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Distributed Reactive XML
an XML-centric coordination middleware

Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob Winther?

IT University of Copenhagen {hilde,hniss,mol,jww}@itu.dk

Abstract. XML-centric models of computation have been proposed as an answer to
the demand for interoperability, heterogeneity and openness in coordination models.
We present a prototype implementation of an open XML-centric coordination mid-
dleware called Distributed Reactive XML. The middleware has as theoretical foun-
dation a general extendable, distributed process calculus inspired by the theory of
Bigraphical Reactive Systems. The calculus is extendable just as XML is extendable,
in that its signature and reaction rules are not fixed. It is distributed by allowing both
the state of processes as well as the set of reaction rules to be distributed (or partly
shared) between different clients. The calculus is implemented by representing pro-
cess terms as XML documents stored in a value-oriented, peer-to-peer XML Store
and reaction rules as XML transformations performed by the clients. The formal-
ism does not require that only process terms are stored—inside process terms one
may store application specific data as well. XML Store provides transparent sharing
of process terms between all participating peers. Conflicts between concurrent reac-
tion rules are handled by an optimistic concurrency control. The implementation thus
provides an open XML-based coordination middleware with a formal foundation that
encompasses both the shared data, processes and reaction rules.

1 Introduction

The ubiquity of XML as a format for exchange and processing of semi-structured data has
naturally led to research in the interplay between XML and programming languages and
models for global ubiquitous computing. It was early on observed that the Mobile Ambient
calculus, the seminal calculus for nested mobile computing agents, describes reconfigu-
rations of semi structured data [3]. It was suggested that this relationship could permit
transfer of techniques in both directions, e.g. using so-called spatial logics for mobile pro-
cess calculi to reason about XML data and using semi-structured query languages to search
in nested network structures. Following up on these ideas, [4] suggests so-called XML-
centric models of computation and XML-based middleware for coordination. In XML-
centric models of computation the state of the computation (or part of the state) consists
of XML data. For coordination languages the data is typically stored in a shared (or partly
shared) distributed tuple space. The computation or coordination actions is then expressed
in terms of transformations of this XML data.

The use of XML described above to some extent meets the demands for interoperability,
heterogeneity and openness in coordination languages and global ubiquitous computing
in general [15]. However, the computations are often expressed in general and complex
languages such as Java or XSLT. This goes against the hope for obtaining a theory that
facilitates analysis of the behaviour of the implemented systems, as advocated in the UK
Grand Challenge on Science for Global Ubiquitous Computing. On the other hand, fixing
a simple set of computation or coordination rules goes against the desire for openness and
flexibility.

Recently, bigraphical reactive systems [11] have been introduced as a meta model for
reactive mobile systems with semi structured state. It is a meta model just as XML is a meta
? Authors listed alphabetically. This work was funded in part by the Danish Research Agency (grant
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model, in that it allows the definition of domain specific models by specifying the allowed
syntax as well as the reaction rules. All bigraph models then benefit from a general theory
developed for bigraphical reactive systems, such as e.g. bisimulation proof techniques and
spatial logics, as well as the power of being able to translate between different bigraph
models.

In the present paper we suggest to utilize the similarities of XML and the theory of
bigraphs to implement an open, distributed XML-based coordination middleware with a
formal foundation that encompasses both the shared data, processes and reaction rules.

Concretely, we introduce a distributed, eXtendable Process calculus (short, the diX-
calculus). The diX-calculus is based on a simple extendable calculus of reactive systems,
which can be regarded as a notation for XML contexts. It is inspired by the similarities
between process calculi for mobility and semi-structured data as observed in [3] and derived
from the meta theory of bigraphical reactive systems proposed in [11, 13]. In particular, it
is straightforward to provide a semantics for the calculus in bigraphs.1 The distributed
calculus is inspired by the XML-based middleware for coordination investigated in [4], by
allowing both the state of processes as well as the set of reaction rules to be distributed (or
partly shared) between different clients.

We present an implementation, called Distributed Reactive XML. The processes is
stored as XML in a distributed XML store and thereby made accessible to several clients.
Each client can perform transformations on the shared XML document according to its own
set of reaction rules. An interesting technical contribution is the implementation of con-
currency control, dealing with conflicts between concurrent reactions. By analyzing when
concurrent reactions are conflicting and storing a complete history of reactions performed,
we use this knowledge to implement an optimisitc concurrency control. The reason for
using an optimistic approach, as opposed to the lock-based concurrency control for XML
documents proposed in [10], is that we use a peer-to-peer network to distribute the XML
document. This setting makes it quite complicated to implement a locking mechanism,
since we need to ensure that all peers agree on the locks. With the implemented optimistic
concurrency control, we only need to ensure that peers agree on the newest version of
the document. We implement this optimistic concurrency control using a so called value-
oriented, peer-to-peer distribute XML storage layer implemented at ITU and DIKU called
XML Store [2, 9, 14]. In a value-oriented XML Store data is never updated. Instead new
values are constructed, reusing old values where possible. This allows a cheap storage of
the complete history of updates which are used for detecting conflicts. This history can also
be used for backtracking if conflicts are detected or as more general tool for debugging.

Finally, it is worth noting that the formalism does not require that only process terms
are stored—inside process terms one may store application specific XML-data as well. The
implementation thus provides a simple, open XML-based coordination middleware with a
formal foundation that encompasses both shared XML data, processes and reaction rules.

Structure of the paper: In Sec. 2 we present the distributed, eXtendable process calculus
(diX). In Sec. 3 we introduce the value-oriented XML Store, and describe Distributed Re-
active XML, the prototype implementation of the diX-calculus based on XML Store. In
particular we describe how we implement concurrency control. Throughout the paper we
use an example of a location-based service. We end in Sec. 4 with pointers to related and
future work.

2 A Distributed Extendable Process Calculus

In this section we present a simple distributed eXtendable Process calculus, short the
diX-calculus, inspired by the similarities between process calculi for mobility and semi-

1 A bigraph semantics and the possible applications of the general bigraph theory will be addressed
in a follow up paper.
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structured data as observed in [3] and the meta theory of bigraphical reactive systems pro-
posed in [11, 13].

Notation: We let n, m, i, j range over natural numbers and I and J range over finite
sets of natural numbers. We will often confuse a natural number m ≥ 0 and the set (ordinal)
{0, 1, . . .m − 1}.

2.1 Process expressions

First we define a general notion of signatures that encompasses both the signatures of XML
documents and bigraph signatures. The terminology is borrowed from bigraph signatures.

Definition 1. A signature is a tuple (Σ, N, Att, ar), where Σ is a set of controls, N is an
infinite set of names, Att is a set of finite index sets, and ar : Σ → Att is a function
assigning an index set to each control. ut

For the present application, we think of Σ as a set of XML element names, N as a set of
XML attribute values, and Att as finite sets of XML attribute names.

Example 1 (Location model). Throughout the paper, we will illustrate the coordination
aspects of Distributed Reactive XML with an example from location-based services. To
make the example manageable it has been simplified a lot; one could easily imagine more
complete location-modelling.

The current state of the location example is called the location state. A location state is
made up of buildings. A building contains a number of floors each with a number of rooms.
People can be present in a building, in which case they have to be in some room, or not
present in any of the buildings in the location state.

The signature Σ therefore needs to include controls building, floor, room, and person.
Some of these controls we adorn with attributes, for example, name. The connection be-
tween attributes and controls is captured by ar; for example ar(room) = {name}. ut

We then introduce process expressions. It can be seen as a simple process calculus
notation for tuples of XML data.

Definition 2. For a signature Σ = (Σ, N, Att, ar) define the Σ-process expressions by
the grammar

r ::= r ‖ r | p | 0 wide processes

p ::= κ{i : xi}i∈ar(κ).p | p | p | 1 prime processes

for κ ∈ Σ and xi ∈ N . ut

Following [11] we refer to | and ‖ as respectively the prime and wide parallel composi-
tion. We refer to 1 as the nil process and to 0 as the null process. We assume a structural
congruence ≡ on process expressions, making prime parallel composition associative and
commutative, wide parallel composition associative, and the nil process 1 and null process
0 respectively the identity for prime and wide parallel composition.

Definition 3. Structural congruence≡ is the least congruence on process expressions such
that

p1 |(p2 | p3) ≡ (p1 | p2) | p3 p | 1 ≡ p 1 | p ≡ p p | q ≡ q | p

and
r1 ‖ (r2 ‖ r3) ≡ (r1 ‖ r2) ‖ r3 r ‖ 0 ≡ r 0 ‖ r ≡ r ut
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Commutativity of the prime parallel product means that we, as usual in process calculi, con-
sider prime parallel processes unordered. Since we later implement the calculus in terms
of ordered XML values we need to carefully treat the values as unordered when processing
them. Associativity allows us to leave out parenthesis for prime and wide parallel compo-
sition, writing respectively Πi∈n pi and ΠΠi∈n ri for the n times prime and wide parallel
composition and letting Πi∈0 pi = 1 and ΠΠi∈0 ri = 0. As usual we will often leave out
trailing nil processes, writing κ{i : xi}i∈ar(κ) for κ{i : xi}i∈ar(κ).1. We say that the width
of a wide process expression r is n if r ≡ ΠΠ i∈n pi for n ≥ 0, i.e. the process r is the wide
parallel product of n primes.

Example 2 (CCS and Ambients). We can represent a subset of (finite) CCS as the prime
Σ-processes for Σ = {act, coact}, Att={{ch}} and ar(act) = ar(coact) = {ch}.

We can represent a subset of (finite) Mobile Ambients as the prime Σ-processes for
Σ = {amb, in, out, open}, Att = {{name}} and ar(κ) = {name} for κ ∈ Σ. ut

Example 3. Continuing our location model example, we can describe the location state
using process expressions. For example, the current state could be:

building{name : itu}.

floor{name : itu3}.(room{name : 3A07}.person{name : hniss})

| floor{name : itu4}.

(room{name : 4A05} |(room{name : 4A09}.person{name : hilde}))

where we have used κ.p for κ{}.p (ie., when ar(κ) = ∅), and where all attributes values
are supposed to be constants. ut

Next we define process context expressions. Context expressions add holes and a link
map (substitution) to the process expressions.

Definition 4. For a signature Σ = (Σ, N, Att, ar) the Σ-process contexts W are defined
by the grammar

W ::= σ ‖ R Σ-process contexts

R ::= R ‖ R | P | 0 wide process contexts

P ::= κ{i : xi}i∈ar(κ).P | P |P | 1 | [ ]j prime process contexts

where κ ∈ Σ, xi ∈ N , j ≥ 0, and σ : N → N is a finite substitution, i.e. the set
dom(σ) = {x | σ(x) 6= x} is finite.

Define structural congruence for contexts as for processes. ut

We introduce a notion of constants corresponding to the notion of distinctions found
for the π-calculus. The idea is that constant names can not be changed even if the process
is placed in a context. We then type process contexts relative to a set of constants C ⊆ N
by the rules

C `Σ 0 : I → 0 C `Σ 1 : I → 1

C `Σ [ ]j : J → 1
, j ∈ J

C `Σ P : I → 1

C `Σ κ{i : xi}i∈ar(κ).P : I → 1
, κ ∈ Σ

C `Σ P : I → 1 C `Σ P ′ : J → 1

C `Σ P |P ′ : I ∪ J → 1

C `Σ R : I → n C `Σ R′ : J → m

C `Σ R ‖ R′ : I ∪ J → n + m
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C `Σ R : I → n

C `Σ σ ‖ R : I → n
, ∀x ∈ C.σ(x) = x

where I and J are finite sets of natural numbers. We will often omit the C and Σ and simply
write W : I → J when C `Σ W : I → J . A context W : I → n is linear if every index
j ∈ I appears exactly once at a hole [ ]j . We write W : m→L n for the linear contexts
W : m → n (where m = {0, . . . , m − 1}) and also write W : n for W : 0 → n. We will
usually omit the map σ if it is the identity on N and in that case say that the context has a
trivial link map. In particular, a wide Σ-process expression r : n is regarded as a ground,
linear Σ-context expression with trivial link map.

A context W : I → n can be inserted in a context W ′ : n → m, resulting in the com-
posite context W ′ ◦ W : I → m. In the composition, the names of W are substituted ac-
cording to the link map of W ′, and the two link maps are composed. If the context W ′ is not
linear this may imply that some of the sub primes of W are copied and others are discarded.
To define composition formally, let Rσ denote the context R[σ(x1)/x1 . . . σ(xk)/xk], for
a wide process context R and substitution σ where dom(σ) = {x1, . . . , xk}. Furthermore,
for a wide process context R, let R[j : Pj ]j∈I denote the insertion of Pj in all holes of R
having index j.

Definition 5. For contexts C `Σ W : I → n and C `Σ W ′ : n → m, define the
composite context C `Σ W ′ ◦ W : I → m by σ′ ◦ σ ‖ R′[j : Pjσ

′]j∈n if W = σ ‖
ΠΠj∈n Pj , and W ′ = σ′ ‖ R′. ut

2.2 Reaction rules

We define reaction rules formally as follows

Definition 6. For a signature Σ define the set of parametric Σ-reaction rules as PReactΣ =
{(C, R, R′, n, m) | C `Σ R : n→L m, C `Σ R′ : n→m}. ut

Given a set of reaction rules S ⊆ PReactΣ , the idea is, that a process r can react and
become a process r′, written r→S r′ if there exists a rule (C, R, R′, n, m) ∈ S, context
C `Σ W and a wide process parameter r′′ : n such that r ≡ W ◦R◦r′′ and r′ = W ◦R′◦r′′.
In general, we do not however want all contexts W to allow reactions.

In semantics for process calculi, the contexts that allow reactions are usually referred
to as evaluation contexts. In the theory of bigraphical reactive systems, evaluation contexts
are defined as (linear) contexts over a sub signature Ξ ⊆ Σ of active prefixes. This captures
the evaluation contexts for standard process calculi. For a set S of parametric reaction rules
and sub signature Ξ ⊆ Σ of active prefixes. we define the set of ground Σ, φ-reaction rules
by

ReactS,Ξ =
{(

L, E ◦ R′ ◦ r
)

| L ≡ E ◦ R ◦ r,

(C, R, R′, n, m) ∈ S,

C `Ξ E : m→L m′ and r : n
}

We say that a process r can react to r′, written r→S,Ξ r′ relative to a set of reactions S
if (r, r′) ∈ ReactS,Ξ.

Example 4 (CCS and Ambients). The usual CCS reaction rules is then written as the single
parametric reaction rule (we use the convention that names $n denote variables, as opposed
to constants):

(∅, act{ch : $a}.[ ]1 | coact{ch : $a}.[ ]2, [ ]1 | [ ]2, 2, 1)

It has no constants, it has two holes, and it has width 1. The set of active prefixes is empty,
i.e. Ξ = ∅.
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The usual Ambient rule in can be written as the parametric reaction rule (∅, R, R′, 3, 1),
where

R = amb{name : $b}.(in{name : $a}.[ ]1 | [ ]2) | amb{name : $a}.[ ]3 and

R′ = amb{name : $a}.
(

[ ]3 | amb{name : $b}.([ ]1 | [ ]2)
)

with active prefixes Ξ = {amb}.
We may represent replication by adding a control rep with ar(rep) = ∅. ut

2.3 Distributed eXtendable processes

We let a diX-system be a (partly shared) wide process of width n and a set of peers which
have each their own signature, reaction rules and evaluation contexts.

Definition 7. Define a diX-system to be a pair (r : n, Peers), where r = ΠΠ j∈n pj is a
wide process of width n and Peers = {peeri}i∈I is a set of peers of the form peeri =
(Σi, Ξi, Ji ⊆ n, Si), such that ∀i ∈ I. `Σi

ΠΠj∈Ji
pj . Reactions of systems is defined by

(ΠΠj∈n pj : n, Peers)→(ΠΠj∈n p′j : n, Peers) if ∃i ∈ I such that ΠΠj∈Ji
pj →Si,Ξi

ΠΠj∈Ji
p′j

and ∀j 6∈ Ji.pj = p′j . ut

Example 5. A room in the model can be either booked by a person for an activity, or un-
booked (independently of whether the room is occupied or not). We model booking status
by explicitly maintaining a status marker for each room giving us the following process
expression:

building{name : itu}.

floor{name : itu3}.

room{name : 3A07}.(person{name : hniss} | status{bookedby : hniss})

| floor{name : itu4}.

room{name : 4A05}.(status{bookedby : none})

| room{name : 4A09}.(person{name : hilde} | status{bookedby : none})

The intention now is that a person can book the room he is in if it is not already booked
by somebody else. This condition describes how coordination is handled in the model:

room{name : $r}.(person{name : $p} | status{bookedby : none} |[ ]1)

−→ room{name : $r}.(person{name : $p} | status{bookedby : $p} |[ ]1)

That is, when the condition is satisfied (a person is present in a free room), we simply
change the bookedby attribute. Since there may be more than one person in the room we
have to ensure that the other persons remain in the room; for this we use holes (matching
any number of other persons, even zero, in the room). We use the convention that constant
names are written with a true type face, e.g. none, and non-constant names are prefixed
with a $ and written in italics, e.g. $p. Thus, for the example the set of constans is C =
{itu4,itu3,3A07,4A05,4A09,none,hniss,hilde}.

The distributed nature of the formalism allows each person, presumably each carrying
their own device with access to the current location state, to book the room they are in
without consulting any other devices. For now, all peers share one prime process. Each
have a reaction rule as the one above, but personalized to the person associated with the
peer, e.g. the peer of hilde will have the rule

room{name : $r}.(person{name : hilde} | status{bookedby : none} |[ ]1)

−→ room{name : $r}.(person{name : hilde} | status{bookedby : hilde} |[ ]1)

The devices coordinate their actions by ensuring that a room is not booked simulta-
neously by two persons (the condition above). The obvious problematic situation of two
concurrent reactions both seeing a free room, and then updating the location state is han-
dled by the concurrency manager (Sec. 3.4). ut
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Example 6. Unrelated to the booking of rooms, we may imagine a position server keeping
track of the locations of client devices. The position server measures the location of clients
regularly and adds a client, location pair in an XML document for each measurement. This
is done by out of bands means, ie., not by a reaction rule. Thus, the position pairs can be
regarded as input to the system. We then make the location state “wide” by having a process
p1 as above, and a process p2 with location information:

building{name : itu}. . . . (as before)
‖ (pos{name : hilde,where : 4A09} | pos{name : hniss,where : 4A09})

Making the location measures influence the association of people to rooms is a matter
of equipping one of the peers in the system (the position server, for instance) with a wide
reaction rule for moving persons around:

room{name : $from}.(person{name : $p}|[ ]2) ‖ room{name : $to}.[ ]3
‖ pos{name : $p,where : $to} |[ ]1
−→ room{name : $from}.[ ]2 ‖ room{name : $to}.(person{name : $p} |[ ]3)

‖ 1 |[ ]1

Note that the two rooms are separated by a wide parallel composition, allowing rooms to
be on different floors.

By distributing the reaction rules to different peers we obtain a minimal (albeit not
enforced) notion of abstraction in the application. We have essentially two systems in play
at the same time: a system for booking rooms, and a system for keeping track of the location
of people in the building. Those two systems are orthogonal and need not know of each
other.

Furthermore, this also provides openness because peers may add their own reaction
rules and data (as long as they do not change the representation of other peer’s data) to the
model and the remainder of the system works as expected. ut

2.4 Relationship to Bigraphs

Linear contexts W : m→L n correspond to (pure) open bigraphs as defined in [11] and
their composition is consistent with the definition of composition on bigraphs. However,
bigraphs are explicitly typed with finite sets of names in the innerface (domain) and in
the outerface (codomain). This means that a context W : m→L n would correspond to
bigraphs [[W ]] : 〈m, X〉 → 〈n, Y 〉 for a choice of finite sets X, Y ⊂ N such that dom(σ) ⊆
X and σ(X) ⊆ Y , if W = σ ‖ P . The explicit typing gives control over which names
are not shared between bigraphs in parallel. This is crucial for the DNF axiomatisation
presented in [13] and also for spatial logics for bigraphs presented in [5]. The process
calculus presented in the present paper lends itself to the CNF axiomatisation [13], for
which one can do without the explicit names and simply assume all names to be shared. A
follow up paper will present a fully typed calculus (also including bound names).

3 Implementation

In this section we describe the implementation of the diX-calculus, called Distributed Re-
active XML. The implementation is based on XML Store [2, 9, 14] and is an extension
of the (non-distributed) implementation of Reactive XML presented in [16]. XML Store is
a general-purpose, peer-to-peer distributed, persistent storage manager for tree-structured
data (XML documents). Basing the implementation on XML Store gives a peer-to-peer
distributed implementation where it is natural to handle concurrency control by optimistic
means.

We start by showing how (prime) process expressions can be represented in XML.
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Definition 8. Assume a signature Σ. Prime Σ-processes are mapped to XML by

[[κ{ai : xi}ai∈ar(κ).p]] = <κ a1="x1" . . . aj="xj">[[p]]</κ>

[[p | p′]] = [[p]][[p′]]

[[1]] = ε

where κ ∈ Σ, ar(κ) = {a1, . . . , aj}, xi ∈ N , and ε is the empty document. ut

Example 7. Rendering the location model process as XML (Ex. 3) gives:

<building name="itu">
<floor name="itu3">
<room name="3A07">

<person name="hniss"/>
</room>

</floor>

<floor name="itu4">
<room name="4A05"/>
<room name="4A09">

<person name="hilde"/>
</room>

</floor>
</building>

ut

3.1 System architecture

XML Store is a storage manager for tree structured values (data)—concretely, XML docu-
ments. Stored values can later be retrieved via XML Store. The interface only allows one to
specify what to store, not where. Therefore the XML Store implementation is free to move
stored values about. Once stored, a value is identified by a location-independent identifier
(typically, a cryptographic hash of the contents of the value).

Though the XML values, representing processes, themselves do not have to be dis-
tributed, it makes sense to do so. XML Store provides wide-scale distribution of the values
it is storing by using a peer-to-peer routing algorithm (the current implementation uses
Kademlia [12]). This distribution is built into XML Store, hence relieving the applica-
tion programmer of implementing his own distribution layer. Distribution in XML Store is
transparent so an application cannot observe whether a value is stored locally or remotely.

The basic architecture of Distributed Reactive XML is an XML Store distributed over
a number of peers, which provides clients with access to the current process. To the ap-
plication programmer this appears to be just an XML Store. Clients connect to this XML
Store either by joining the peer-to-peer network, or as traditional clients. Since one could
imagine different situation where each of them would be an advantage, it makes sense to
have both options. For instance, the Position Server which updates the current process on
a regular basis would most likely benefit from being a part of the network, instead of con-
necting to the XML Store each time an update takes place. On the other hand, clients with
less resources, for instance PDAs, may not have resources available to join a peer-to-peer
network, and they would therefore connect to the XML Store as clients.

Figure 1 shows a setup with four clients. Each client has its own set of reaction rules
(Sec. 2.2) and a handle to the shared process expression.

3.2 Implementing reactions

For simplicity, we will only consider prime reaction rules, that is, reaction rules (C, R, R′, n, 1).
This means that we only need to consider evaluation contexts with one hole and that reac-
tion are always performed inside the same prime process. Performing a reaction p→Σ,Ξ p′

then amounts to finding a reaction rule (C, R, R′, n, 1) ∈ S, an evaluation context C `Ξ

σ ‖ RE : 1→ 1 and a wide process expression r = ΠΠ j∈n pj such that

p = RE [R[j : pj ]j∈nσ] (1)
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Fig. 1. Distributed Reactive XML setup.

and then compute p′ = RE [R′[j : pj ]j∈nσ].
We use XPath expressions to determine evaluation contexts.

Definition 9. For a prime Σ-process p and an XPath expression φ, let xpath(φ, [[p]]) denote
the set of roots of subtrees in [[p]] that satisfies φ. ut

For a sub signature Ξ ⊆ Σ define the XPath expression

φΞ,Σ = //*not(ancestor-or-self::*

[name()=’κ1’ or name()=’κ2’ or ... name()=’κk’])]

for Σ\Ξ = {κ1, . . . , κk}. Then xpath(φΞ,Σ , p) determines the roots of subtrees p′ of p
such that p = E ◦ p′ and E is an evaluation context.

Now note that RE [R[j : pj ]j∈nσ] = RE [Rσ[j : pjσ]j∈n] = RE ◦ Rσ ◦ rσ. For any
process r′ and σ there exists a process r such that r′ = rσ. Thus, solving equation (1)
amounts to finding a complete subtree tR = Rσ ◦ r′ in p for some r′ and substitution σ
such that the subtree tR has a root that is a child of a node in xpath(φΞ,Σ , p).

To find a sub tree tR = Rσ ◦ r′ in p for some wide process r′ and substitution σ we
search for the context R up to a possible substitution σ (computed as constraints during
the attempted match) of the names in R, and allowing the holes in R to match any prime
process, even an empty tree (i.e. a nil process 1). If the context Rσ is found for some
substitution σ, and prime processes pj matched with holes, it is checked if the root of the
context Rσ belongs to the solution set of the XPath expression φΞ,Σ . If so, the matching
algorithm reports back the substitution σ, the root of the context Rσ and the (roots of
the) sub prime processes pj matched with holes. This is a generalisation of the standard
(ordered) sub tree problem for trees. As for the standard problem the matching algorithm
is extended to unordered trees by using a bipartite matching algorithm each time a set of
children in the pattern R is matched against a set of children in the source tree p. To perform
the reaction all that is needed is to replace sub tree tR in p with R′σ[j : pj ]j∈n.

3.3 Distributed reactions in XML Store

The processes stored in XML Store are values. This means that a process, once stored, does
not change; in other words, it is immutable. Since a value is never updated we can freely
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cache it at (copy it to) all interested parties. It also means that we have to take special mea-
sures to perform the equivalent of updates on the process. Instead of destructively updating
the value, we compute a new value with references to unchanged parts of the old value. In
other words, we share (parts of) the stored values. This sharing is transparent to the appli-
cation programmer [2]. A consequence of this is that XML Store really stores DAGs rather
than trees. The “newest” value (the current state of the system) is bound to a handle (in
practice through a name service) which can be updated.

From this “value-oriented” perspective, the steps a client performs to realize a reaction
are as follows:

1. Find all posssible redexes by finding all evaluation contexts.
For our example location system, we allow reactions on all (sub-) processes, and there-
fore the XPath expression locating evaluation contexts will simply select all nodes
(//*). Performing this on the process in Ex. 7 will return a set containing all nodes.

2. Match each of the possible redexes against the left hand side of the reaction rule in-
stantiating holes and variables.
Matching all nodes in the process against the left hand side of the “book room”-reaction
rule (Ex. 5), will result in a match between the left hand side of the reaction rule and
room 4A09 with variables $r instantiated to 4A09 and $p to hilde, and the hole [ ]1
mapped to 1.

3. If any match exists, the reaction can be executed by calculating a reactum based on the
right hand side of the reaction rule, and reconstructing the process expression.
Since all data stored in XML Store is immutable, clients cannot simply change the
matched node (the redex) in the process tree to reflect the changes. Instead they have
to build up a new tree. Fig. 2 illustrates this situation. Before the reaction, the process
is as seen in Fig. 2(a). After the reaction, Fig. 2(b), a new process has been built, but
new nodes have only been constructed from the nodes which have to be “updated” (the
reactum) up to the root. On the path unchanged nodes are reused.
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Fig. 2. Reusing unchanged nodes (dotted arrows indicate reuse; bold text indicate the newly con-
structed path).

The handle to the current process will at this point still refer to the old root node p. To
make other clients aware of the new process, the client has to updated the handle to the
new root p′.
Such updates of handles (the only updates possible with XML Store) are done using
an atomic compare-and-swap algorithm, which guarantees that nobody has changed
the value in the time ∆t = [tread; tswap]. By using this facility, we are able to ob-
tain a simple distribution of client updates to the process. Thus ultimately, this is how
coordination is implemented.
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3.4 Synchronizing updates

The simple form of synchronization mentioned above works, but does not support situa-
tions where several clients simultaneously inspect the current process, find possible reac-
tions, and build up a new process. To handle this, we will allow non-conflicting reactions
(intuitively, reactions in different parts of the process) to take place concurrently. We use
the term conflicting reactions to denote the situation where we are not able to incorporate
changes from two (or more) reactions without leaving the process in an inconsistent state.

Assume that the two reaction rules R1 and R2 are performed on the same process. The
reactions are performed simultaneously, consequently, they will inspect the process in the
exact same state. We can now state two situations with conflicting reactions:

1. The two reactions overwrite each other’s changes. Since they are both changing the
same nodes, we cannot fuse the changes from both reactions to one process tree.

2. One (or both!) of the reactions makes changes to the redex for the other reaction. Since
a reaction is only possible if the rule matches the redex, this situation removes the
initial condition for one or both of the reactions.

As described in Sec. 3.2 performing a reaction on the process p, amounts to finding a
matching subtree (a redex) tR in p and replace this with R′σ[j : pj ]j∈n. Assume now that
when performing R1, a subtree tR1

in p is found. Additionally, a subtree tR2
is found for

R2 in p. We know that all nodes changed when performing R1 must be within the subtree
tR1

, and all nodes changed when performing R2 must be within the subtree tR2
. Hence, a

conservative estimate for non-conflicting reactions are: if R1 does not change any nodes in
tR2

and likewise R2 does not change any nodes in tR1
, the two reactions will not have any

overlapping changes.

Definition 10. If subtree(n) is a function subtree : Node → Set(Node) returning a set
containing all nodes in the tree with root n, tR1

is the redex for the reaction R1 performed
on p and tR2

is the redex for the reaction R2 performed on p. The two reactions R1 and
R2 are conflicting, if subtree(tR1

) ∩ subtree(tR2
) 6= ∅

We can use this knowledge in an optimistic concurrency control manager, where we
allow clients to inspect the process expression at any time. The client will then find possible
reactions. When it is ready to commit the result of one of these reactions, we validate
whether the reaction is in conflict with other reactions performed in the time between the
client inspected the process and the attempted commit operation. If any reactions occured,
for each of them we check that the redex for that reaction does not have any nodes in
common with the redex for the reaction we are about to commit. If there are no conflicts,
we can incorporate the changes from this reaction in the shared process. In case of conflicts,
we simply abort the commit operation.

In order to be able to do this validation, we need to track each reaction performed
and the matching subtree (redex) that was the condition for the reaction. We capture these
in so-called versions. A version consists of the resulting process tree and a changeset. A
changeset records the changes that takes the original process tree (before the reaction took
place) to the process tree stored in the version. Therefore, a changeset consists of the redex,
the resulting reactum, and a XPath expression indicating what part of the process tree was
rewritten.

Example 8. Consider again the reaction where hilde successfully books room 4A09. In
that case the version contains the process tree depicted in Fig. 2(b) and a changeset. The
changeset contains the redex

room{name : 4A09}.(person{name : hilde}|status{bookedby : none}),

the reactum

room{name : 4A09}.(person{name : hilde}|status{bookedby : hilde}),
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and an XPath expression indicating which room was booked:

/child::*[1]/child::*[2]/child::*[2] ut

We can now describe what is really stored in the XML Store, namely the latest version
together with a list of versions leading to that version. The aggresive use of sharing in
XML Store avoids the obvious problem of repeatedly storing the same (parts of) process
trees again and again.

As a side effect of storing changesets, we are able to track all changes on a reaction-by-
reaction basis. This gives us a nice feature for debugging ReactiveXML.

3.5 Implementation details

Distributed Reactive XML, as described above, has been implemented (in Java) using the
features provided by XML Store. The implementation covers the complete Distributed,
eXtendable Process Calculus; for example, the process expressions and reaction rules for
our running example have all been executed with the implementation. For this to work in
practice, we have integrated the system with a position server, Ekahau [7], that positions
Wireless LAN clients. The integration lets the position server update directly the queue of
positions events, but in a safe manner so that the updates include appropriate changeset
information. To the other peers, therefore, this looks like the result of executing any other
reaction rule.

The implementation and the location model example is available on the web:
〈http://www.itu.dk/research/theory/bpl/reactivexml/〉.

4 Conclusion

We have shown how one can utilize the similarities of XML and the theory of bigraphs
to implement an open, distributed XML-based coordination middleware, having a simple
distributed eXtendable process calculus as formal foundation that encompasses both the
shared data, processes and reaction rules. The implementation was based on a so called
value-oriented, peer-to-peer XML Store previously implemented at ITU and DIKU. We
demonstrated how the value-oriented approach facilitates a cheap implementation of op-
timistic concurrency control in which complete histories of processes are stored. Finally,
we have exemplified the use of the coordination middleware by a location-based service
system, which has been implemented and is running at ITU.

Future work: Many tasks remains for future work. We are currently working on extend-
ing the diX-calculus to cover binding bigraphs. This includes allowing local and bound
names, as well as introducing explicit finite names sets on the interfaces. Name binding is
reflected in the XML-representation as IDREF and ID values of attributes. We also work on
implementing wide reaction rules. We intend to investigate if one could use XML query-
languages, such as XQuery or TQL in the implementation of matching. We also consider
how to extend the diX-calculus such that peers can enter and leave dynamically and can
change their access to the shared state, as well as the benefits from making the reaction
rules part of the shared process data. We also plan to investigate the applications of the
general bigraph theory. One application could be to use the theory of bisimulation to prove
that the concurrency control is correctly implemented. Another direction is to investigate
the uses of the spatial logics for bigraphs as developed in [6]. Finally, we consider how to
treat security in this setting, e.g. by allowing cryptographic functions to be computed on
the values during reactions or exploiting the complete histories stored in XML store.
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Related work: The recent paper [5] reports on independent work relating bigraphs and
XML. However, the focus of [5] is on representing XML-data as bigraphs and the use of
bigraph-logics [6] to describe properties of XML-data. This is opposed to the present work,
in which we exploit XML technologies (XPath and XML Store) for the implementation
of (bigraphical) reactive systems as XML. The paper [8] introduces the process calculus
Xdπ based on the π-calculus aimed for modelling XML-centric peer-to-peer systems and
investigates its bisimulation semantics. It would be interesting to try to represent the Xdπ-
calculus in diX and e.g. compare the general bigraph bisimulation semantics to the one for
Xdπ. Active XML [1] provides a language and foundation for active XML documents. Ac-
tive XML documents support dynamic inclusion of XML data produced by web-services,
which possibly could be used jointly with Distributed Reactive XML.
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