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Abstract—This research-to-practice paper shows how to visu-
alize the conceptual framework of object-oriented programming.
‘Classes’ and ‘objects’ (from the solution domain) are respectively
visualized as ‘phenomena’ and ‘concepts’ (from the problem
domain), thereby visualizing the connection between code and
reality. In the spirit of bringing research-to-practice, we imple-
mented a prototype programming environment for JAVA called
‘SHOWMYCODE’ based on this conceptual visualization.

We report on a controlled experiment involving N=138 intro-
ductory programming (CS1) students. The experiment involves
three tasks with progression (USE, MODIFY, and CREATE) and
compares a treatment group with the reality-code visualization
vs a control group without the visualization. The results show
that, for USE tasks, students are faster (but not more accurate)
when using the reality-code visualisation. In contrast, for CREATE
tasks, learners are more accurate (but not faster) when using the
reality visualisation. Finally, we report that students appear to
value a visualization that shows the reality-code connection above
a generic visualization without this connection.

I. INTRODUCTION

Software has become a driving force for innovation, and
industry demand for qualified software developers is at an
all-time high1. For future software development experts, a
fundamental understanding of programming is an essential
foundation. Also, software and digitisation has been adopted
in a wide range of other domains not traditionally founded in
computer science and programming is becoming increasingly
relevant for many disciplines; e.g., mechanical engineering,
architecture, or law [1].

Object-oriented programming (OOP) incorporates the re-
lationship between real-world concepts & phenomena and
programming elements by fostering the use of classes (and
objects) to group and encapsulate program data and func-
tionality along abstractions from reality; e.g., classes (and
objects) for mechanical devices, buildings, or contracts. In
addition to a general understanding of data manipulation and
control structures, acquiring a working knowledge in OOP
constitutes learning concepts specific to the paradigm, such
as creating, modifying, and using of classes, constructors,
methods, and attributes. Learning an OO language, such as
JAVA or C# may prove difficult as programming is intertwined
with software design, which ties strongly to the represented
real-world phenomena [2, 3, 4]

For novice programmers, the learning process may be
aided by educational programming environments, such as

1https://money.usnews.com/careers/\\best-jobs/rankings/the-100-best-jobs

BLUEJ [5], which depict program state and effects of its
manipulation visually as abstract shapes resembling com-
puter memory. However, especially practitioners from non-
computing domains typically have less knowledge of the pecu-
liarities involved in devising or executing computer programs;
i.e., while they may be experts in their (reality) domain, they
are likely to be novices when it comes to code. Consequently,
focusing on mere abstractions of computer memory may not
enable learners to realise their full potential. Few educational
programming environments have begun to incorporate the
relation between reality and code as elementary visualisations
of program design and behaviour connected to real-world
phenomena; e.g., GREENFOOT [6].

We hypothesize that further emphasizing the connection
between real-world phenomena and programming concepts
in an educational programming environment bears as-of-yet
untapped potential. In particular, we suggest exploiting novice
learners’ pre-knowledge of their (reality) domain to bridge to
an understanding of OOP code to improve the learning per-
formance for programming novices. In this paper, we explore
this hypothesis by using a conceptual framework to devise
a prototypical learning environment that embodies a strong
visual connection between reality and code. We then perform
a controlled experiment on novice programmers striving to
acquire fundamental knowledge of OOP.

II. BACKGROUND: CONCEPTUAL FRAMEWORK FOR OOP

The object-oriented paradigm dates back to the 1960s. It is un-
clear who coined the term “object-oriented programming,” but
according to an email from Alan Kay, he did.2 Another often
mentioned source is the programming language SIMULA that
Nygaard & Dahl created in the mid-sixties [7]. In 1962, Ny-
gaard initiated the creation of a generic “simulation system;”
the project subsequently welcomed Dahl and eventually led
to the development of the SIMULA 1 programming language,
which was later refined into SIMULA 67 (later renamed to
simply: SIMULA):

It [SIMULA 67] is a generalization and refinement
of the former [SIMULA 1], fairly ambitious, intended
mainly as a general purpose programming language,
but with simulation capabilities. [7, p. 15]

2http://www.purl.org/stefan_ram/pub/doc_kay_oop_de



Coming from a simulation background, Dahl & Nygaard
viewed programming as making a (computer) model of the
real world. They found that the power of SIMULA was in
the way it was possible to abstract a real-life (concrete)
phenomenon into a concept and subsequently express (aka,
realise or create) it using the notion of a class in the (object-
oriented) programming language. The focus on perceiving
system development as abstracting over real-life phenomena
and modelling the real world in your programming language,
rather than obsessing over operational functionality, is further
described and argued for in [8] (Ch. 18, co-authored by
Nygaard) who argue that:

The programming process involves identification of
relevant concepts and phenomena in the referent
system and representation of these concepts and phe-
nomena in the model system. This process consists of
three sub-processes: abstraction in the referent sys-
tem; abstraction in the model system; and modeling.
[8, Ch. 18, p. 286]

Based on this understanding of the programming process,
program execution is defined as:

A program execution is regarded as a physical model
simulating the behavior of either a real or imaginary
part of the world. [8, Ch. 2, p. 16]

Note that reality is not limited to physically tangible phenom-
ena; imaginary phenomena (e.g., an idea or a risk) might also
be included. Designing a new, innovative system may require
inventing new phenomena, not previously (physically) present.

The term Referent System is used for the part of reality under
scrutiny and the term Model System for the realized computer
model [8]. Figure 1 depicts the object-oriented development
process. We adopt the more colloquial terms Reality (to the
left) & Code (right) and use the notation ‘R⇌C’ abbreviating
the correspondence between Reality and Code.3 According to
the process, we start with a real-world phenomenon 1 ; e.g.,
a specific real-life blue car with a semi-flat tyre (bottom left
of Figure 1). This specific car phenomenon is subsequently
abstracted 2 into the concept of a car 3 . Then, the car
concept is modelled 4 as a class: Car 5 ; e.g., incorporating
relevant attributes such as speed and color, but omitting
(abstracting away) irrelevant details such as the semi-flat tyre
in the abstraction 2 . The modelling step takes us from the
object-oriented analysis (OOA) development phase focusing
on analysing the problem domain (left-hand side) to the object-
oriented design (OOD) development phase focusing on design-
ing the computer model in the solution domain (right-hand
side). At runtime, a Car class can then be instantiated 6

into a car object 7 , which, ultimately, will be a computerized
(simulated) model, representing the car phenomenon 8 .

Our work is inherently based on this object-oriented devel-
opment process and perspective; in particular, on the connec-
tion between reality and code (R⇌C); in other words, on the

3For more experienced students learning to program (i.e., beyond novices),
it would make sense to use the term model rather than code (as in R⇌M).

relationship between the left-hand side and right-hand side of
Figure 1 (or, the problem domain and the solution domain).
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Fig. 1: Overview of the conceptual framework emphasizing
the connection between Reality and Code: R⇌C.

III. RELATED WORK: SYSTEMS FOR LEARNING OOP

Learning to program is, by many, reported to be a difficult task
[9, 10, 11]. Many different approaches and tools to support
learning to program have been proposed and evaluated. For
an overview, see [12, 13].

In the following, we provide an overview of visualisation
tools that support learning OO programming using visual-
izations similar to the one above. The overview of related
systems is based on a paper from Sorva et al. [13], who
have carried out an extensive review on program visualisation
systems for introductory programming education, but we also
include systems created after the publication of the paper from
Sorva et al. [13].

Visualisation has been studied for many years, and a range
of tools employing visualisation to aid learning processes
was developed, especially within computer science, e.g., as
visual programming languages, visualisation of algorithms, or
visualisation of the notional machine. Prior research found
that virtual manipulatives (based on visualisations of reality)
are as effective as real physical ones in promoting student
understanding of basic structural engineering concepts [14].
Also, research has found that despite having a larger cognitive
load, realistic visualisations are beneficial in terms of retention
performance [15]. In a meta-study of algorithm visualisation,
[16] concluded that a crucial element is the possibility to
interactively engage with a visualisation rather than merely
passively perceiving it. Naps et al. developed a taxonomy
of different forms of learner engagement with visualisation
technology [17, p. 142]. They hypothesise that using visu-
alisation actively (e.g., by discussing among students, called
presenting), the beneficial effects of visualisation are most
significant. For the specific endeavour of teaching fundamental
OO programming to novices, a variety of systems that in-
corporate visualisation have been developed as a means of
fostering understanding of the underlying mechanisms; e.g.,
GREENFOOT [6], BLUEJ [5], a metaphor-based animation
tool (MBA) by [18], and block-based environments such as
SCRATCH [19].



A. Criteria for Comparison

For our overview, we select systems supporting OO and
JAVA that visualise the state of the objects when executing
the code. Our focus is on visualising the connection between
reality and code (R⇌C) and not systems that directly visualise
the notional machine [20]; e.g., memory layout. We use two
core aspects to compare related systems:

Type of visualisation distinguishes whether the system uses
an R⇌C visualisation or a memory-based visualisation. Sys-
tems that use reality-based visualisation utilise the depiction of
real-world concepts or phenomena to visualise code; e.g., by
visualising a Car-object using an image of a car. Systems that
use a memory-based visualisation do not use the depiction of
real-world concepts or phenomena; e.g., by visualising a Car-
object as a coloured rectangle with the name of its respective
class as a label.

Mode of instantiation captures whether the system has inter-
active object support and/or programmatic object instantiation.
Systems with interactive object support let users instantiate
classes and invoke methods upon the resulting objects in
a reactive environment. Systems with programmatic object
instantiation allow users to execute the main method of a
program step-by-step. Some systems provide both interactive
object support and programmatic object instantiation.

Most of the systems in [13] are not relevant to our overview
as they do not provide the learner with the possibility to
interact with the system or do not focus on OO.

B. Related Systems

GREENFOOT is a system with interactive object support
and programmatic object instantiation that actively engages
users in its visualisation (akin to R⇌C). In GREENFOOT, it is
possible to create many so-called scenarios constituting actors
that act in a micro-world; e.g., a car (actor) moving (acting) in
a car park (micro-world). Here, the code and visualisation are
not set up side-by-side, even though this could be configured
manually. In this case, the code is not highlighted as it
is executed. GREENFOOT supports JAVA as well as Stride,
which is a JAVA-like programming language that combines
the advantages of block-based and text-based programming
languages [21]. [6] reports that extensive feedback on the
system has been collected over several years. GREENFOOT is
a successor to BLUEJ (presented shortly), both of which have
been widely adopted by many educational institutions [22].

BLUEJ is, to the best of our knowledge, the de-facto system
used in CS1 introductory programming courses. It is used by
millions of users worldwide and can be used throughout an
entire introductory programming course as it is able to visu-
alise both small and medium-size programs due to its relatively
generic program visualisation [5, 22]. BLUEJ visualises each
object as generic red-coloured rectangle where the user can
inspect the each field’s name and value. Additionally, BLUEJ
shows the static structure of the user’s program with a UML
class diagram and, similarly to GREENFOOT, does not show
code and visualisation side-by-side.

MBA Metaphor-Based Animation of OO Programs is a
system developed by Sajaniemi et al. that uses metaphor-
based animation of OO programs as a reality-based visual-
isation [23]. It employs metaphors to visualise classes and
objects; e.g., their predefined example class BankAccount is
visualised as a blueprint from which BankAccount-objects
can be instantiated. Application of MBA is limited to a few
predefined examples with predefined visualisations [18]. As
opposed to GREENFOOT, MBA does not have interactive ob-
ject support, but allows the user to step through the execution
of a main method line-by-line. However, it does show code
and visualisation side-by-side, and highlights the code as it
is executed to further support novice programmers. [23] have
used MBA as one of several visualisation systems to evaluate
student visualisation of programming state.

PLANANI: Before MBA, Sajaniemi & Kuittinen created a
system called PLANANI that supported their concept of roles
of variables [24]. They found that ten roles could cover 99%
of variables in introductory programs [25]. As an example,
they visualised a variable holding a constant value like a
stone. They analysed whether role images and animation had
an effect of resulting mental models concerning program and
programming knowledge [26]. They concluded that “what a
student does plays a more central role in the usefulness of a
visualisation than representation used by the tool” (p. 395).

Research Gap: Considering this state of the art in visualiza-
tion tools for novices learning OO programming, we conclude
that there is a lack of an interactive tool that clearly connects
reality and code; in particular, where the user (learner) can
connect an easy-to-understand reality-based visualisation of
objects and their state to the corresponding code. GREENFOOT
employs a visualisation of objects, but does not show the code
side-by-side with the visualisation. MBA has visualisation and
code side-by-side and highlights the executed code, but does
not have interactive object support that allows the user to
actively engage with the visualisation.

IV. VISUALISING THE REALITY ⇌ CODE CONNECTION

We hypothesize that better visualisation support for R⇌C
helps novice programmers in learning OO programming. To
explore this, we developed a prototype environment called
SHOWMYCODE, which connects reality and code by allowing
users to instantiate (visualised) objects and invoke methods
on them. We use this to test our hypothesis. In particular,
we utilise the connection of how a concept from reality is
modelled into a class in the code domain (R⇀C, step 4 in
Figure 1) and how an object in the code domain represents a
phenomenon from reality (R↽C, step 8 in Figure 1).

SHOWMYCODE presents code and a reality-based visualisa-
tion side-by-side to strengthen the R⇌C connection: Figure 2
shows a simplified version of SHOWMYCODE with the source
code to the left (compile-time), and reality-based visualised
objects to the right (runtime). In the object-visualisation area,
novice programmers can instantiate new objects and invoke
methods on existing visualised objects. Objects are visualised
based on the phenomenon they represent. In the presented



case, the Car-object is depicted using a picture of an actual
car. Furthermore, each field is visualised using a reality-like
depiction. In Figure 2, the field speed is visualised as a well-
known speed sign, and field color is visualised by the actual
colour of the car depicted (in this case: blue). We use the term
scenario when referring to an example in the prototype that is
a combination of source code and object visualisation (e.g., a
car-scenario).

Fig. 2: Simplified version of the prototype

Fig. 3: Screenshot of the prototype in the Car-scenario.

Figure 3 shows a screenshot of SHOWMYCODE in a car-
scenario with two Car-objects instantiated. The Car class
(left) is modelled from the concept of a car and has two
fields (speed and color), a constructor, and two methods
(accelerate() and changeColor()). We consider the
change of colour of a car to be easily relatable, even though it
occurs infrequently compared to a car accelerating. To show
that the class is modelled from the concept of a car, a stylized
hand-drawing of the concept (of a car) is depicted next to the
source code (in the upper right corner of the code window).

Two Car-objects are shown to the right (visualizing two
car phenomena) with different states, affecting both speed and
colour. Users can choose to instantiate a new object or to
invoke defined methods on an existing object. Whenever users
interact with an object, the corresponding code that is executed
(left) is highlighted to emphasise the connection between
reality and code. Users can instantiate an object by clicking
the + button in the top right corner. Then, a popup window
is shown with a prompt containing input fields corresponding
to the actual parameters of the selected constructor while
highlighting the code of the respective constructor (in this case:
lines 6–9 in Figure 3). Additionally, users can invoke methods
on an object by clicking on the corresponding buttons; e.g.,

“Call accelerate()”. Similar to object instantiation,
method invocation prompts users for the parameters of the
method while highlighting the method in source code (see,
for instance, the online demo4).

We developed SHOWMYCODE as a tool for our experi-
ment to exclusively focus on two aspects: (1) the connection
between reality and code; and (2) the difference between class
vs object (corresponding to the difference between concept vs
phenomenon). For the experiment, we have predefined selected
scenarios where the source code (left) can be modified by
users; e.g., by adding an additional method or modifying an
existing one. (The particular visualisation images used for
concepts and phenomena are, as of now, static and thus cannot
be modified.) Users are asked to solve tasks where they can
get instant feedback on the correctness of their solution as
well as an appropriate error message if the source code does
not compile. For practical use, we deem the functionality of
SHOWMYCODE most relevant in the initial lectures of a CS1
introductory programming course at university level due to its
specific focus on fundamental OO concepts.

V. EXPERIMENT

To evaluate the effect of visualising the connection between
reality and code on teaching fundamentals of OOP to pro-
gramming novices, we designed a controlled experiment in
the context of an introductory programming course with
approximately 150 first-semester university students enrolled.
On the day of the experiment, N=138 students participated.
We now describe the design and execution of the experiment.

A. Objective

The objective of our experiment is to investigate our hypothe-
sis that strengthening the connection between reality and code
(R⇌C) via visualisation is beneficial to the learning process
of programming novices striving to gain fundamental OOP
knowledge. We investigate this objective via the following
three research questions:
● RQ1 (Correctness): To what extent do programming

novice university students more correctly solve introduc-
tory object-oriented programming exercises with a visu-
alisation of the connection between reality and code (in
comparison to a control group without this visualisation)?

● RQ2 (Speed): To what extent are programming novice
university students faster at solving introductory object-
oriented programming exercises with a visualisation of
the connection between reality and code (in comparison
to a control group without this visualisation)?

● RQ3 (Motivation): To what extent do programming
novice university students find the visualization of the
connection between reality and code more motivating (in
comparison to a control group without this visualisation)?

The visualisation environment is inherently designed to inter-
actively provide feedback on whether a programming task has
been solved correctly. For this reason, virtually all students

4https://sites.google.com/view/visualisingr-c/start



Fig. 4: Screenshot of the prototype in the Tree-scenario.

eventually will find a correct solution to a programming exer-
cise (in our case, above 95% for all exercises). This obviously
impacts how correctness and speed are most appropriately
quantified.

Correctness is measured as the number of attempts nec-
essary to solve an exercise. This appropriately measures the
correctness relative to when students initially believe they
have solved an exercise. Speed is measured as the time
from an exercise is started until it is eventually correct. This
appropriately measures the total time it takes for a student to
engage with the learning tool and complete an exercise.

B. Context

We conduct the experiment in the context of the CS1 intro-
ductory programming course at the IT University of Copen-
hagen. The course is a 15 ECTS5 mandatory first-semester
(autumn) course on the three-year Bachelor of Software De-
velopment. The course introduces fundamental programming
and object-orientation using a conceptual framework that
emphasises a strong correspondence between reality and code
via object-oriented modelling of reality [8]. The course uses
JAVA as its programming language and, currently, BLUEJ [5]
as its interactive learning environment.

C. Subjects

The experiment was run on September 6, 2022 where
N=138 CS1 students participated in the experiment. Most
students were in their early twenties. At the time of admission,
the median age was 21 years. Some of the students had (lim-
ited) prior programming experience, while others had never
programmed before. Students had only superficial experience
with BLUEJ (during the first days of the course).

D. Tasks

Before the experiment, the teaching used a scenario in-
volving cars (Figure 3); for the tasks in the experiment, we
switched to a scenario involving trees (Figure 4), modelling
the age and height of growing trees as to test students’ ability
to use the tool on a new concept.

In anticipation that our approach could provide benefits,
differentially depending on the nature of a task, we deliberately

560 ECTS (European Credit Transfer and Accumulation System) = 1 year.

incorporated a notion of progression into the tasks participants
had to perform. We designed the tasks so that they would
accompany the learning progression of students. To that end,
we based the design of the tasks on the USE-MODIFY-CREATE
(UMC) framework by [27], which organises tasks into a
hierarchy of progressively more demanding competence. The
idea of UMC is that, first, a student learns how to merely
use; e.g., a method. The student learns to merely invoke (use)
a pre-existing method to, for instance, get an object into a
particular state. Later, a student progresses into learning how
to modify the code of an existing method to make it do
something slightly different. Finally, a student progresses into
the ability to create an entirely new method. Table I provides
a description of the three tasks (TASK 1–3) corresponding to
each of the three levels of UMC.

TASK 1 USE the program to instantiate objects and invoke methods to
achieve a program state where there is a tree with an age of
1 (years) and a height of 0.3 (meters), a tree with an age of
2 and a height of 0.6, a tree with an age of 3 and a height
of 0.6, and finally a tree with an age of 4 and a height of
0.9 (meters).

TASK 2 MODIFY the code in two ways; first, so that the trees now
instead have an initial height of 1 (meter); second, so that the
trees now double in height every time they grow, once they
are older than 2 years.

TASK 3 CREATE a new method cut() which should reduce (cut)
the height of the tree by 0.5 (meters) whenever the trees are
taller than 1 meter; otherwise they should be cut in half.

TABLE I: The use, modify, and create tasks of the experiment.

Task 1 requires little beyond understanding the concept
of instantiating objects from classes, manipulating objects
via method invocation, and inspecting object state. The task
mostly involves clicking (on the user interface) to instan-
tiate objects from classes and clicking to invoke methods.
Task 2 incorporates select code modifications, requiring an
understanding of how modifications impact dynamic objects at
runtime, class vs objects, and compile-time vs runtime. Task
3 involves writing additional code in the form of creating a
brand new method.

E. Treatments

Students were divided randomly into two groups: the treat-
ment group versus the control group. The treatment group
used SHOWMYCODE with the R⇌C visualisation of the
connection between reality and code. In contrast, the control
group used BLUEJISH which is a variant of SHOWMYCODE,
but without visualising the connection between reality and
code.

To control for unwanted non-visualisation related interfer-
ence from differences in learning tools, we devised BLUEJISH

as an adapted variant of SHOWMYCODE resembling BLUEJ.
BLUEJISH is identical to SHOWMYCODE in all respects (using
the same code) except for the visualisation. For visualisation,
it adopted the conventions of BLUEJ for displaying objects
and their state as well as for the creation and manipulation of
the objects themselves (instantiation and invocation). Figure 5



Fig. 5: Representation of two Tree-objects with reality-based visualisation (left) vs without this visualisation (right).

shows the two tool variants side by side using a scenario
involving trees.

We decided to adopt BLUEJ’s runtime memory-layout-
based visualisation as the baseline in our experiment because
it, is to the best of our knowledge, the most widely adopted
learning environment for teaching introductory (CS1) object-
oriented programming [22].

F. Design

The experiment was designed as a CS1 introductory lecture
on object orientation wherein the students would be shown
examples, and do small exercises, using either SHOWMY-
CODE or BLUEJISH. This also functioned as an introduction
to the tool. Students were randomly assigned to the treatment
or control group: 71 students were assigned randomly to the
treatment group using SHOWMYCODE; 67 were assigned to
students to the control group using BLUEJISH. Each group
were then shown (in isolated rooms) a recording of the
object orientation lecture wherein the only difference was the
visualisation applied. Hereafter students worked individually
on various car-scenario exercises.

The students were then tasked with solving the three tree-
scenario tasks (presented in Table I) sequentially, with no
time constraint. Students pressed a button “Start” to start
a task, and “Check Solution” to test whether they completed
the task (this button was always visible). Using the “Check
Solution” button shows a popup informing the participant
whether the solution was correct, returning the student to the
task if the task was incomplete. If the solution was correct,
students would be allowed to continue. The tool automatically
logged information regarding correctness and speed. A follow-
up survey investigated student motivation. The survey asked
students whether they found the exercise motivating and/or
frustrating (using a Likert scale) with the option to expand
on their answer. The same questions were asked for the
visualisation. In total, 122 of the participants expanded on
their answers (88%). Both versions of the tool ran as a web-
based platform. Due to the web-based nature of the platform,
some events were not logged, leading to the loss of start/stop
time for 16 tasks (in total). These (post-mortem identifiable)
data points are therefore excluded from the study.

G. Ethical Considerations

The experiment was granted ahead-of-time ethical approval
by our institution. We informed the students that we were not
interested in the performance of individual students, but only
the aggregated data comprising all students randomly allocated
to a particular treatment; i.e., SHOWMYCODE vs BLUEJISH

visualization. Students not consenting to their anonymized
experiment data being used, would have resulted in the ex-
periment not recording any of their data. (In the end, all
students consented to participate.) The differential exposure
to one of the two versions of the tool was limited to a single
lecture and exercise class early in the course. We therefore
expect differential effects of the experiment to be minimal and
confined to the early parts of introducing object orientation.
After the experiment, all students were provided access to the
recording of the lecture that used SHOWMYCODE; i.e., with
the visualisation of the connection between reality and code.
Later in the course, all students were exposed to substantial
and, importantly, identical teaching and teaching/learning ac-
tivities on object-oriented programming including the concep-
tual framework (see Section II) on which our visualizations
were based. The remainder of the course used BLUEJ as
development environment. Grading in the course was based
on an oral exam which took place more than four months
after the experiment had been conducted; by that time, we
expect any differential treatment to be completely evened out.

H. Analysis

For comparing the correctness and speed of solutions from
subjects assigned to the treatment group (using SHOWMY-
CODE) versus those assigned to the control group (using
BLUEJISH), we use the U-test for comparing vectorized data
and Z-test for comparing ratios (e.g., whether x1/y1 > x2/y2).
For all statistical analyses, we use two-tailed tests and adopt
a conventional 95% confidence interval (i.e., α = 5%).

VI. EVALUATION

We present first the results for correctness (RQ1); then those
for speed (RQ2); hereafter those for motivation (RQ3). Finally,
we summarise our findings.



A. Correctness (RQ1)

For each of the tools, we quantify task correctness as the
number of incorrect submissions (aka, failures). An incorrect
submission is when a student uses the “Check status” button,
asking the tool for verification, but their solution is incorrect.

TASK BLUEJISH SMC P-VALUE RESULT

USE: 0.24 fails 0.36 fails p=0.562 inconclusive
MODIFY: 3.58 fails 4.06 fails p=0.711 inconclusive
CREATE: 1.53 fails 0.98 fails p=0.0193 significance

TABLE II: Average number of incorrect submitted solutions
for USE-, MODIFY-, and CREATE-tasks under the treatments.

Table II provides an overview of the average number of
incorrect submissions per treatment for the USE-tasks (top
row), MODIFY-task (middle row), and CREATE-task (bottom
row). For the CREATE task, we see an average of 1.53 failures
(incorrect submitted solutions) using the BLUEJISH tool. When
adopting the SHOWMYCODE tool, this number drops to 0.98
failures. The effect is statistically significant with a p-value of
0.0193 according to a U-test. (For the USE and MODIFY tasks,
the results are inconclusive with larger p-values ≥ 0.562.) We
summarise our findings regarding correctness as follows:

OBSERVATION 1 (Correctness): The student
programming novices solve CREATE tasks more
correctly using a reality-code visualization
compared to a baseline without this visualiza-
tion.

We speculate that novice programmers can take advantage of
their understanding of the problem specification which, impor-
tantly, is phrased in terms of the real world (problem domain)
in order to program the new method, cut(). CREATE tasks
begin with the specification (problem domain) as opposed to
MODIFY tasks that are initiated within the existing code (so-
lution domain) wherein their domain knowledge presumably
plays a more secondary role. Thus, we speculate this is why
the visualisation does not impact the MODIFY task.

B. Speed (RQ2)

For each of the tools, we quantify the speed (of a task)
as the amount of time elapsed from the beginning of the
task (participant pressing “Start”) until the task was solved
correctly. As for the speed (for a tool), we simply aggregate
the numbers to compute the average for the participants that
eventually solved the task correctly. When looking at the
aggregated time results (pertaining to a tool), we thus disregard
incorrect attempts at solving a task.

TASK BLUEJISH SMC P-VALUE RESULT

USE: 242” 144” p=0.00124 strong significance
MODIFY: 425” 367” p=0.242 inconclusive
CREATE: 252” 236” p=0.070 inconclusive

TABLE III: Average time (in seconds) to eventual correctness
for USE-, MODIFY-, and CREATE-tasks under the treatments.

Table III provides an overview of the average speed using
the two tools for USE (top row), MODIFY (middle row), and
CREATE (bottom row). For the USE task, we see that it takes
an average of 242 seconds (4’02”) to complete correctly using
the BLUEJISH tool; whereas this number drops to 144 seconds
(2’24”) when adopting the SHOWMYCODE tool. The effect is
strongly statistically significant with a p-value of 0.00124 (via
a U-test). For MODIFY and CREATE, students are faster when
adopting SHOWMYCODE (from 7’05” to 6’07” for MODIFY
and 4’12” to 3’56” for CREATE), but not significantly so. We
summarise our findings regarding speed as follows:

OBSERVATION 2 (Speed): The student pro-
gramming novices are significantly faster at
solving USE tasks using a reality-code visu-
alization compared to a baseline without this
visualization.

We hypothesize that the improvement is indeed due to pro-
gramming inexperienced students taking advantage of their
knowledge of the real-world in order to effectively manipulate
all objects (via appropriate method invocation) into their
intended states. We speculate that this is because it is easier
for novices to get a quick overview of the state of an object on
the left-hand side of Figure 5 (with the reality visualisation)
than on the right-hand side of Figure 5 (without the reality
visualisation) where attributes are represented by strings.

C. Motivation (RQ3)

In the quantitative data (based on a five-step Likert scale),
there were no significant differences between students who
used SHOWMYCODE vs BLUEJISH on whether the students
found the visualisation either motivating or frustrating.

In the qualitative data, among all the (optional) comments
left, 9 (out of 62) made positive references to the BLUEJISH

visualisation, in comparison to 21 (out of 70) for SHOWMY-
CODE. The difference is statistically significant (p = 0.0340)
according to a Z-test of the two ratios. One student commented
on the way SHOWMYCODE visualised the object orientation
concepts (which was precisely our intention with the tool):

“It was a good exercise which visualized the
concepts behind OOP really well.”

Another student specifically mentioned the role of reality
(which, after all, was one of the key ideas behind the tool):

“The exercises were good fun. I like that it is
something that you can recognize from the real
world.”

Yet another student emphasised the connection between visu-
alisation and learning about classes and objects:

“It seemed cool with the option to concretely
see what the various methods did to the trees
through the visualization. I feel that this is
good way for people who haven’t programmed
before—or with minimal experience—to under-
stand how classes, objects, and methods work.”

For BLUEJISH, 3 (out of 29) highlight in the comments that the
visualisation aided them in understanding object orientation;



for SHOWMYCODE, this number increases to 8 (out of 30) for
SHOWMYCODE. Although more than double, the difference
is not statistically significant (p = 0.107) according to a Z-test.

In general, students using SHOWMYCODE highlight the
connection between method calls and the particular object
it affects, how it makes the more ‘abstract’ code pieces
more ‘concrete,’ and the connection between objects and their
attributes. We summarise our findings from student responses:

OBSERVATION 3 (Motivation): Students ap-
pear to value a visualisation that shows the
connection between reality and code more than
a generic visualisation without this connection.

D. Summary

It is interesting to see orthogonal differences between the
effects on USE vs CREATE tasks as a function of the two treat-
ments (visualisation tools). When switching from BLUEJISH to
SHOWMYCODE: USE-tasks strongly significantly improve in
terms of speed; whereas, CREATE-tasks significantly improve
in terms of correctness. Students appear to value visualisation
of the connection between reality and code (based on the
conceptual framework of object orientation; see Section II). In
retrospect, adopting the UMC framework and making distinct
experiments with USE, MODIFY, and CREATE tasks permitted
the identification of this important nuance.

VII. THREATS TO VALIDITY

A. Construct Validity

Participants knew what to do? We mitigated this threat
by clear instructions; in particular, for the tasks, it was always
possible to re-inspect the task description (textual specification
of what to do). Also, there was a teaching assistant present in
each experiment room, available for settling doubts about task
problems (not solutions).

Time to eventual correctness as a proxy for speed?
We believe time-until-eventual-correctness is a better metric
for measuring the speed of solving a task, than time until
first-attempt (as that may not be correct). To avoid polluting
this data with incorrect answers, we filter out participants not
solving the task correctly when looking at aggregated time.

B. Internal Validity

Tool differences beyond visualisation? The risk is that the
two tool treatments (unintentionally) behave differently, aside
from the (intended) differential visualisation. To mitigate this
threat, we deliberately decided not to use BLUEJ but rather an
imitation of the visualisation style of BLUEJ as a visualisation
variant of our tool, named BLUEJISH. Importantly, the two tools
(BLUEJISH and SHOWMYCODE) have a shared code base,
except for the visualisations, which constitute variation points.

Bias in teaching materials? The risk is that the teaching
would somehow, even unintentionally, favour one tool over
the other, due to implicit biases in the teaching materials.
We used ahead-of-time produced video lectures that were
identical apart from the variation points involving the two

tools to alleviate this threat. To further mitigate, a third-
party external teacher unaffiliated with our university and not
previously involved in this project was recruited to conduct
the teaching. (Incidentally, the teacher ended up joining this
project and paper, although, importantly, after the execution
of the experiment.) Specifically, this teacher was chosen due
to his expertise in the area of OOP.

C. External Validity

Beyond JAVA? Since none of the tasks nor visualisations
depend on JAVA-specifics, we expect the results to generalize
to any conventional object-oriented programming language
with classes, objects, fields, methods, and constructors.

Beyond novices? Note that the tool was designed specifi-
cally for the first weeks of introductory (CS1) object-oriented
programming. We expect diminishing returns later in courses
as students get more exposure to object-oriented code and
presumably start developing an intuition which essentially
bridges the gap between reality and code.

VIII. CONCLUSIONS

The findings of our experiment of visualising the connection
between reality and code resulted in three key observations:

1) For USE tasks, learners are faster (but nor more accurate)
when using the reality-code visualisation;

2) For CREATE tasks, learners are more accurate (but not
faster) when using the reality visualisation; and

3) Students appear to value a visualisation of the connection
between reality and code.

Hence, usage of our research-to-practice programming envi-
ronment prototype SHOWMYCODE visualising the conceptual
framework for OOP by incorporating the connection between
reality and code provided improvements to either speed or
accuracy, depending on the nature of the task. These findings
suggest that our hypothesis holds so that using visualisation
to emphasise the connection between reality and code in
an interactive educational development environment bears the
potential to improve the learning performance of fundamental
knowledge in OOP, at least, in the early (CS1) learning stages.

While SHOWMYCODE uses fixed example cases (trees and
cars) that are hard-coded into the tool, we believe recent
advances in generative AI image generation, allow the devel-
opment of a more general version of SHOWMYCODE. Tools
like MIDJOURNEY6 could generate images for concepts &
phenomena based on the source code entered by the student
(programmer) which, in principle, ought to make the tool work
with user-defined scenarios (modulo AI).
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