonly property) The label (or null) from the new tree associated with this
Alignment node. Notice that this property yields a label, not a Node.

• public int Degree

(Readonly property) Yields the number of children of this alignment node.

28

• public Alignment this[int i]

(Readonly property) Yields the ith children (starting from 0) of this alignment
node.

3.1.5 Class Align

This class performs the alignment of two Trees.
Methods and properties of class Alignment:

• public Align(ICostProvider costs, Tree t1, Tree t2)

(Constructor) Aligns the Trees t1 and t2 with respect to the given costs.

• public void Execute(IActionListener listener)

Traverse the alignment. For each alignment node visited, invoke the corresponding
method in the supplied IActionListener.

• public Alignment Alignment()

Construct an Alignment tree.

3.1.6 Interface ICostProvider

This interface contains the signatures for cost functions.

• int CostOfDelete(object l)

This method should return the cost of deleting an old node with label l.

• int CostOfInsert(object l)

This method should return the cost of adding a new node with label l.

• int CostOfCopy(object l)

This method should return the cost of copying, without modifying, a node with
label l from the old to the new tree. The alignment algorithm decides if two
labels are identical by invoking the object.Equals method. Custom labels
with custom Equals predicates may be defined as subclasses of object.

• int CostOfUpdate(object l1, object l1)

This method should return the cost of updating a node by changing its label from
l1 to l2.

29

3.1.7 Interface IActionListener

This interface defines the signatures of the operations used when ’executing edit scripts’
associated with an alignment. There are four groups of methods, corresponding to the
four edit operations. Each group consists of one method invoked when entering the
subtree rooted under the alignment node and another invoked when leaving the subtree
rooted under the alignment node.

• void BeginCopy(object l1, object l2)

• void EndCopy(object l1, object l2)

These method will be invoked when a node has been copied from the old tree to
the new without modification.

• void BeginUpdate(object l1, object l2)

• void EndUpdate(object l1, object l2)

These method will be invoked when a node has been changed. (This is like copy-
ing, but with modification to the node label.)

• void BeginInsert(object l)

• void EndInsert(object l)

These method will be invoked when a node has been added into the new tree.

• void BeginDelete(object l)

• void EndDelete(object l)

These method will be invoked when a node has been deleted from the old tree.

3.1.8 Example usage

The following class implements cost functions corresponding to those used to align the
trees in Section 2.

class CostProvider : Align.ICostProvider {
public int CostOfCopy(object l) { return 0; }
public int CostOfUpdate(object l1, object l2) { return 2; }
public int CostOfInsert(object l) { return 1; }
public int CostOfDelete(object l) { return 1; }

}

The code snippet below then constructs two trees (represented as Nodes), aligns the
two trees with respect to the cost functions, and displays the alignment.

30

...
Align.Node n1 =
new Align.Node("a",

new Align.Node("b",
new Align.Node("c"),
new Align.Node("d")),

new Align.Node("e",
new Align.Node("f")));

Align.Node n2 =
new Align.Node("a",

new Align.Node("g",
new Align.Node("b",

new Align.Node("d"))),
new Align.Node("e",

new Align.Node("h",
new Align.Node("f"),
new Align.Node("i"))));

Align.Align a =
new Align.Align(new CostProvider(),

new Align.Tree(n1),
new Align.Tree(n2));

Display(0, a.Alignment());

The method Display writes a representation of the alignment tree to the console.
It uses indentation to distinguish nodes at different levels in the alignment tree. This
method can be implemented as follows.

static void Display(int depth, Align.Alignment a) {
for (int i = 0; i < depth; i++)
System.Console.Write(" ");

System.Console.WriteLine("({0}, {1})",
(a.OldLabel == null) ? "-" : (string) a.OldLabel,
(a.NewLabel == null) ? "-" : (string) a.NewLabel);

for (int i = 0; i < a.Degree; i++)
Display(depth + 1, a[i]);

}

31

Running the code snippet above results in the following output. (Compare with align-
ment A in Section 2.)

(a, a)
(-, g)
(b, b)

(c, -)
(d, d)

(e, e)
(-, h)

(f, f)
(-, i)

3.2 A standalone tree alignment application

Experiments with tree alignments can be conducted using astalign, a stand-alone
application not unlike the example program from above.

astalign accepts the following options specifying constant costs for adding, delet-
ing, updating, and copying nodes: “-i v”, “-d v”, “-u v”, and “-c v”. Here, the vs
must be positive integers. They default to 1, 1, 1, and 0 respectively.

The input to astalign are two trees written in fully parenthesized notation (paren-
theses around leaves may be omitted) and whose labels are strings of non-whitespace
characters. The input can be described by the following grammar.

tree → label

tree → ‘(’ label tree∗ ‘)’

label → non-empty sequence of non-whitespace characters

3.2.1 Example usage

The trees from Section 2 are aligned in the following session. (The parts in bold-face
font is typed in. The remaining parts are output by the application.)

> astalign.exe -u 2
(a (b c d) (e f))
(a (g (b (d))) (e (h (f) (i))))
COST OF ALIGNMENT: 4

EDIT SCRIPT:

32

COPY a
INSERT g

COPY b
DELETE c
COPY d

COPY e
INSERT h
COPY f
INSERT i

ALIGNMENT TREE:
(a, a)

(-, g)
(b, b)
(c, -)
(d, d)

(e, e)
(-, h)
(f, f)
(-, i)

(Compare again with alignment A in Section 2. And notice that, for illustrative purpose,
the first tree is typed in without parentheses around leaves but the second with parentheses
around leaves.)

33

Chapter 4

Implementation of a
change-detection tool for NAV

This chapter describes navdiff, a tool for comparing two versions of Microsoft Dy-
namics NAV. The tool uses the alignment library presented in Chapter 3 to compare code
pieces from the two versions.

4.1 Design

The purpose of navdiff is to assist in detecting and characterizing differences between
two versions of NAV. The tool is not limited to comparing one version of NAV with one
of its derivatives, but may be applied to any two versions of NAV.

4.1.1 Input

All business objects from a version of NAV can be output in a textual format known
as an export. It is convenient to let the change-detection tool operate on this format
using standard parsing methodology. (An alternative is to integrate the tool with the
existing integrated development environment.) In an attempt to reduce the amount of
memory required when comparing two version of NAV, the tool avoids parsing (and
storing) the entire exports of the two version being compared. This is enabled by a
one-pass preprocessing phase that chops one export (corresponding to the old version
of NAV) into smaller files containing one (or more) procedures or triggers. (If one old
version must to be compared to several new versions, it need only be chopped once.)
The procedures and triggers of the other export (corresponding to the new version of
NAV) need not be chopped: A one-pass traversal of the new export parses procedures
and triggers and constructs their abstract syntax trees one by one. Once constructed, the
abstract syntax of a new procedure or trigger is compared with the corresponding old
abstract syntax tree stored in a file. After comparison, both abstract syntax trees can

35

be discarded. The total amount of memory required when comparing two versions of
NAV is then proportional to the amount of memory required by the alignment tool when
operating on the largest procedure.

To facilitate this scenario, navdiff defines an interface ICodeProvider of by
classes that can supply abstract syntax trees. This interface is implemented by class
FileCodeProvider that reads abstract syntax trees from chopped files and by class
BufferedCodeProvider that reads abstract syntax trees from an export.

4.1.2 Output format

The purpose of navdiff is not to assist in managing, examining, or characterizing the
differences that are detected. (But see section 4.1.3 below.) Instead it dumps alignments
as presented in Section 2 to a relational database. A diagram describing the table schemas
is shown in Figure 4.1 on the next page. The content of the tables are summarized below.

Alignments: An alignment represents the result of aligning two code pieces with the
same path from different versions of NAV. A row in the Alignments table con-
tains the names of the old and new version of NAV being compared, the code path
(key), and the root note (key) of the alignment tree.

CodePaths: A code path represents the fully qualified path identifying a code piece
within NAV. A row in the CodePaths table contains a unique ID (key), a (possi-
bly null) ID of a parent code path, and a name.

AlignNodes: An alignment node represents a node in an alignment of two code pieces.
A row in the CodePaths table contain a unique ID (key), a (possibly null) ID of
the parent alignment node, a (possibly null) ID of the left sibling, and (possibly
null) IDs of old and new labels (called lines). (For experimental purposes, a row
also contains a string representing the path from the root of this alignment node to
the current node. This is a derived value.)

A null old label means that the alignment node represents an addition. A null
new label means that the alignment node represents a deletion. At most one of the
old or the new label may be null.

An alignment node has a parent alignment node if and only if there are no align-
ments referring to it.

Lines: A line represents a fragment of characters from a code piece. A row in the Lines
table contains a unique ID (key), a line number of the occurrence of the fragment
in NAV export, and an ID of the actual content.

Content: Contains chunks of characters from NAV export files.

36

v
a
r
c
h
a
r
(
5
0
)

n
a
m
e

:

i
n
t

p
a
r
e
n
t
_
i
d
:

i
n
t

i
d

:

C
o

d
e

P
a

t
h

s

i
n
t

p
a
r
e
n
t
_
i
d
:

i
n
t

o
l
d
l
i
n
e
_
i
d
:

i
n
t

n
e
w
l
i
n
e
_
i
d
:

v
a
r
c
h
a
r
(
3
0
0
)

p
a
t
h

:

i
n
t

l
e
f
t
_
i
d
:

i
n
t

i
d

:

A
l

i
g

n
N

o
d

e
s

i
n
t

c
o
n
t
e
n
t
_
i
d
:

i
n
t

l
i
n
e
n
r
:

i
n
t

i
d

:

L
i

n
e

s

n
v
a
r
c
h
a
r
(
2
0
4
8
)

t
e
x
t

:

i
n
t

i
d

:

C
o

n
t

e
n

t

i
n
t

c
o
d
e
p
a
t
h
_
i
d

:

i
n
t

a
l
i
g
n
n
o
d
e
_
i
d

:

v
a
r
c
h
a
r
(
1
8
)

n
e
w
v
e
r
s
i
o
n
:

v
a
r
c
h
a
r
(
1
8
)

o
l
d
v
e
r
s
i
o
n
:

A
l

i
g

n
m

e
n

t
s

0
.
.
1

0
.
.
1

1
.
.
*

0
.
.
1

1
.
.
*

1
.
.
*

0
.
.
*

1 1

0
.
.
1

1

0
.
.
*

0
.
.
1

0
.
.
1

0
.
.
1

1
.
.
*

Fi
gu

re
4.

1:
Sc

he
m

a
de

sc
ri

bi
ng

th
e

ou
tp

ut
of
n
a
v
d
i
f
f

37

These tables allows differences between several different pairs of versions of NAV to
be stored in one database. This is essential for the identification of program points that
are subject to modification in several derived versions of NAV.

These tables encode tree-like structures (code paths and alignments) using the Ad-
jacency List Model where a child contains an ID of its parent [2]. Although this is a
natural representation of hierarchies in relational databases, some queries involving such
a representation cannot be expressed as pure SQL queries. In particular, due to the lack
of general recursion techniques in pure SQL queries, simple problems such as finding the
size of an alignment, finding the root of an alignment, or finding code pieces that contains
modifications cannot be expressed. Limited forms of recursive queries are supported by
the connect by clause of Oracle’s SQL extension and by the Common Table Expres-
sions of Transact SQL [16].

There are at least two alternative representations that support standard (non-recursi-
ve) SQL queries over hierarchical data [2]. The first, the Path Enumeration Model or
Materialized Path Model, stores in each node the path from the root of the hierarchy
to that node, as a string of either edge labels or (if siblings labels are always distinct)
node labels, separated by a path separator. In such a model, queries involve predicates
over these paths. Many natural queries can be expressed using predicates that involve
matching regular expression against paths. Unfortunately, general regular expressions
matching is not supported by standard SQL. To successfully use the limited matching
capabilities of SQL, it seems necessary, for example, to uniformly store edge or node
labels using a fixed number of characters in the path string.

The second alternative, the Nested Sets Model, associates with each node an interval
represented by two numbers such that (1) the interval associated with any descendant
of a node is a subinterval of the interval associated with the node itself and (2) siblings
have disjoint intervals. Queries over a nested set model use predicates that involve simple
numerical comparisons.

The additional information supporting the Path Enumeration Model and the Nested
Set Model can be generated by recursively defined stored procedures.

4.1.3 Alternative output format

Since the output to a relational database is experimental, navdiff can also output dif-
ferences in a text-based format. More precisely,

1. if navdiff detects a consecutive sequence of statements that have been deleted,
then it outputs one line listing the line number in the original version (typically
W1) of the first of the deleted statements;

2. if navdiff detects a consecutive sequence of statements that have been added,
then it outputs one line listing the line number in the original version of the imme-
diately preceding line that was not added; and

38

3. if navdiff detects a statement that has been updated, then it outputs one line
listing the line number in the original version of the updated statement.

Notice that lines that are added do not have a line number in the original version. navdiff
numbers lines relative to the exported file, not relative to the surrounding code piece.
Therefore all line numbers are global. As an example, here is an excerpt from comparing
two versions of NAV, with the (global) line numbers in the left column.

...
0514237 node added (new line = 0584420)
0514237 node deleted
0530147 trees added (new line = 0600719)
0531183 node deleted
0531284 nodes updated (new line = 0601906)
0531301 nodes updated (new line = 0601923)
0531332 nodes updated (new line = 0601954)
0531355 nodes updated (new line = 0601977)
0534582 trees added (new line = 0605290)
...

As indicated by the first two lines of this excerpt, some updates are characterized as
an addition followed by a deletion. (Thus, the meaning of such a pair of operations is not
to add a line and then delete it afterwards.)

4.2 Implementation

The sections below present the most important classes and methods of the tool. A dia-
gram describing the most important relationsships between these classes is presented in
Figure 4.2 on the following page.

4.2.1 Class CodePath

Objects of this class represents paths identifying code fragments (procedures or triggers)
in a version of NAV. These paths can be compared efficiently, so they may serve as
keys in tables, sets, and dictionaries. A codepath is either the root, or a parent codepath
augmented with a short name:

Table/14/PROPERTIES︸ ︷︷ ︸
Parent

/OnDelete︸ ︷︷ ︸
Short name

Root codepaths are represented as the null reference but are nevertheless real code-
paths. (In other word, some legal codepaths are null, rather than references to objects.)
Therefore, almost all operations on codepaths are done via static member functions.

39

«in
terfac

e»

A
l

i
g

n
.

I
C

o
s

t
P

r
o

v
i

d
e

r
«ab

stract
»

D
i

f
f

C
o

m
p

a
r

e
r

«in
terfac

e»

I
P

a
r

s
e

r
C

a
l

l
b

a
c

k
s

«in
terfac

e»

I
C

o
d

e
P

r
o

v
i

d
e

rB
u

f
f

e
r

e
d

C
o

d
e

P
r

o
v

i
d

e
r

F
i

l
e

C
o

d
e

P
r

o
v

i
d

e
r

C
h

o
p

p
i

n
g

P
a

r
s

e
r

C
a

l
l

b
a

c
k

s

D
i

f
f

C
o

m
p

a
r

e
r

A
g

a
i

n
s

t
F

i
l

e

D
i

f
f

C
o

m
p

a
r

e
r

A
g

a
i

n
s

t
M

e
m

o
r

y

Figure
4.2:C

om
m

on
classes

of
n
a
v
d
i
f
f

40

Before using this class (or between two comparisons), invoke the method Reset().
The class property Roots and the instance property Children can be used to recur-
sively retrieve all codepaths constructed (since the last Reset()).

Methods and properties of class CodePath:

• public static IEnumerable<CodePath> Roots

(Readonly property) Yields an enumeration of the root CodePaths installed since
the last Reset.

• public static void Reset()

Empties the set of installed root CodePaths.

• public CodePath Parent

(Readonly property) Yields the parent element (itself a CodePath) of this CodePath.

• public string Name

(Readonly property) Yields the short name of this (non-root) CodePath. This is
the name of the leaf identified by the CodePath.

• public int Length

(Readonly property) Yields the length of this CodePath.

• public IEnumerable<CodePath> Children

(Readonly property) Yields an enumeration of the children of this CodePath.

• public static CodePath MakeCodePath(params string[] names)

Constructs a CodePath from an array of names.

• public static CodePath Add(CodePath p, string name)

Adds a leaf element to an existing (but possibly null) CodePath. The CodePath
terminating at the leaf is returned.

• public static string[] PathComponents(CodePath p)

Yields an array of the path elements of a given CodePath.

4.2.2 Interface ICodeProvider

This interface is implemented by classes that can provide access to code fragments (pro-
cedures or triggers) from a version of NAV. Each code fragment is identified by its
CodePath.

Methods specified by interface ICodeProvider:

41

• bool Contains(CodePath path)

This method must return true if and only if the given CodePath exists in this
code provider.

• Align.Tree this[CodePath path]

(Property) This property must yield the abstract syntax tree associated with the
given CodePath.

• IEnumerator<KeyValuePair<CodePath, Align.Tree>> GetEnumerator()

This method must yield an enumerator producing all CodePaths (and their asso-
ciated abstract syntax tree) provided by this ICodeProvider.

4.2.3 Class FileCodeProvider

This class implements interface ICodeProvider.
Objects of this class provides random access to chopped versions of NAV file hierar-

chies without loading the entire NAV version into memory.

4.2.4 Class BufferedCodeProvider

This class implements interfaces IParserCallbacks and ICodeProvider.
Objects of this class provides random access to code in a NAV version by pars-

ing the entire version into memory. It is not recommended to use this class on large
NAV databases. Instead use a FileCodeProvider on a chopped NAV version or use
DiffCompareAgainstFile to traverse an NAV databases.

4.2.5 Class DiffComparer

This class is abstract and implements interface Align.ICostProvider. This class
serves as superclass for classes that can compare two version of NAV.

Subclasses of this class must implement the method Comparer() so that it traverses
all code in both versions, invokes methods Enter() and Leave() when entering and
leaving nodes in the NAV hierarchy, and invokes method CompareTrees() on code
from both versions. This traversal must be a post-order traversal. That is, it must respect
the tree structure of the NAV hierarchy and it must process children before parents. There
are two subclasses of this class,

DiffComparerAgainstFile and

DiffComparerAgainstMemory.

Before using objects of this class, the ActionListener property must be set to
an appropriate value.

This class implements a specific cost function.

42

4.2.6 Class DiffComparerAgainstFile

This class extends class DiffComparer and implements interface IParserCallbacks.
Objects of this class can compare two version of NAV, one of which comes from a

raw text file (that is, a file exported by NAV) and the other which is represented by an
ICodeProvider.

Methods and properties of class DiffComparerAgainstFile:

• DiffComparerAgainstFile(ICodeProvider old code provider,
string new code file)

• DiffComparerAgainstFile(string old code file, ICodeProvider
new code provider)

4.2.7 Class DiffComparerAgainstMemory

This class extends class DiffComparer.
Objects of this class can compare two version of NAV, both of which are represented

as ICodeProviders.

4.2.8 Class ChoppingParserCallbacks

This class implements interface IParserCallbacks.
Objects of this class are used when chopping an NAV export into smaller files. When

constructing a ChoppingParserCallbacks, the “depth” d at which to split exports
is specified. A procedure P at code path M1/ · · · /Mk will be stored in file Md under
directory M1/ · · · /Md−1 as illustrated as follows.

M1/M2/ · · · /Md−1︸ ︷︷ ︸
Directory

/ Md︸︷︷︸
File

/Md+1/ · · · /Mk︸ ︷︷ ︸
File internal

Several procedures, namely those whose paths share the prefix M1/ · · · /Md−1/Md, will
be stored in the same file.

4.3 Command-line options recognized by navdiff

The following is a list of the most important options recognized by navdiff.

--chop input-file output-file

This option instructs navdiff to chop (or split) an exported NAV file into smaller
pieces.

43

--chop-level level

This options sets the level at which an exported NAV file should be chopped. Its
default (2) results in one directory for each kind of business object (Report, Form,
Menusuite, Codeunit, Dataport, XMLport, Table) with each directory containing
one file for each business object of that kind.

--db-initialize user-name database-name

Initializes a SQLServer database database-name with user name user-name.

--db-delete user-name database-name

Removes a SQLServer database database-name with user name user-name.

--db user-name database-name old-version new-version

Instructs navdiff to dump diffs to SQLServer database database-name with user
name user-name. The old and new version will be identified in the database by
the strings old-version and new-version. (This option is only relevant with option
--compare.)

--compare or -c

This option instructs navdiff to compare two versions of NAV.

--old type old-file

Sets the type and location of the old version participating in the comparison. Type
should be (a prefix of) either chopped (if the old version is chopped) or raw (if
the old version is supplied as exported from NAV. Old-file is the directory of the
chopped version or the name of the exported NAV file.

--new type new-file

Similar to --old, but for the new file.

--size-threshold value

This option sets a threshold preventing comparison of pairs of code pieces if the
product of their sizes exceeds value.

--compare-declarations

By default, navdiff does not compare variable declarations. Include this flag to
enable comparing variable declarations.

--test-buffered-code-provider input-file

For debugging purposes.

44

--test-file-code-provider input-file

For debugging purposes.

--write-codepaths

For debugging purposes.

4.3.1 Example usage

A typical use of navdiff

1. Chop the old exported file w1-50sp1.export to output directory w1:

> navdiff --chop w1-50sp1.export w1

2. Initialize database diffdb with user mir:

> navdiff --db-initialize mir diffdb

3. Compare old chopped version to a new (customized) version:

> navdiff --db mir diffdb w1 dk-50sp1.export

Step 3 can be repeated for any number of new versions that should be compared to
the same old version. All differences detected will be stored in database diffdb. They
must be further analyzed to find common customization patterns. This task is not handled
by navdiff.

45

Chapter 5

Preliminary analyzes of NAV

This chapter describes preliminary analyzes of structural properties of individual versions
of NAV (in Section 5.1) and structural differences between different versions of NAV
conducted using the navdiff tool (in Section 5.2).

As inputs, we have used W1 version 5.0 SP 1 and 39 country-specific derivatives of
this version (i.e., versions customized by GDL).

5.1 Properties of individual NAV version

5.1.1 Number of code pieces in W1

Most code pieces in NAV are small. In the following, we let the size of a code piece be
the number of nodes in the syntax tree used for comparison by the navdiff tool. This
corresponds roughly to the number of statement or to the number of lines in the code
piece. (The numbers presented below are generated by the analysis mode of navdiff
tool described in Section 4.1.3.)

NAV W1 version 5.0 SP 1 contains 30 060 code pieces. Figure 5.1 on page 49 shows
the number of code pieces in this version whose size are within certain ranges. (The peak
in column 10-19 is a result of the presentation of the data. This column accounts for 10
different code sizes, whereas the columns to its left each account for only one code size.)
In Figure 5.2 these values have been accumulated across ranges; it shows the number of
code pieces whose size are less than certain limits. (Figure 5.2 shows the definite integral
of Figure 5.1.) 50% of all code pieces (15 837) contain less than 6 statements and more
than 80% (25 495) contain less than 20 statements.

5.1.2 Size of code pieces in W1

NAV W1 version 5.0 SP 1 contains 352 747 statements. Figure 5.3 on page 50 show
the number of statements within code pieces whose size are within certain ranges. In

47

Figure 5.3 these values have been accumulated across ranges; it shows the number of
statements within code pieces whose size are less than certain limits. 12% of all state-
ments (43 320) are within code pieces that contain less than 6 statements, 25% (87 470)
are within code pieces that contain less than 20 statements, and 80% (284 843) are within
code pieces that contain less than 90 statements.

5.1.3 Number of business objects in W1

NAV W1 version 5.0 SP 1 contains 3 579 business objects in total. 897 are Tables, 1 498
are Forms, 584 are Reports, 6 are Dataports, 561 are Codeunits, 32 are XMLports, and 1
is a Menusuite. (See Appendix A.1.)

5.2 Difference between NAV versions

5.2.1 Number of code pieces added by GDLs

On the average, the 39 derivatives of W1 version 5.0 SP that we have investigated add
about 1 900 code pieces. One GDL add as few as 63 code pieces whereas others add more
than 5 000. Numbers are summarized in Figure 5.5 on page 51. (See Appendix A.1.)

5.2.2 Number of business objects added by GDLs

On the average, the 39 derivatives of W1 version 5.0 SP that we have investigated add
about 200 business objects. One GDL add as few as 20 business objects, whereas oth-
ers add more than 600. Numbers are summarized in Figure 5.6 on page 51. (See Ap-
pendix A.2.)

5.2.3 Number of modification points in GDLs

A modification point is a location (in W1) where modifications are detected. (Notice that
this characterization includes modifications that are not logically a part of a customiza-
tions. Such modifications may be caused by bug fixes, performance enhancements, opti-
mizations, code refactorings, etc.)

On the average, the 39 derivatives of W1 version 5.0 SP that we have investigated
contain about 750 modification points. One GDL contain as few as 77 modification
points, whereas others contain more than 1 700. Numbers are summarized in Figure 5.7
on page 53. (See Appendix A.3.)

5.2.4 Hotspots

A hotspot is a modification point that is modified by “many” derived versions.

48

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 3 4 5 6 7 8 9

10
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
-6

9

70
-7

9

80
-8

9

90
-9

9

10
0-

49
9

50
0-

99
9

10
00

-1
49

9

15
00

-1
99

9

N
um

be
r

of
 c

od
e

pi
ec

es

Size of code pieces

Figure 5.1: Number of code pieces of specific size ranges

 5000

 10000

 15000

 20000

 25000

 30000

 35000

<
 3

<
 4

<
 5

<
 6

<
 7

<
 8

<
 9

<
 1

0

<
 2

0

<
 3

0

<
 4

0

<
 5

0

<
 6

0

<
 7

0

<
 8

0

<
 9

0

<
 1

00

<
 5

00

<
 1

00
0

<
 1

50
0

<
 2

00
0

N
um

be
r

of
 c

od
e

pi
ec

es

Size of code pieces

Figure 5.2: Number of code pieces less than specific sizes

49

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

2 3 4 5 6 7 8 9

10
-1

9

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
-6

9

70
-7

9

80
-8

9

90
-9

9

10
0-

49
9

50
0-

99
9

10
00

-1
49

9

15
00

-1
99

9

N
um

be
r

of
 s

ta
te

m
en

ts
 w

ith
in

 c
od

ep
ie

ce
s

Size of code pieces

Figure 5.3: Number of statements within code pieces of specific size ranges

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

<
 3

<
 4

<
 5

<
 6

<
 7

<
 8

<
 9

<
 1

0

<
 2

0

<
 3

0

<
 4

0

<
 5

0

<
 6

0

<
 7

0

<
 8

0

<
 9

0

<
 1

00

<
 5

00

<
 1

00
0

<
 1

50
0

<
 2

00
0

N
um

be
r

of
 s

ta
te

m
en

ts
 w

ith
in

 c
od

ep
ie

ce
s

Size of code pieces

Figure 5.4: Number of statements within code pieces less than specific sizes

50

 30000

 30500

 31000

 31500

 32000

 32500

 33000

 33500

 34000

 34500

 35000

w
1-

50
sp

1

is

-5
0s

p1

dk
-5

0s
p1

fi

-5
0s

p1

se
-5

0s
p1

ee

-5
0s

p1

lt-
50

sp
1

bg
-5

0s
p1

lv

-5
0s

p1

cz
-5

0s
p1

sk

-5
0s

p1

hu
-5

0s
p1

ro

-5
0s

p1

fr
-5

0s
p1

be

-5
0s

p1

sp
-r

sm
e-

50
sp

1

hr

-5
0s

p1

it-
50

sp
1

nl
-5

0s
p1

pl

-5
0s

p1

si
-5

0s
p1

no

-5
0s

p1

gb
-5

0s
p1

ie

-5
0s

p1

at
-5

0s
p1

de

-5
0s

p1

ap
ac

-5
0s

p1

id
-5

0s
p1

m

y-
50

sp
1

ph
-5

0s
p1

sg

-5
0s

p1

th
-5

0s
p1

es

-5
0s

p1

na
-5

0s
p1

us

na
-5

0s
p1

us
ca

na

-5
0s

p1
us

ca
m

x

pt

-5
0s

p1

in
-5

0s
p1

ch

-5
0s

p1

N
um

be
r

of
 c

od
e

pi
ec

es

Derived NAV version

Figure 5.5: Number of code pieces pr. (derived) NAV version

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

w
1-

50
sp

1

is

-5
0s

p1

dk
-5

0s
p1

fi

-5
0s

p1

ee
-5

0s
p1

se

-5
0s

p1

lt-
50

sp
1

hu
-5

0s
p1

cz

-5
0s

p1

sk
-5

0s
p1

be

-5
0s

p1

lv
-5

0s
p1

bg

-5
0s

p1

nl
-5

0s
p1

fr

-5
0s

p1

sp
-r

sm
e-

50
sp

1

hr

-5
0s

p1

ro
-5

0s
p1

gb

-5
0s

p1

ie
-5

0s
p1

no

-5
0s

p1

it-
50

sp
1

si
-5

0s
p1

pl

-5
0s

p1

na
-5

0s
p1

us

na
-5

0s
p1

us
ca

na

-5
0s

p1
us

ca
m

x

ap

ac
-5

0s
p1

id

-5
0s

p1

m
y-

50
sp

1

ph

-5
0s

p1

sg
-5

0s
p1

th

-5
0s

p1

at
-5

0s
p1

de

-5
0s

p1

es
-5

0s
p1

pt

-5
0s

p1

in
-5

0s
p1

ch

-5
0s

p1

N
um

be
r

of
 o

bj
ec

ts

Derived NAV version

Figure 5.6: Number of business objects pr. (derived) NAV version

51

In total, the 39 derivatives of W1 version 5.0 SP that we have investigated modify
8 873 modification points. Most of these modification points are “cold”: 45% (4 009)
are modified by only one GDL, another 16% (1 468) by two GDLs, and yet another 11%
(1 018) by three GDLs.

Few modification points are “hot”: 31 modification points are modified by 34 GDLs
and 2 are modified by 35 GDLs. Numbers are summarized in Figure 5.8 on the facing
page. (See Appendix A.4.)

52

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

is
-5

0s
p1

ee
-5

0s
p1

lv
-5

0s
p1

lt-
50

sp
1

dk
-5

0s
p1

nl
-5

0s
p1

fi
-5

0s
p1

no
-5

0s
p1

sp
-r

sm
e-

50
sp

1
hr

-5
0s

p1
se

-5
0s

p1
at

-5
0s

p1
de

-5
0s

p1
ru

-5
0s

p1
si

-5
0s

p1
ro

-5
0s

p1
bg

-5
0s

p1
pl

-5
0s

p1
es

-5
0s

p1
hu

-5
0s

p1
cz

-5
0s

p1
sk

-5
0s

p1
be

-5
0s

p1
in

-5
0s

p1
it-

50
sp

1
gb

-5
0s

p1
ie

-5
0s

p1
ch

-5
0s

p1
fr

-5
0s

p1
pt

-5
0s

p1
na

-5
0s

p1
us

na
-5

0s
p1

us
ca

na
-5

0s
p1

us
ca

m
x

th
-5

0s
p1

ap
ac

-5
0s

p1
id

-5
0s

p1
m

y-
50

sp
1

ph
-5

0s
p1

sg
-5

0s
p1

N
um

be
r

of
 c

us
to

m
iz

at
io

n
po

in
ts

Derived NAV version

Figure 5.7: Number of modification point pr. derived NAV version

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

N
um

be
r

of
 c

us
to

m
iz

at
io

n
po

in
ts

Uses

40
09

14
68

10
18

27
3

27
6 46

1

16
9

83

21
3

65
3

16
7

18 8 5 1 2 2 2 1 1 2 8 31 2

Figure 5.8: Hotspots over 39 derived versions of NAV

53

Chapter 6

Conclusions

We have presented a tool navdiff for detecting differences between different versions
of the Microsoft Dynamic NAV ERP system. We have used these differences as a mea-
sure of the code modifications that independent partners apply to NAV to adapt it to the
needs of specific countries, industrial segments, or enterprises.

Navdiff characterizes code modifications as either additions, deletions, or updates
to one or more statements in a procedure. Formally, the differences between two versions
of NAV are represented by one tree alignment for each procedure that exists in both
versions being compared. Tree alignments recognize a particular set of modifications
that we have found natural in the presence of source code.

We have used the output from navdiff to identify differences between the core
version of NAV and 39 derived versions customized for specific countries and languages
(GDLs). The purpose of this experiment was both to investigate the usefulness of the tool
and to perform an actual analysis of the GDLs indicating whether the customizations ap-
plied by the GDLs follow a set of simple patterns. We conclude that tree alignments
are appropriate for representing differences between programs. We also conclude that
the GDL customizations of NAV do not follow simple common patterns of customiza-
tions. It is an open question whether NAV customizations follow any patterns that can be
exploited to design simple and effective customization mechanisms for NAV. Standard
query-language technologies seem insufficiently flexible to help address this answers.
We therefore find future investigations in less traditional query languages in the domain
of programs and program differences a promising research area.

55

Bibliography

[1] Phillip Bille. A survey on tree edit distance and related problems. Theoretical
Computer Science, 337:217–239, 2005.

[2] Joe Celko. Joe Celko’s Trees and Hierarchies in SQL for Smarties. Morgan Kauf-
mann, 2004.

[3] Yvonne Dittrich and Sebastien Vaucouleur. Customization and upgrading of ERP
systems: An empirical perspective. Technical report TR–2008–105, IT University
of Copenhagen, Copenhagen, Denmark, March 2008.

[4] Michael Godfrey, Xinyi Dong, Cory Kapser, and Lije Zou. Four interesting ways in
which history can teach us about software. In In Proceedings of the International
Workshop on Mining Software Repositories, 2004. Available from http://msr.
uwaterloo.ca/papers/Godfrey.pdf.

[5] James W. Hunt and M. Doug McIlroy. An algorithm for differential file comparison.
Computer Science Technical report 41, Bell Laboratories, July 1976.

[6] Tom Hvitved. PhD thesis, Department of Computer Sciences, University of Copen-
hagen, Copenhagen, Denmark. Forthcoming.

[7] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees — an alterna-
tive to tree edit. Theoretical Computer Science, 143:137–148, 1995.

[8] Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. A formal investigation
of Diff3. In V. Arvind and Sanjiva Prasad, editors, Proceedings of the 27th Inter-
national Conference on Foundations of Software Technology and Theoretical Com-
puter Science, number 4855 in Lecture Notes in Computer Science, pages 485–496,
New Delhi, India, December 2007.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, Proceedings of the 11th European Conference

57

on Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Sci-
ence, pages 220–242. Springer, 1997.

[10] Tetsuji Kuboyama, Kilho Shin, Tetsuhiro Miyahara, and Hiroshi Yasuda. A theoret-
ical analysis of alignment and edit problems for trees. In Mario Coppo, Elena Lodi,
and G. Michele Pinna, editors, ICTCS, volume 3701 of Lecture Notes in Computer
Science, pages 323–337. Springer-Verlag, 2005.

[11] Meir M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, 1980.

[12] Chin Lung Lu, Zhen-Yao Su, and Chuan Yi Tang. A new measure of edit dis-
tance between labeled trees. In Jie Wang, editor, Computing and Combinatorics,
Proceedings of the 7th Annual International Conference, number 2108 in Lecture
Notes in Computer Science, pages 338–348, Guilin, China, August 2001.

[13] Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[14] Eugene W. Meyers. An O(ND) difference algortihm and its variations. Algorith-
mica, 1(2):251–266, 1986.

[15] Microsoft. Microsoft Dynamics NAV passes millionth user milestone while
launching breakthrough deployment tools, November 2008. Available at
http://www.microsoft.com/presspass/press/2006/mar06/
03-28Convergence2006NAVPR.mspx on May 6, 2009.

[16] Microsoft. Recursive queries using common table expressions, August 2009. Avail-
able at http://msdn.microsoft.com/en-us/library/ms186243.
aspx on September 18, 2009.

[17] Webb Millers and Eugene W. Meyers. A file comparison program. Software —
Practice and Experience, 15(11):1025–1040, 1985.

[18] Thorsten Richter. A new measure of the distance between ordered trees and its ap-
plications. Technical report 85166-cs, Department of Computer Science, University
of Bonn, Bonn, Germany, 1997.

[19] Anders B. Spatzek. Engagement between academia and Dynamics part-
ners. Presented at the Academic Preconference at Microsoft Dynamics Conver-
gence, Copenhagen, Denmark, November 2008. Available at http://www.
facultyresourcecenter.com/curriculum/pfv.aspx?ID=7808.

[20] David Studebaker. Programming Microsoft Dynamics NAV. Packt Publishing, 2007.

58

[21] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the Association for
Computing Machinery, 26:422–433, 1979.

[22] Walter F. Tichy. RCS — a system for version control. Software — Practice and
Experience, 15(7):637–654, 1985.

[23] Esko Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100–118, 1985.

[24] Sebastien Voucouleur. Upgradable Software Product Customization by Code
Query. PhD thesis, The IT University of Copenhagen, Copenhagen, Denmark, July
2009.

[25] Kaizhong Zhang. Algorithms for the constrained editing problem between ordered
labeled trees and related problems. Pattern Recognition, 28:463–474, 1995.

59

Appendix A

Raw analyzes

This appendix contains the raw result from the analyzes of the structural properties of
NAV and of the differences between W1 and the corresponding GDL versions.

For each set of data, a script generating the data is presented. These scripts are written
for the Bash shell and make use of standard Unix tools (grep, sort, uniq, ls, wc, awk).

A.1 Number of codepieces pr. version

Total Triggers Procedures
30060 18551 11509 w1-50sp1.export
30123 18604 11519 is-50sp1.export
30253 18654 11599 dk-50sp1.export
30272 18700 11572 fi-50sp1.export
30344 18722 11622 se-50sp1.export
30471 18849 11622 ee-50sp1.export
30736 19102 11634 lt-50sp1.export
30763 19007 11756 bg-50sp1.export
30791 19187 11604 lv-50sp1.export
30804 19077 11727 cz-50sp1.export
30804 19077 11727 sk-50sp1.export
30854 19138 11716 hu-50sp1.export
31012 19277 11735 ro-50sp1.export
31048 19178 11870 fr-50sp1.export
31085 19340 11745 be-50sp1.export
31130 19344 11786 sp-rsme-50sp1.export
31162 19374 11788 hr-50sp1.export
31198 19408 11790 it-50sp1.export
31231 19198 12033 nl-50sp1.export
31262 19448 11814 pl-50sp1.export
31313 19474 11839 si-50sp1.export
31390 19553 11837 no-50sp1.export
31569 19729 11840 gb-50sp1.export
31569 19729 11840 ie-50sp1.export
32447 20191 12256 at-50sp1.export
32447 20191 12256 de-50sp1.export
32940 20609 12331 apac-50sp1.export
32940 20609 12331 id-50sp1.export

61

32940 20609 12331 my-50sp1.export
32940 20609 12331 ph-50sp1.export
32940 20609 12331 sg-50sp1.export
32940 20609 12331 th-50sp1.export
33457 20929 12528 es-50sp1.export
33458 21011 12447 na-50sp1us.export
33458 21011 12447 na-50sp1usca.export
33458 21011 12447 na-50sp1uscamx.export
33772 21259 12513 pt-50sp1.export
34082 21298 12784 in-50sp1.export
34938 22097 12841 ch-50sp1.export
36435 23109 13326 ru-50sp1.export

Generating Bash script

This script assumes that all version of NAV are stored in files whose name contains the
substring “50sp1” and that they are formatted as the textual exports generated by NAV.

echo -e "Total\tTriggers\tProcedures";
for x in ‘ls -1 *50sp1*.export‘; do

echo -ne "‘grep -c \"\(=BEGIN\|=VAR\|ˆ[]*PROCEDURE\|ˆ[]*LOCAL PROCEDURE\)\" $x‘\t"
echo -ne "‘grep -c \"\(=BEGIN\|=VAR\)\" $x‘\t\t"
echo -ne "‘grep -c \"\(ˆ[]*PROCEDURE\|ˆ[]*LOCAL PROCEDURE\)\" $x‘\t\t"
/bin/echo $x;

done | sort

A.2 Number of objects pr. version

Total Table Form Report Datapt. Codeun. XMLport MenuSt.
3579 897 1498 584 6 561 32 1 w1-50sp1.export
3596 901 1503 591 6 561 32 2 is-50sp1.export
3605 897 1498 591 6 579 32 2 dk-50sp1.export
3616 907 1512 593 6 564 32 2 fi-50sp1.export
3619 902 1503 611 6 563 32 2 ee-50sp1.export
3619 907 1511 592 8 567 32 2 se-50sp1.export
3633 901 1504 622 8 564 32 2 lt-50sp1.export
3639 910 1523 600 8 564 32 2 hu-50sp1.export
3645 911 1526 599 8 565 34 2 cz-50sp1.export
3645 911 1526 599 8 565 34 2 sk-50sp1.export
3649 913 1516 608 9 569 32 2 be-50sp1.export
3655 906 1513 630 6 566 32 2 lv-50sp1.export
3663 919 1530 605 7 568 32 2 bg-50sp1.export
3685 922 1535 607 13 574 32 2 nl-50sp1.export
3688 917 1536 617 12 570 33 3 fr-50sp1.export
3698 923 1542 617 14 568 32 2 sp-rsme-50sp1.export
3709 927 1548 618 14 568 32 2 hr-50sp1.export
3712 925 1541 637 7 568 32 2 ro-50sp1.export
3716 925 1543 628 6 580 32 2 gb-50sp1.export
3716 925 1543 628 6 580 32 2 ie-50sp1.export
3742 928 1550 641 13 576 32 2 no-50sp1.export
3742 947 1563 621 8 569 32 2 it-50sp1.export
3752 937 1565 621 24 569 34 2 si-50sp1.export
3758 939 1567 635 6 577 32 2 pl-50sp1.export
3816 919 1558 712 7 586 32 2 na-50sp1us.export

62

3816 919 1558 712 7 586 32 2 na-50sp1usca.export
3816 919 1558 712 7 586 32 2 na-50sp1uscamx.export
3893 969 1607 674 9 600 32 2 apac-50sp1.export
3893 969 1607 674 9 600 32 2 id-50sp1.export
3893 969 1607 674 9 600 32 2 my-50sp1.export
3893 969 1607 674 9 600 32 2 ph-50sp1.export
3893 969 1607 674 9 600 32 2 sg-50sp1.export
3893 969 1607 674 9 600 32 2 th-50sp1.export
3912 973 1635 654 8 607 32 3 at-50sp1.export
3912 973 1635 654 8 607 32 3 de-50sp1.export
3941 970 1647 686 7 596 33 2 es-50sp1.export
3975 981 1653 700 6 599 34 2 pt-50sp1.export
4152 1073 1750 706 6 583 32 2 in-50sp1.export
4196 1023 1698 799 9 628 36 3 ch-50sp1.export
4231 1036 1769 758 9 625 32 2 ru-50sp1.export

Generating Bash script

This script makes the same assumptions as the previous one.

echo -e "Total\tTable\tForm\tReport\tDatapt.\tCodeun.\tXMLport\tMenuSt.";
for x in ‘ls -1 *50sp1*.export‘; do

echo -ne "‘grep -c \"ˆOBJECT\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT Table\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT Form\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT Report\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT Dataport\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT Codeunit\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT XMLport\" $x‘\t"
echo -ne "‘grep -c \"ˆOBJECT MenuSuite\" $x‘\t"
echo $x;

done | sort

A.3 Number of modification points pr. derived version

Modifications
77 is-50sp1.spots
102 ee-50sp1.spots
112 lv-50sp1.spots
142 lt-50sp1.spots
144 dk-50sp1.spots
146 nl-50sp1.spots
159 fi-50sp1.spots
163 no-50sp1.spots
190 sp-rsme-50sp1.spots
191 hr-50sp1.spots
198 se-50sp1.spots
262 at-50sp1.spots
262 de-50sp1.spots
286 ru-50sp1.spots
292 si-50sp1.spots
295 ro-50sp1.spots
309 bg-50sp1.spots
326 pl-50sp1.spots

63

465 es-50sp1.spots
512 hu-50sp1.spots
642 cz-50sp1.spots
642 sk-50sp1.spots
689 be-50sp1.spots
729 in-50sp1.spots
816 it-50sp1.spots
851 gb-50sp1.spots
851 ie-50sp1.spots
857 ch-50sp1.spots
1042 fr-50sp1.spots
1425 pt-50sp1.spots
1715 na-50sp1us.spots
1715 na-50sp1usca.spots
1715 na-50sp1uscamx.spots
1775 th-50sp1.spots
1858 apac-50sp1.spots
1858 id-50sp1.spots
1858 my-50sp1.spots
1858 ph-50sp1.spots
1858 sg-50sp1.spots

Generating Bash script

The input to the following script is a set of files whose name ends in “.spots” listing
the differences between derived versions and W1, as detected by navdiff. The format
is described in Section 4.1.2.

Notice that additions followed by deletions with respect to the same line are counted
as only one modification point in the table above.

echo "Modifications";
for x in ‘ls -1 *50sp1*.spots‘; do

awk ’{print $1}’ $x
| sort | uniq | echo -e "‘wc -l‘\t\t$x";

done | sort -n

A.4 Hotspots

Cst.pts Count
4009 1
1468 2
1018 3
273 4
276 5
461 6
169 7
83 8
213 9
653 10
167 11
18 12
8 13
5 14

64

1 15
2 16
2 17
2 20
1 25
1 31
2 32
8 33
31 34
2 35

Generating Bash script

This script makes the same assumptions as the previous one.

echo "Cst.pts Count";
for x in ‘ls -1 *50sp1*‘; do

awk ’{print $1}’ $x | sort | uniq;
done
| sort | uniq -c | awk ’{print $1}’
| sort | uniq -c | sort -n --key=2

65

