
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Syntactic Language Extension via an
Algebra of Languages and Transformations

Jacob Andersen 1

Department of Computer Science
Aarhus University; Aarhus, Denmark

Claus Brabrand 2

IT University of Copenhagen
Copenhagen, Denmark

Abstract

We propose an algebra of languages and transformations as a means for extending
languages syntactically. The algebra provides a layer of high-level abstractions
built on top of languages (captured by context-free grammars) and transformations
(captured by constructive catamorphisms).

The algebra is self-contained in that any term of the algebra specifying a transfor-
mation can be reduced to a catamorphism, before the transformation is run. Thus,
the algebra comes “for free” without sacrificing the strong safety and efficiency
properties of constructive catamorphisms.

The entire algebra as presented in the paper is implemented as the Banana Al-
gebra Tool which may be used to syntactically extend languages in an incremental
and modular fashion via algebraic composition of previously defined languages and
transformations. We demonstrate and evaluate the tool via several kinds of exten-
sions.

Key words: Languages; transformation; syntactic extension;
macros; context-free grammars; catamorphisms; bananas; algebra.

1 Introduction and Motivation

We propose an algebra of 16 operators on languages and transformations as a
simple, incremental, and modular way of specifying safe and efficient syntac-
tic language extensions through algebraic composition of previously defined
languages and transformations.

1 Email: jacand@cs.au.dk
2 Email: brabrand@itu.dk

c©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Andersen & Brabrand

Extension is simple because we base ourselves on a well-proven and easy-to-
use formalism for well-typed syntax-directed transformations known as con-

structive catamorphisms. These transformations are specified relative to a
source and a target language which are defined via context-free grammars
(CFGs). Catamorphisms have previously been studied and proven sufficiently
expressive as a means for extending a large variety of programming languages
via transformation [5,6,7]. Hence, the main focus of this paper lies not so much
in addressing the expressiveness and which transformations can be achieved
as on showing how algebraic combination of languages and transformations
results in highly modular and incremental language extension. Incremental

and modular means that any previously defined languages or transformations
may be composed algebraically to form new languages and transformations.
Safety means that the tool statically guarantees that the transformations al-
ways terminate and only map syntactically legal input terms into syntactically
legal output terms; Efficiency means that any transformation is guaranteed
to run in linear time (in the size of input and generated output).

An important property of the algebra which is built on top of catamor-
phisms is that it is “self-contained” in the sense that any term of the algebra
may be reduced to a constant catamorphism, at compile-time. This means
that all high-level constructions offered by the algebra (including composi-
tion of languages and transformations) may be dealt with at compile-time,
before the transformations are run, without sacrificing the strong safety and
efficiency guarantees.

Everything presented in the paper has been implemented in the form of
The Banana Algebra Tool which, as argument, takes a transformation term
of the algebra which is then analyzed for safety and reduced to a constant
catamorphism which may subsequently be run to transform an input program.

The tool may be used for many different transformation purposes, such
as transformation between different languages (e.g., for translating Java pro-
grams into HTML documentation in the style of JavaDoc or for prototyp-
ing lightweight domain-specific language compilers), transforming a given lan-
guage (e.g., the CPS transformation), format conversion (e.g., converting Bib-
Tex to BibTeXML). However, in this paper we will focus on language extension

for which we have the following usage scenarios in mind: 1) Programmers may
extend existing languages with their own macros; 2) Developers may embed
domain-specific languages (DSLs) in host languages; 3) Compiler writers may
implement only a small core and specify the rest externally; and 4) Develop-
ers or teachers may define languages incrementally by stacking abstractions
on top of each other. We will substantiate these usage claims in Section 6.

The approach captures the niche where full-scale compiler generators as
outlined in Section 7 are too cumbersome and where simpler techniques for
syntactic transformation are not expressive or safe enough, or do not have
sufficient support for incremental development.

Our contributions include the design of an algebra of languages and trans-

2

Andersen & Brabrand

formations for incremental and modular syntactic language extension built on
top of catamorphisms; a proof-of-concept tool and implementation capable of
working with concrete syntax; and an evaluation of the algebraic approach.

2 Catamorphisms

A catamorphism (aka., banana [16]) is a generalization of the list folding

higher-order function known from functional programming languages which
processes a list and builds up a return value. However, instead of working on
lists, it works on any inductively defined datatype. Catamorphisms have a
strong category theoretical foundation [16] which we will not explore in this
paper. A catamorphism associates with each constructor of the datatype a
replacement evaluation function which is used in a transformation. Given an
input term of the datatype, a catamorphism then performs a recursive descent
on the input structure, effectively deconstructing it, and applies the replace-
ment evaluation functions in a bottom-up fashion recombining intermediate
results to obtain the final output result.

Many computations may be expressed as catamorphisms. As an example,
let us consider an inductively defined datatype, list, defining non-empty lists
of numbers:

list = Num N | Cons N * list

The sum of the values in a list of numbers may easily be defined by a catamor-
phism, by replacing the Num-constructor by the identity function on numbers
(λn.n) and the Cons-constructor by addition on numbers (λ(n, l).n+l), corre-
sponding to the following recursive definition:

[[Num n]] = n

[[Cons n l]] = n+[[l]]

One of the main advantages of catamorphisms is that recursion over the struc-
ture of the input is completely separated from the construction of the output.
In fact, the recursion is completely determined from the input datatype and
is for that reason often only specified implicitly. Since the sum catamorphism
above maps terms of type list to natural numbers N, it may be uniquely
identified with its replacement evaluation functions; in this case with a re-
placement evaluation function for the Num-constructor of type N → N and a
replacement function of type N×N → N for Cons). Catamorphisms are often
written in the so-called banana brackets “(|· · ·|)” [16]:

(| λn.n , λ(n, l).n+l |)

3

Andersen & Brabrand

2.1 Constructive Catamorphisms

Constructive catamorphisms are a restricted form of catamorphisms where
only output-typed reconstructors are permitted as replacement evaluator func-
tions. Reconstructors are just constructor terms from (possibly different) in-
ductively defined datatypes wherein the arguments to the constructive cata-
morphism may be used. For instance, we can transform the lists into binary
trees of the tree datatype:

tree = Nil | Leaf N | Node N * tree * tree

using a constructive catamorphism:

[[Num n]] = Leaf n

[[Cons n l]] = Node n (Nil) [[l]]

Although very simple, capable of trivial recursion only, we claim that this
kind of constructive catamorphisms provide a basis for programming language
extension. We shall investigate this claim in the following section.

2.2 Safety and Efficiency

Constructive catamorphisms have a lot of interesting properties; they can be
statically verified for syntactic safety, are guaranteed to terminate, and to run
in linear time.

A constructive catamorphism, c, is typed with a source language, ls, and
a target language, lt, as in “ls → lt”. The languages can be given either as a
datatype (at the abstract syntactic level) as above, or as a CFG (at the con-
crete syntactic level). A constructive catamorphism is said to be syntactically

safe if it only produces syntactically valid output terms, ωt ∈ L(lt), given
syntactically valid input terms, ωs ∈ L(ls):

∀ω ∈ L(ls) ⇒ c(ω) ∈ L(lt)

In addition to a language typing (ls → lt), we also need a nonterminal typing,
τ , which for each of the nonterminals of the input language specifies onto
which nonterminal of target language they are mapped.

If we name the source and target languages of the above example Lists

and Trees respectively, the language typing then becomes “Lists -> Trees”
and the nonterminal typing, τ , is “[list -> tree]”. (The reason for the
angled bracket convention is that there may be multiple nonterminals in play,
in which case multiple mappings are written as a comma separated list inside
the brackets.)

In order to verify that a catamorphism, (|ls → lt [τ] c|) is syntactically
safe, one simply needs to check that each of the catamorphism’s reconstructor
terms (e.g., “Node n (Nil) [[l]]”) are valid syntax, assuming that each of its
argument usages (e.g., [[l]]) are valid syntax of the appropriate type (in this

4

Andersen & Brabrand

case l has source type list which means that [[l]] has type τ(list) = tree).
We refer to [1] for a formal treatment of how to verify syntactic safety.

Constructive catamorphisms are highly efficient. Asymptotically, they run
in linear time in the size of the input and output: O(|ω|+ |c(ω)|).

3 Language Extension

We will now illustrate—using deliberately simple examples—how constructive
catamorphisms may be used to extend programming languages and motivate
the idea of programming language extension. To this end, let us consider the
core λ-Calculus (untyped, without constants) whose syntactic structure may
be defined by the following datatype:

exp = Var id | Lam id * exp | App exp * exp

In the following, we will investigate how to extend the λ-Calculus using cata-
morphisms; in particular, we will look at two well-known extensions, namely
that of numerals and booleans.

3.1 Extension: Numerals

A common extension of the core λ-Calculus is that of numerals; the calculus
is extended with a construction representing zero, and unary constructors
representing the successor and predecessor of a numeral. These constructions
may be combined to represent any natural numbers in unary encoding and for
performing numeric calculations. The syntax of the calculus is then extended
to the language, LN:

exp = Var id | Lam id * exp | App exp * exp |

Zero | Succ exp | Pred exp

We will now show how a catamorphism may be used to transform the extended
language, LN, into the core λ-Calculus, L, using a basic encoding of numerals
which represents zero as the identity function (λz.z), and a number n as
follows:

n lambdas
︷ ︸︸ ︷

λ s . λ s . · · · λ s .

zero
︷ ︸︸ ︷

λ z . z

There are many other possible encodings of numerals, including the more
commonly used Church numeral representation, but the choice of encoding
is not of primary interest here, so we will just use the simpler alternative to
illustrate the point. We can now extend the λ-Calculus with numerals as a
constructive catamorphism of type “LN -> L [exp -> exp]”:

5

Andersen & Brabrand

[[Var V]] = Var [[V]]

[[Lam V E]] = Lam [[V]] [[E]]

[[App E1 E2]] = App [[E1]] [[E2]]

[[Zero]] = Lam z (Var z)

[[Succ E]] = Lam s [[E]]

[[Pred E]] = App [[E]] (Lam z (Var z))

The first three rules just trivially recurse through the input structure pro-
ducing an identical output structure. Zero becomes the identity function,
successor adds a “lambda s” in front of the encoding of the argument, and
predecessor peels off one lambda by applying it to the identity function (note
that the predecessor of zero is thus consequently defined as zero). This will,
for instance, map Succ Zero to its encoding Lam s (Lam z (Var z)).

3.2 Other Extensions

Similarly, the core λ-Calculus may easily be extended with booleans (via
nullary constructors True and False, and a ternary If) yielding a syntac-
tically extended language LB which could then be transformed to the core
λ-calculus by a constructive catamorphism with typing “LB -> L [exp ->

exp]”:

[[True]] = Lam a (Lam b (Var a))

[[False]] = Lam a (Lam b (Var b))

[[If E1 E2 E3]] = App (App [[E1]] [[E2]]) [[E3]]

Note that we have omitted the three lines of “identity transformations” for
variables, lambda abstraction, and application.

Along similar lines, the λ-Calculus could be further extended with addi-

tion, multiplication, negation, conjunction, lists, pairs, and so on, eventually
converging on a full-scale programming language. To substantiate the claim
that this forms an adequate basis for language extension, we have extended
the λ-Calculus towards a language previously used in teaching functional lan-
guages; “Fun” (cf. Section 6).

4 Algebra of Languages and Transformations

Investigating previous work on syntactic macros and transformations [5,6,7]
has revealed an interesting and recurring phenomenon in that macro exten-
sions follow a certain pattern. The first hint in this direction is the effort
involved in the first three lines of the constructive catamorphisms which are
there merely to specify the “identity transformation” on the core λ-Calculus.
That effort could be alleviated via explicit language support.

6

Andersen & Brabrand

 | App exp * exp
 | Lam id * exp
exp = Var id exp = Zero

 | Succ exp
 | Pred exp

idx

i) Core language: ’L’.

 from extension to core language.
iii) Transformation (LN −> L)

v) "Addition" of the transformations (L −> L) and (LN −> L)

|)

(| LN −> L [exp −> exp]

 [Pred E] = App [E] (Lam z (Var z))
 [Succ E] = Lam s [E]
 [Zero] = Lam z (Var z)

 (L −> L) on language ’L’.

 yielding the full transformation: (L+LN −> L).

iv) Identity transformation

+

ii) Language extension: ’LN’.

Fig. 1. Common pattern in language extension (here extending the λ-Calculus with
numerals.)

In fact, every such language extension can be broken into the same five
ingredients (some of which are languages, some of which are transformations),
depicted in Figure 1: i) a core language that is to be extended (e.g., the λ-
Calculus); ii) a language extension of that language 3 (e.g., the extension with
numerals); iii) an identity transformation on the core language; iv) a transfor-
mation that maps the extended language to the core language; and v) a notion
of “addition” of the identity transformation and the small transformation of
the language extension to the core language.

4.1 The Algebra

The five ingredients above can be directly captured by five algebraic operators.
First, cases i) and ii) correspond to a constant language operator which may be
modeled by a context-free grammar (with “named productions” for attaching
transformations). Second, case iii) corresponds to a constant transformation
which may be given as an output-typed constructive catamorphism, c, typed
with the source and target languages of the transformation (and a nontermi-
nal typing, τ). Third, case iv) corresponds to an operator taking a language
l and turning it into the identity transformation (l → l) on that language.
Fourth, a notion of addition on transformations, taking two transformations
ls → lt and l′s → l′t yielding a transformation: (ls ⊕l l

′

s) → (lt ⊕l l
′

t) where “⊕l”
is addition on languages. Language addition is defined as the union of the
individual productions (transformation addition as the union of the catamor-
phic reconstructors), which in both cases ensure that addition is idempotent,
symmetric, associative, and commutative. For a formal definition of addition
on languages and transformations, we refer to [1].

Note that with these operations, it is very easy to obtain a transformation

3 Note that we refer to the extended language as excluding the core language.

7

Andersen & Brabrand

L →L1 l

→L2 v

→L3 L \ L

→L4 L + L

→L5 src (X)

→L6 tgt (X)

→L7 let v=L in L

→L8 letx w=X in L

(a) Algebra of languages (L)...

X →X1 (|L → L [τ] c|)

→X2 w

→X3 X \ L

→X4 X + X

→X5 X ◦ X

→X6 idx (L)

→X7 let v=L in X

→X8 letx w=X in X

(b) ...and transformations (X).

Fig. 2. Syntax of the algebra.

combining both the extension of numerals and booleans; simply “add” the two
transformations.

Although the above algebraic operations are enough to make all the ex-
tensions of the previous chapter, we would like to motivate a couple more
algebraic operators on languages and transformations. Note that even though
the design, and choice of operators arose through an iterative process, we have
tried to divide and categorize the motivations for the constructions into two
categories; operators accommodating respectively modular and incremental

language extension. The complete syntax for the algebra is presented in Fig-
ure 2. (The rules for language constants, transformation constants, language

addition, transformation addition, and identity transformations are numbered
L1, X1, L4, X4, and X6, respectively.) Of course, it is possible to add even
more operators to the algebra; however, the ones we have turn out to be suf-
ficient to conveniently extend the λ-Calculus incrementally all the way to the
Fun programming language. These ideas are pursued in the remainder of the
paper which also includes an evaluation of the whole algebraic approach. For
a formal specification of the semantics of the algebra, see the Appendix (for a
specification of the underlying languages and transformations, see [1]).

4.2 Modular language extension

In order to permit modular language development and separate each of the
ingredients in a transformation, we added local definition mechanism via the
standard let-in functional programming local binder construction. Thus, we
add to the syntax of both languages and transformations; variables (Figure 2,
rules L2 and X2) and local definitions (Figure 2, rules L7, and X7).

In practice, it turns out to be useful to also be able to define (local) trans-

formations while specifying languages; and, orthogonally, to define (local)
languages while specifying transformations. Hence, we add the local defini-
tions L8 and X8 to Figure 2.

8

Andersen & Brabrand

4.3 Incremental language extension

Transformations are frequently specified incrementally in terms of previously
defined languages and transformations. To accommodate such use we added
a means for designating the source and target languages of a transformation
along with a means for restricting a language and a transformation (i.e., re-
stricting the source language of a transformation). By restriction, we take
“L1 \ L2” to yield a language identical to L1, but where all productions also
mentioned by name in L2 have been eliminated. (The operators mentioned
are listed as rules L5, L6, L3, and X3 of Figure 2.)

Also, transformations are frequently expressed via intermediate syntactic
constructions for either simplicity or legibility. For instance, notice how two of
the catamorphic reconstructors in the transformation of Section 3.1 both use
the identity lambda abstraction Lam z (Var z). Here, one could specify this
transformation incrementally, by using an intermediary language, LI, enriched
with identity as an explicit nullary construction:

exp = Var id | Lam id * exp | App exp * exp | Id

Although on such a small example, there is little to gain in terms of simplicity
and/or legibility, it illustrates the general principle of incremental language
extension. The transformation (“LN -> L”) can now be simplified to “ln2li:
LN -> LI”:

[[Zero]] = Id

[[Succ E]] = Lam s [[E]]

[[Pred E]] = App [[E]] (Id)

Which is subsequently composed with the tiny transformation that desugares
the identity-enriched language to the core λ-Calculus, “li2l: LI -> L”:

[[Id]] = Lam z (Var z)

Not surprisingly, when we do this experiment using the tool, the transforma-
tion “li2l ◦ li2ln” produces the exact same transformation as the directly
specified constant transformation in Section 3.1. To enable such incremental
development, we added composition as an operator on transformations (cf.
Figure 2, rule X5).

Note that none of the operators go beyond the expressivity of construc-
tive catamorphisms in that any language term can be statically reduced to a
context-free grammar; and any transformation term to a catamorphism.

An important advantage of an algebraic approach is that several algebraic
laws hold which give rise to simplifications (e.g., “L + L ≡ L”, “L1 + L2 ≡
L2 + L1”, “L1 + (L2 + L3) ≡ (L1 + (L2) + L3”, “src(id(L)) ≡ L”) to
mention but a few. (For a formal specification of the reductin and semantics
of the operators, see the Appendix.)

9

Andersen & Brabrand

Exp.or : Exp1 "||" Exp ;

.exp1 : Exp1 ;

Exp1.and : Exp2 "&&" Exp1 ;

.exp2 : Exp2 ;

Exp2.add : Exp3 "+" Exp2 ;

.exp3 : Exp3 ;

· · ·

Exp7.neg : "!" Exp8 ;

.exp8 : Exp8 ;

Exp8.par : "(" Exp ")" ;

.var : Id ;

.num : IntConst ;

(a) Java grammar fragment.

Stm.repeat =

Stm.do(<1>,

Exp.exp1(

Exp1.exp2(

Exp2.exp3(

Exp3.exp4(

Exp4.exp5(

Exp5.exp6(

Exp6.exp7(

Exp7.neg(

Exp8.par(<2>)

))))))))) ;

(b) Abstract syntax.

Stm.repeat =

’do <1> while (!(<2>));’ ;

(c) Concrete syntax.

Fig. 3. Example specifying transformations using abstract vs. concrete syntax. (For
emphasis, we have underlined the negation and parenthesis constructions.)

5 Tool and Implementation

In order to validate the algebraic approach, we have implemented everything
in the form of The Banana Algebra Tool which we have used to experiment
with different forms of language extensions.

5.1 Abstract vs. Concrete Syntax

A key issue in building the tool was the choice of whether to work with abstract

or concrete syntax. Everything we have presented so far has been working
exclusively on the abstract syntactic level. For practical usability of the tool,
however, it turns out to be more convenient to work on the concrete syntax.
Note that because of the addition operators of the algebra, it is important
that particular choice of parsing algorithm be closed under union.

Figure 3 illustrates the difference between using abstract and concrete
syntax for specifying transformations. Figure 3(a) depicts a fragment of a
grammar for a subset of Java that deals with associativity and precedence
of expressions by factorizing operators into several distinct levels according
to operator precedence (as commonly found in programming language gram-
mars); in this case, there are nine levels from Exp and Exp1 all the way to
Exp8.

Now suppose we were to extend the syntax of Java by adding a new state-
ment, repeat-until, with syntax: "repeat" Stm "until" "(" Exp ")" ";".
Such a construction can easily be transformed into core Java by desugaring it
into a do-while with a negated condition. Figure 3(b) shows how this would
be done at the abstract syntactic level, using abstract syntax trees (ASTs).
Transformation arguments are written in angled brackets; e.g., <1> and <2>

(as explained later). Since negation is found at the eighth precedence level
(in Exp7), the AST fragment for specifying the negated conditional expres-
sion would have to take us from Exp all the way to Exp7, add the negation
“Exp7.neg(. . .)”, before adding the parentheses “Exp8.par(. . .)” and the
second argument, “<2>” (which contains the original expression that was to

10

Andersen & Brabrand

succ zero
parsing
−→

XSugar

<exp><exp.succ>

<exp><exp.zero>

</exp.zero></exp>

</exp.succ></exp>

transformation
−→

XSLT

<exp><exp.lam>

<Id value="s"/>

<exp><exp.lam>

<Id value="z"/>

<exp><exp.var>

<Id value="z"/>

</exp.var></exp>

</exp.var></exp>

</exp.lam></exp>

unparsing
−→

XSugar
\s.\z.z

Fig. 4. The transformation process.

be negated). Figure 3(c) specifies the same transformation, but at the con-
crete syntactic level, using strings instead of ASTs. At this level, there is no
need for dealing explicitly with such low-level considerations which are more
appropriately dealt with by the parser.

Interestingly, if the grammar of a language is unambiguous and we choose
a canonical unparsing, we may move reversibly between abstract syntax trees
and concrete syntactic program strings. Since we have such a recent ambiguity
analysis [3], we have chosen to base the tool on concrete syntax. However,
transformations may also be written in abstract syntax as in Figure 3(b).

5.2 Underlying technologies

Figure 4 depicts the transformation process. The Banana Algebra Tool is cur-
rently based on XSugar [5] and XSLT 4 , but the tool is easily modified to use
other underlying tools (only code generation is affected by these choices). We
use XSugar for parsing a concrete term of the source language (e.g., “succ
zero”) to an AST represented in XML. (XSugar uses an eager variant of
Earley’s algorithm, capable of parsing any CFG, and a conservative ambi-
guity analysis [3] which may be used to verify unambiguity of all languages
involved.) Then, we use XSLT for performing the catamorphic transformation
from source AST to target AST. Finally, XSugar unparses the AST into an
output term of the target language.

5.3 Other implementation issues

We found it convenient to permit lexical structure to be specified using regular
expressions, as often encountered in parser/scanner tools. However, the tool
currently considers this an atomic terminal layer that cannot be transformed.

We handle whitespace via permitting a special whitespace terminal named
“$” to be defined (it defaults to the empty regular expression). The semantics
is that the whitespace is interspersed between all terminal and nonterminals
on the right-hand-side of all productions. For embedded languages, it might
be interesting to have finer grained control over this, but that is currently not
supported by our tool.

4 http://www.w3.org/

11

Andersen & Brabrand

{

$ = [\n\t\r]* ;

Id = [a-z]+ ;

exp.var : Id ;

exp.lam : "\\" Id "." exp ;

exp.app : "(" exp exp ")" ;

}

(a) Language: λ-Calculus (with standard
whitespace definition: “[\n\t\r]*”).

let l = "lambda.l"

in let ln = "lambda-num.l"

in letx ln2l =

(| ln -> l [exp -> exp]

exp.zero = ’\z.z’ ;

exp.succ = ’\s.<1>’ ;

exp.pred = ’(<1> \z.z)’ ;

|)

in ln2l + idx(l)

(b) Transformation: λ-Calculus extended
with numerals to core λ-Calculus (cf. Fig 1).

Fig. 5. Banana Algebra example programs: a language and a transformation.

In the future, it would be interesting to also add a means for alpha con-

version and static semantics checks on top of the syntactic specifications

6 Examples and Evaluation

The tool can be used for any syntax-directed transformation that can be ex-
pressed as catamorphisms (which includes all the transformations of Metafront [7]
and XSugar [5]). This includes translation between different languages, trans-
formations on a language, and format conversion, but here we will focus on
language extension from each of the “four scenarios” from the introduction.
Before that, however, we would like to show a concrete example program.

We will now revisit the example of extending the λ-Calculus with numerals
that we have previously seen as a catamorphism (in Section 3.1) and later (in
Figure 1) as a general extension pattern, motivating the algebraic approach.

Figure 5(a) shows the λ-Calculus as a Banana Algebra language constant
(with standard whitespace, as defined by: “$ = [\n\t\r]*”). Figure 5(b)
defines the transformation from the λ-Calculus extended with numerals to
the core calculus (cf., Figure 1). First, the contents of the file “lambda.l”
(which we assume to contain the constant in Figure 5(a)) is loaded and bound
to the Banana Algebra variable, l in the rest of the program. Then, in that
program, ln is bound to the language containing the extension (assumed to
reside in the file “lambda-num.l”). After this, ln2l is bound to the constant
transformation that transforms the numeral extension to the core λ-Calculus.
Finally, that constant transformation is added to idx(l) which is the identity
transformation on the λ-Calculus.

Similarly, The Banana Algebra Tool can be used to extend Java with lots of
syntactic constructions which can be desugared into Java itself; e.g., for-each
control structures, enumeration declarations, design patterns templates, and
so on. Here, we will give only one simple example of a Java extension; the
repeat-until of Figure 3(c):

let java = "java.l"

12

Andersen & Brabrand

in let repeat = { Stm.repeat : "repeat" Stm "until" "(" Exp ")" ";" ; }

in letx repeat2java =

(| repeat -> java [Stm -> Stm, Exp -> Exp]

Stm.repeat = ’do <1> while (!(<2>));’ ;

|)

in repeat2java + idx(java)

Although the Java grammar is big (“java.l” is a standard 575-line context-
free grammar for Java), the repeat-until transformation is only seven lines.

More ambitiously, The Banana Algebra Tool may used to embed entire
DSLs into a host language. We have used the tool to embed standard SQL
constructions into the <bigwig> [4] language; e.g., the “select-from-where”
construction may be captured by the following simple transformation:

stm.select = ’factor(<2>) { if (<3>) { return # \+ (<1>); } }’ ;

Once defined, languages and transformations can all be added, composed, or
otherwise put together. Thus, a programmer can use the tool to essentially
tailor his own macro-extended language; e.g., “(java \ while) + sql”.

Relying on the existence of the tool, we have used the tool on itself to
add more operators to the algebra. We can easily extend the Banana Algebra
with an overwrite operator “<<” on languages and transformations (defined
in terms of the core algebra):

[[L1 << L2]]L = (L1 \ L2) + L2

[[X1 << X2]]X = (X1 \ src(X2)) + X2

To put the algebraic and incremental development approach to the test, we
have built an entire existing functional language “Fun” (used in an under-
graduate course on teaching functional programming at Aarhus University
and Aalborg University). The language extends the λ-Calculus with arith-

metic, lists, pairs, local definitions, numerals in terms of arithmetic, signed

arithmetic in terms of booleans and pairs, fixed-point iterators in terms of
local definitions, types in terms of arithmetic and pairs. The entire language
is specified incrementally using 245 algebraic operators (i.e., 58 constant lan-
guages, 51 language inclusions, 28 language additions, 23 language variables,
17 constant transformations, 17 transformation additions, 14 transformation
inclusions, 10 local definitions, 9 identity transformations, 8 compositions, 4
language restrictions, 4 transformation variables, and 2 source extractions).
The entire transformation reduces to a constant (constructive catamorphism)
transformation of size 4MB. (For more on this transformation, we refer to [1].)

7 Related Work

Our work shares many commonalities and goals with that of syntax macros,
source transformation systems, and catamorphisms (from a category theory
perspective) the relation to which will be outlined below.

Syntax macros [6,21] provide a means to unidirectionally extend a “host

13

Andersen & Brabrand

language” on top of which the macro system is hard-wired. Extension by syn-
tactic macros corresponds to having control over only “step iii)” of Figure 1
(some systems also permit limited control over what corresponds to “step
ii)”). By contrast, our algebraic approach can be used to extend the syntax
of any language or transformation; and not just in one direction—extensions
may be achieved through addition, composition, or otherwise modular assem-
bly of other previously defined languages or transformations. Uni-directional
extension is just one form of incremental definition in our algebraic approach.

The work on extensible syntax [9] improves on the definition flexibility in
providing a way of defining grammars incrementally. However, it supports
only three general language operations: extension, restriction, and update.

Compiler generator tools, such as Eli [12], Elan [2], Stratego/XT [8],
ASF+SDF [18], TXL [10], JastAdd [13], and Silver [22] may all be used
for source-to-target language transformation. They all have wider ambitions
than our work, supporting specifications of full-scale compilers, many includ-
ing static and dynamic semantics as well as Turing Complete computation
on ASTs of the source language which obviously precludes our level of safety
guarantees.

Although many of the tools support modular language development, none
of them provide an algebra on top of their languages and transformations.

Systems based on attribute grammars (e.g., Eli, JastAdd, and Silver) may
be used to indirectly express source-to-target transformations. This can be
achieved through Turing Complete computation on the AST of the source
language which compute terms of the target language in a downward or up-
ward fashion (through synthesized and inherited attributes), or combinations
thereof. In contrast, catamorphisms are restricted to upward inductive re-
combination of target ASTs. Our transformations could easily be generalized
to also construct target AST downwards, by simply allowing catamorphisms
to take target typed AST arguments (as detailed in [7], p. 17). This corre-
sponds to a notion of anamorphisms and hylomorphisms, but would compro-
mise compile-time elimination of composition (since anamorphisms and cata-
morphisms in general cannot be fusioned into one transformation, without an
intermediate step).

Systems based on term rewriting (e.g., Elan, TXL, ASF+SDF, and Strat-
ego/XT) may also be used to indirectly express source-to-target transforma-
tions. However, a transformation from language S to T has to be encoded as
a rewriting working on terms of combined type: S ∪ T or S × T . Although
the tools may syntactically check that each rewriting step respects the gram-
mars, the formalism comes with three kinds of termination problems which
cannot be statically verified in either of the tools; a transformation may: i)
never terminate; ii) terminate too soon (with unprocessed source terms); and,
iii) be capable of producing a forest of output ASTs which means that is the
responsibility of the programmer to ensure that the end result is one single
output term. To help the programmer achieve this, rewriting systems usually

14

Andersen & Brabrand

offer control over the rewriting strategies.

In order to issue strong safety guarantees, in particular termination, we
clearly sacrifice expressibility in that the catamorphisms are not able to per-
form Turing Complete transformations. However, previous work using con-
structive catamorphisms for syntactic transformations (e.g., Metafront [7] and
XSugar [5]) indicate that they are sufficiently expressive and useful for a wide
range of applications.

Of course, catamorphisms may be mimicked by disciplined style of func-
tional programming, possibly aided by traversal functions automatically syn-
thesized from datatypes [15], or by libraries of combinators [17]. However,
since within a general purpose context, it cannot provide our level of safety
guarantees and would not be able to compile-time factorize composition (al-
though the functional techniques deforestation/fusion [20,11,19] may—in some
instances—be used to achieve similar effects).

There exists a body of work on catamorphisms in a category theoretical
setting [14,16]. However, these are theoretical frameworks that have not been
turned into practical tool implementations supporting the notion of addition
on languages and transformations which plays a crucial role in the extension
pattern of Figure 1 and many of the examples.

8 Conclusion

The algebraic approach offers via 16 operators a simple, incremental, and
modular means for specifying syntactic language extensions through algebraic
composition of previously defined languages and transformations. The algebra
comes “for free” in that any algebraic transformation term can be statically
reduced to a constant transformation without compromising the strong safety

and efficiency properties offered by catamorphisms.

The tool may be used by: 1) programmers to extend existing languages
with their own macros; 2) developers to embed DSLs in host languages; 3)
compiler writers to implement only a small core language (and specify the
rest externally as extensions); and 4) developers and teachers to build multi-
layered languages. The Banana Algebra Tool is available—as 3,600 lines of
O’Caml code—along with examples from its homepage:

[http://www.itu.dk/people/brabrand/banana-algebra/]

Acknowledgments

The authors would like to acknowledge Kevin Millikin, Mads Sig Ager, Per Graa,

Kristian Støvring, Anders Møller, Michael Schwartzbach, and Martin Sulzmann for

useful comments and suggestions.

15

Andersen & Brabrand

References

[1] Jacob Andersen and Claus Brabrand. Syntactic language extension via an
algebra of languages and transformations. ITU Technical Report. Available
from: http://www.itu.dk/people/brabrand/banana-algebra/, 2008.

[2] P. Borovansky, C. Kirchner, H. Kirchner, P. Moreau, and C. Ringeissen.
An overview of elan. In Second Intl. Workshop on Rewriting Logic and its
Applications, volume 15, 1998.

[3] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity
of context-free grammars. In Proc. 12th International Conference on
Implementation and Application of Automata, CIAA ’07, July 2007.

[4] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig>

project. ACM Transactions on Internet Technology, 2(2):79–114, 2002.

[5] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax
for XML languages. Information Systems, 33(4), June 2008. Earlier version
in Proc. 10th International Workshop on Database Programming Languages,
DBPL ’05, Springer-Verlag LNCS vol. 3774.

[6] Claus Brabrand and Michael I. Schwartzbach. Growing languages with
metamorphic syntax macros. In Proc. ACM SIGPLAN Workshop on Partial
Evaluation and semantics-based Program Manipulation, PEPM’02. ACM, 2002.

[7] Claus Brabrand and Michael I. Schwartzbach. The metafront system: Safe
and extensible parsing and transformation. Science of Computer Programming
Journal (SCP), 68(1):2–20, 2007.

[8] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/xt 0.17. a language and toolset for program transformation. Science
of Computer Programming, 72(1-2):52–70, 2008.

[9] Luca Cardelli, Florian Matthes, and Martin Abadi. Extensible syntax with
lexical scoping. SRC Research Report 121, 1994.

[10] J.R. Cordy. Txl - a language for programming language tools and applications.
In Proceedings of ACM 4th International Workshop on Language Descriptions,
Tools and Applications (LDTA’04), pages 1–27, April 2004.

[11] João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion
rule for circular program calculation. In Haskell ’07: Proceedings of the ACM
SIGPLAN workshop on Haskell workshop, pages 95–106. ACM, 2007.

[12] Robert W. Gray, Steven P. Levi, Vincent P. Heuring, Anthony M. Sloane,
and William M. Waite. Eli: a complete, flexible compiler construction system.
Communications of the ACM, 35(2):121–130, 1992.

[13] Görel Hedin and Eva Magnusson. Jastadd - a java-based system for
implementing frontends. In Electronic Notes in Theoretical Computer Science,
volume 44(2). Elsevier Science Publishers, 2001.

16

http://www.itu.dk/people/brabrand/banana-algebra/

Andersen & Brabrand

[14] Richard B. Kieburtz and Jeffrey Lewis. Programming with algebras. In
Advanced Functional Programming, number 925 in Lecture Notes in Computer
Science, pages 267–307. Springer-Verlag, 1995.

[15] R. Lämmel, J. Visser, and J. Kort. Dealing with Large Bananas. In J. Jeuring,
editor, Proceedings of WGP’2000, Technical Report, Universiteit Utrecht, pages
46–59, July 2000.

[16] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
Proceedings 5th ACM Conf. on Functional Programming Languages and
Computer Architecture, FPCA’91, Cambridge, MA, USA, 26–30 Aug 1991,
volume 523, pages 124–144. Springer-Verlag, Berlin, 1991.

[17] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and João Saraiva. Designing and
implementing combinator languages. In Third Summer School on Advanced
Functional Programming, volume 1608 of LNCS, pages 150–206. Springer-
Verlag, 1999.

[18] M. G. J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. The ASF+SDF meta-environment: a component-
based language development environment. In Proc. Compiler Construction
2001. Springer-Verlag, 2001.

[19] Janis Voigtländer. Semantics and pragmatics of new shortcut fusion rules.
In Jacques Garrigue and Manuel Hermenegildo, editors, Proc. Functional and
Logic Programming, volume 4989 of LNCS, pages 163–179. Springer-Verlag,
April 2008.

[20] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:344–358, 1990.

[21] Daniel Weise and Roger F. Crew. Programmable syntax macros. In
Programming Language Design and Implementation (PLDI), pages 156–165,
1993.

[22] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
extensible attribute grammar system. Electronic Notes in Theoretical Computer
Science, 203(2):103–116, 2008.

A Semantics of the algebra

We will now exploit the aforementioned self-containedness property and give
a big-step reduction semantics for the algebra capable of reducing any lan-
guage expression, L, to a constant language (context-free grammar), l; and
any transformation expression, X, to a constant transformation (constructive
catamorphism), x = (|ls → lt [τ] c|).

17

Andersen & Brabrand

Let EXPL denote the set of all language expressions from the syntactic
category, L; and let EXPX denote the set of all transformation expressions
from the syntactic category, X. Also, we take V AR to be the set of all
variables. We define environments in a straightforward way:

ENVL : V AR → EXPL ENVX : V AR → EXPX

The reduction semantics for the algebra of languages is defined by the relation
⇓L⊆ ENVL×ENVX×EXPL×EXPL (cf. Figure 1(a)). We will use the syntax
“α, β ` L ⇓L l” as a shorthand for “(α, β, L, l) ∈⇓L”. Similarly, the reduction
semantics for the algebra of transformations is defined by the relation ⇓X⊆
ENVL × ENVX × EXPX × EXPX (cf. Figure 1(b)). Again, we will use the
short-hand syntax “α, β ` X ⇓X x” instead of “(α, β, X, x) ∈ ⇓X”.

Note that the reduction semantics in Figure A.1 uses a range of operators
(`wfl, ∼l, ⊕l, 	l, vl, `wfx, ∼x, ⊕x, 	x, idτ , idc) which all operate on the level
below that of the algebra; i.e., on constant languages (context-free grammars)
and transformations (constructive catamorphisms). They can all be defined
either at a concrete or abstract syntactic level. We refer to [1], for a formal
specification of these lower-level operators in terms of abstract syntax.

18

Andersen & Brabrand

[CON]L
α, β ` l ⇓L l

`wfl l

[VAR]L
α, β ` v ⇓L α(v)

[RES]L
α, β ` L ⇓L l α, β ` L′ ⇓L l′

α, β ` L \ L′ ⇓L l 	l l′

[ADD]L
α, β ` L ⇓L l α, β ` L′ ⇓L l′

α, β ` L + L′ ⇓L l ⊕l l′
l ∼l l′

[SRC]L
α, β ` X ⇓X (|ls → lt [τ] c|)

α, β ` src (X) ⇓L ls

[TGT]L
α, β ` X ⇓X (|ls → lt [τ] c|)

α, β ` tgt (X) ⇓L lt

[LET]L
α, β ` L ⇓L l α[v 7→ l], β ` L′ ⇓L l′

α, β ` let v=L in L′ ⇓L l′

[LETX]L
α, β ` X ⇓X x α, β[w 7→ x] ` L′ ⇓L l′

α, β ` letx w=X in L′ ⇓L l′

(a) Semantics for the algebra of languages.

[CON]X
α, β ` Ls ⇓L ls α, β ` Lt ⇓L lt

α, β ` (|Ls → Lt [τ] c|) ⇓X (|ls → lt [τ] c|)
`wfx (|ls → lt [τ] c|)

[VAR]X
α, β ` w ⇓X β(w)

[RES]X
α, β ` X ⇓X x α, β ` L ⇓L l

α, β ` X \ L ⇓X x 	x l

[ADD]X
α, β ` X ⇓X x α, β ` X ′ ⇓X x′

α, β ` X + X ′ ⇓X x ⊕x x′
x ∼x x′

[COMP]X
α, β ` X ⇓X (|ls → lt [τ] c|) α, β ` X ′ ⇓X (|l′s → l′t [τ ′] c′|)

α, β ` X ′ ◦ X ⇓X (|ls → l′t [τ ′ ◦ τ] c′ ◦c c|)
lt vl l′s

[IDX]X
α, β ` L ⇓L l

α, β ` idx (L) ⇓X (|l → l [idτ (l)] idc(l)|)

[LET]X
α, β ` L ⇓L l α[v 7→ l], β ` X ′ ⇓X x′

α, β ` let v=L in X ′ ⇓X x′

[LETX]X
α, β ` X ⇓X x α, β[w 7→ x] ` X ′ ⇓X x′

α, β ` letx w=X in X ′ ⇓X x′

(b) Semantics for the algebra of transformations.

Fig. A.1. Semantics of the algebra.

19

	Introduction and Motivation
	Catamorphisms
	Constructive Catamorphisms
	Safety and Efficiency

	Language Extension
	Extension: Numerals
	Other Extensions

	Algebra of Languages and Transformations
	The Algebra
	Modular language extension
	Incremental language extension

	Tool and Implementation
	Abstract vs. Concrete Syntax
	Underlying technologies
	Other implementation issues

	Examples and Evaluation
	Related Work
	Conclusion
	References
	Semantics of the algebra

