
Intraprocedural
Dataflow Analysis for Software Product Lines

Claus Brabrand1,2, Márcio Ribeiro2,3,
Társis Tolêdo2, Johnni Winther4, and Paulo Borba2

1 IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
2 Federal University of Pernambuco, Av. Prof. Luis Freire, 50.740-540 Recife, Brazil
3 Federal University of Alagoas, Av. Lourival de M. Mota, 57.072-970 Maceió, Brazil

4 Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark

brabrand@itu.dk,{mmr3,twt,phmb}@cin.ufpe.br,jw@cs.au.dk

Abstract. Software product lines (SPLs) developed using annotative
approaches such as conditional compilation come with an inherent risk
of constructing erroneous products. For this reason, it is essential to be
able to analyze such SPLs. However, as dataflow analysis techniques are
not able to deal with SPLs, developers must generate and analyze all
valid products individually, which is expensive for non-trivial SPLs.
In this paper, we demonstrate how to take any standard intraprocedu-
ral dataflow analysis and automatically turn it into a feature-sensitive
dataflow analysis in five different ways where the last is a combination of
the other four. All analyses are capable of analyzing all valid products
of an SPL without having to generate all of them explicitly.
We have implemented all analyses using SOOT’s intraprocedural dataflow
analysis framework and experimentally evaluated four of them according
to their performance and memory characteristics on five qualitatively
different SPLs. On our benchmarks, the combined analysis strategy is
up to almost eight times faster than the brute-force approach.

Keywords: Dataflow Analysis, Software Product Lines

1 Introduction

A software product line (SPL) is a set of software products that share com-
mon functionality and are generated from reusable assets. These assets specify
common and variant behavior targeted at a specific set of products, usually
bringing productivity and time-to-market improvements [1, 2]. Developers often
implement variant behavior and associated features with conditional compilation
constructs like #ifdef [3, 4], mixing common, optional, and even alternative and
conflicting behavior in the same code asset. In these cases, assets are not valid
programs or program elements in the underlying language. We can, however, use
assets to generate valid programs by evaluating the conditional compilation con-
structs using preprocessing tools. That is, a conventional program corresponding

2 Intraprocedural Dataflow Analysis for Software Product Lines

to a particular product may be derived by the SPL by selecting the particular
configuration (set of enabled features) corresponding to that product.

Since code assets might not be valid programs or program elements, existing
standard dataflow analyses, which are for instance essential for supporting opti-
mization [5] and maintenance [6] tasks, cannot be directly used to analyze code
assets. To analyze an SPL using intraprocedural analysis, developers then have
to generate all possible methods and separately analyze each one with conven-
tional single-program dataflow analyses. In this case, generating and analyzing
each method can be expensive for non-trivial SPLs. Consequently, interactive
tools for single-program development might not be usable for SPL development
because they rely on fast dataflow analyses and have to be able to quickly re-
spond when the programmer performs tasks such as code refactoring [7]. Also,
this is bad for maintenance tools [6] that help developers understand and manage
dependencies between features.

To solve this problem and enable more efficient dataflow analysis of SPLs,
we propose four approaches for taking any standard dataflow analysis and au-
tomatically lifting it into a corresponding feature-sensitive analysis that we can
use to directly analyze code assets. We also show how to combine these four
approaches into a fifth combined analysis strategy.

Our feature-sensitive approaches are capable of analyzing all configurations
of an SPL without having to generate all of them explicitly. For this reason,
we expect our solutions to be significantly faster than the naive brute force
strategy of explicitly generating all products and analyzing them. Although we
focus on SPLs developed with conditional compilation constructs, our results
apply to other similar annotative variability mechanisms [3]. Our results could
also apply to SPLs implemented using a compositional approach through the
bidirectional transformation proposed by Kaestner et al. [9] which is capable of
refactoring physically separated SPL approaches into virtually separated ones
based on conditional compilation.

We evaluate our three of our feature-sensitive approaches and compare them
with a brute-force intraprocedural approach that generates and analyzes all pos-
sible methods individually. We report on a number of performance and memory
consumption experiments using the ubiquitous dataflow analysis, reaching def-

initions [8], and five SPLs from different domains, with qualitatively different
numbers of features, products, #ifdef statements, and other factors that might
impact performance and memory usage results.

From experimental data we derive an analysis strategy which intraprocedu-
rally combines our above analyses to heuristically select a good analysis for a
given method. This combined strategy is faster than all individual analyses on
all benchmarks. On the benchmarks, our combined feature-sensitive strategy is
up to eight times faster than the feature-oblivious brute-force analysis.

1.1 List of Contributions

Our paper presents the following contributions:

Intraprocedural Dataflow Analysis for Software Product Lines 3

– Five qualitatively different ways of automatically deriving feature-sensitive

analyses capable of analyzing all configurations of a SPL from a conventional
feature-oblivious dataflow analysis, A0; in particular:
• A1, a consecutive approach that analyzes all configurations, one at a
time;

• A2, a simultaneous approach that analyzes all configurations at the same
time;

• A3, a simultaneous with sharing approach that in addition to the simul-
tanous approach is capable of sharing information among configurations;

• A4, a simultaneous with sharing and merging approach that in addition
to the previous analysis is also capable of merging equivalent configura-
tions during analysis; and

• A*, a combined analysis strategy which combines the feature-sensitive
analyses to achieve an even faster analysis strategy.

The analyses A1 to A4 introduce variability gradually into dataflow analysis.
– A proof of equivalence of our feature-sensitive analyses, A1 to A4.
– Experimental validation of our ideas via an implementation using the ubiq-

uitous reaching definitions dataflow analysis on five SPL benchmarks.

In this paper, compared to earlier work on analyzing SPLs [10], we specify one
more feature-sensitive analysis method (A4); although implemented, this anal-
ysis is not used in the comparative evaluation of the analyses. We provide proof
of equivalance of all feature-sensitive analyses proposed. Also, we show how to
combine the feature-sensitive analyses so as to achieve an even faster analysis.
This paper also provides one more SPL benchmark in the evaluation, more moti-
vating examples, more on the #ifdefs normalization process, and more relation
to earlier work on analyzing SPLs.

1.2 Organization of the Paper

The paper is organized as follows. Using concrete examples, we discuss and moti-
vate the need for dataflow analysis of SPLs (Section 2). Then, we introduce con-
ditional compilation and feature models (Section 3). After that, we briefly recall
basic dataflow analysis concepts (Section 4) and present the main contributions
of this paper: feature-sensitive dataflow analyses for SPLs (Section 5). Then, we
analyse important properties of our feature-sensitive analyses (Section 6) and
evaluate them (Section 7). Finally, we consider related work (Section 8), and
conclude (Section 9).

2 Motivating Examples

To better illustrate the issues we are addressing in this paper, we now present a
motivating example based on the Lampiro SPL1. Lampiro is an instant-messaging
client developed in Java ME and its features are implemented using #ifdefs.

1 http://lampiro.bluendo.com/

4 Intraprocedural Dataflow Analysis for Software Product Lines

Image logo;
...
#ifndef GLIDER
... logo = Image.create("icon.png"); ...
#endif
...
UILabel uimg = new UILabel(logo);

(a) Uninitialized variable analysis exam-
ple (error when GLIDER is enabled).

Display display = null;
...
#ifdef VIDEO
... display = new VideoDisplay(); ...
#endif
...
display.init();

(b) Null-pointer analysis example (error
when VIDEO is disabled).

Outputter out = new Outputter();
...
out.open();
...
#ifdef HIGH
... out.close(); ...
#endif
...
#ifdef LOW
... out.close(); ...
#endif
...

(c) Library usage analysis example (inap-
propriate use when HIGH and LOW are both
enabled).

String s, t;
String password = "ToP-sEcReT";
...
#ifdef OOPS
... s = password; ...
#endif
...
#ifdef YIKES or GOSH
... t = "msg: " + s; ...
#endif
...
out.print(t);

(d) Information flow analysis example
(password disclosed when OOPS and
(YIKES or GOSH) are enabled).

Fig. 1. Four example SPL fragments with qualitatively different kinds of errors.

Figure 1(a) shows the essence of a code snippet extracted from Lampiro
implemented in Java with the Antenna2 preprocessor. As can be seen, if the
GLIDER feature is not enabled (see the #ifndef statement), the logo variable
is assigned an image instantiated by the createImage method and is thereby
initialized. However, in products where GLIDER feature is enabled, this variable
is uninitialized.

Figure 1(b) illustrates another common error in an SPL. Here, the display
variable is assigned a new VideoDisplay object whenever the feature VIDEO
is enabled. However, if this feature is disabled, the last line of the example
program will produce a null-pointer exception when the init method is invoked
on display (which is null).

Both examples have been errors inherent to the Java language. Inappropriate
usage of libraries can also cause SPL errors. Also, errors are not necessarily
as simple as suggested by the previous examples, limited to whether or not a
single #ifdef block is enabled or disabled. Errors may also depend intricately
on combinations of #ifdef blocks. The code fragment in Figure 1(c) sketches a
simple combination case that appear to contain an erroneous “double closing” of
an output resource (the resource is closed in both #ifdefs). However, it might be
the case that the HIGH and LOW features are so-called mutually exclusive features;
i.e., HIGH is enabled if and only if LOW is disabled. The SPL will then, in fact,
not have the double closing error. In order to analyze SPL programs we thus

2 http://antenna.sourceforge.net/

Intraprocedural Dataflow Analysis for Software Product Lines 5

need to know which combinations of features are designated as valid. We return
to this point later.

Figure 1(d) shows yet another kind of error (inspired by [11]) where unin-
tended information flow through the program compromizes sensitive informa-
tion. In this contrived example, the password is disclosed in products where the
features OOPS and (YIKES or GOSH) are enabled.

In this paper, we focus exclusively on errors that can be detected via con-
ventional dataflow analyses and show how to lift these from analyzing single
programs to program families developed via SPLs. Figure 1 showed four exam-
ples of such analyses: uninitialized variables, null-pointers, inappropriate library

usage, and unintended information flow. The two examples at the bottom of the
figure further illustrate the importance of taking into account the combinations
of features (i.e., configurations) in that a potential error discovered is in fact
only a real error if the configuration in which it occurs is designated as valid (cf.
Section 3.1).

Syntax and type errors are beyond the scope of this paper. We assume the
SPLs to be analyzed are free from these classes of errors. (For more on how to
handle such errors in SPLs, we refer to [12, 13].)

The above examples illustrate possible errors when developing SPLs using
conditional compilation. Even though some researchers argue that #ifdefs may
pollute the code, may lack separation of concerns, and may make certain mainte-
nance tasks harder [14–17], conditonal compilation continues to be a widespread
mechanism for implementing variability in SPLs.

As with conventional programs, when maintaining SPLs, it is important to
be able to be able to discover errors as early on in the software development cycle
to minimize cost and the consequences of errors. In traditional single programs,
we distinguish between analysis-time, compile-time, and runtime. In SPLs, we
have an extra first step, namely that of instantiation time (aka., configuration
time) where features are selected and a preprocessor turns the assets into a con-
ventional program (product) which can then be analyzed, compiled, and run. In
other words, for SPLs, it is better to detect errors at instantiation time than
(product) analysis time, compilation time, or runtime. Lifting dataflow analy-
ses to SPLs, will help transfer error discovery from (product) analysis time to
instantiation time.

All errors in Figure 1 can be caught by conventional dataflow analyses an-
alyzing for uninitialized variables, null-pointers, object state, and information

flow. However, such conventional analyses need to be “lifted” to analyze not a
single program, but a family of programs expressed as a software product line.

Another analysis is of particular interest to us; namely the classical reaching
definitions analysis. This analysis is commonly used to produce a definition-

usage (aka., def-use) graph which may in turn be used to compute data depen-
dencies among different parts of a program. This analysis is particularly inter-
esting for SPLs in cases where multiple developers collaborate on programming
an SPL with each developer responsible for his own set of features. In such cases,
one developer changing the value of a variable belonging to a feature he or she

6 Intraprocedural Dataflow Analysis for Software Product Lines

is maintaining might inadvertently influence or break other features maintained
by another programmer. The reaching definitions analysis could then be used
to warn the first programmer of the other features his change may affect. We
have proposed the idea of providing information about this kind of feature de-
pendency in an SPL [6]. This was our original motivation for adapting dataflow
analysis for SPLs. In this paper, we will use the reaching definition analysis as
our analysis benchmark.

To intercept dependencies and errors like the ones we have seen above, we
need dataflow analyses to work on sets of SPL assets, like the ones using condi-
tional compilation. However, programmers must resort to generating all possible
methods and separately analyzing each one by using the conventional single-
program dataflow analysis. Depending on the size of the SPL, this can be costly,
which may be a problem for interactive tools that analyze SPL code, for example.
As we shall see in Section 7, we are able to decrease such costs.

3 Conditional Compilation

In this section, we briefly introduce the #ifdef construct and feature models.
We use a simplified ifdef construct the syntax of which is:

S ::= "ifdef" "(" φ ")" S
φ ::= f ∈ F | ¬φ | φ ∧ φ

where S is a Java Statement and φ is a propositional logic formula over feature
names where f is drawn from a finite alphabet of feature names, F. Throughout
the paper, however, we will use formulae from the full propositional logic ex-
tended with true, false, disjunction, implication, and bi-implication via syntactic
sugar in the usual way.
















Fig. 2. Example of normalization of #ifdef statements.

In general, it is possible to make un-syntactic undisciplined #ifdef annota-
tions (e.g., encapsulating half of a statement in an #ifdef). Dealing with such
constructions are beyond the scope of this paper. (Such vulgar constructions
could be dealt with by translating them into disciplined #ifdefs respecting the

Intraprocedural Dataflow Analysis for Software Product Lines 7

syntactic structure of the underlying programming language [18, 12].) We further
refactor these disciplined #ifdefs to eliminate any optional #elif and #else
branches they might have by turning them into the normalized syntactic ifdef
form listed in the BNF above. Figure 2 exemplifies this normalization process.

A configuration, c ⊆ F, is a set of enabled features. A propositional logic
formula, φ, gives rise to the set of configurations, [[φ]] ⊆ 2F, for which the formula
is satisfied. For instance, given F = {A,B,C}, the formula, φ = A ∧ (B ∨ C)
corresponds to the following set of configurations:

[[A ∧ (B ∨ C)]] = {{A,B}, {A,C}, {A,B,C}} ⊆ 2F

3.1 Feature Model



 

  

Fig. 3. Diagrammatic representation of a feature model for a car.

To yield only valid configurations, sets of configurations are usually further
restricted by a so-called feature model often represented diagrammatically [19]
as in Figure 3. Conceptually, however, when disregarding its structure, focussing
only on validity of configurations, a feature model is just a propositional logic
formula. Here is the feature model of Figure 3 represented as a propositional
formula over the alphabet F = {Car, Engine, Air, Basic, Turbo}:

ψFM = Car ∧ Engine ∧ (Basic ↔ ¬Turbo) ∧ (Air → Turbo)

corresponding to the following set of valid configurations:

[[ψFM]] = {{Car, Engine, Basic},
{Car, Engine, Turbo},
{Car, Engine, Air, Turbo}} ⊆ 2F

Let |ψ| denote the number of configurations in the interpretation of the formula
ψ (i.e., |ψ| =def |[[ψ]]|). Notice that the number of valid configurations, |ψFM|,
may be significantly smaller than the total number of configurations, |2F|. Indeed,
in the above example we have that: 3 = |ψFM| < |2F| = 32.

8 Intraprocedural Dataflow Analysis for Software Product Lines

4 Dataflow Analysis

A Dataflow Analysis [5] is comprised of three constituents: 1) a control-flow

graph (on which the analysis is performed); 2) a lattice (representing values of
interest for the analysis); and 3) transfer functions (that simulate execution at
compile-time). In the following, we briefly recall each of the constituents of the
conventional (feature-oblivious) single-program dataflow analysis and how they
may be combined to analyze an input program.

Control-Flow Graph: The control-flow graph (CFG) is the abstraction of
an input program on which a dataflow analysis runs. A CFG is a directed graph
where the nodes are the statements of the input program and the edges represent
flow of control according to the semantics of the programming language. An
analysis may be intraprocedural or interprocedural, depending on how functions
are handled in the CFG. Here, we only consider intraprocedural analyses.

Lattice: The information calculated by a dataflow analysis is arranged in
a lattice, L = (D,�) where D is a set of elements and � is a partial-order on
the elements [8]. Lattices are usually described diagrammatically using Hasse





 

 



(a) Lattice for sign analysis.

� ∈ L
↓
S �� = fS(�)
↓

�� ∈ L

(b) Effect of transfer function, fS .

Fig. 4. Lattice and transfer function.

Diagrams which use the convention that x � y if and only if x is depicted below

y in the diagram (according to the lines of the diagram). Figure 4(a) depicts such
a diagram of a lattice for analyzing the sign of an integer. Each element of the
lattice captures information of interest to the analysis; e.g., “+” represents the
fact that a value is always positive, “0/+” that a value is always zero-or-positive.
A lattice has two special elements; ⊥ at the bottom of the lattice usually means
“not analyzed yet” whereas � at the top of the lattice usually means “analysis
doesn’t know”. The partial order induces a least upper bound operator, �, on the
lattice elements [8] which is used to combine information during the analysis,
when control-flows meet. For instance, ⊥ � 0 = 0, 0�+ = 0/+, and -�0/+ = �.

Transfer Functions: Each statement, S, will have an associated transfer

function, fS : L → L, which simulates the execution of S at compile-time (with
respect to what is being analyzed). Figure 4(b) illustrates the effect of execut-
ing transfer function fS . Lattice element, �, flows into the statement node, the
transfer function computes �� = fS(�), and the result, ��, flows out of the node.

Intraprocedural Dataflow Analysis for Software Product Lines 9

Here are the transfer functions for two assignment statements for analysing the
sign of variable x using the sign lattice in Figure 4(a):

fx=0(�) = 0 fx++(�) =






� � ∈ {-/+, -/0,�}
+ � ∈ {0, +, 0/+}
-/0 � = -

⊥ � =⊥

The transfer function, fx=0, is the constant zero function capturing the fact
that x will always have the value zero after execution of the statement x=0
irrespective of the original argument, �, prior to execution. The transfer function,
fx++, simulates execution of x++; e.g., if x was negative (� = -) prior to execution,
we know that its value after execution will always be negative-or-zero (�� = -/0).
In order for a dataflow analysis to be well-defined, all transfer functions have to
obey a monotonicity property [8].












(a) CFG

T





a
b
c
d



 =





⊥
fx=0(a)
b � d
fx++(c)





(b) Whole-program
transfer function, T .

a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ 0 0 0 0 0
c ⊥ ⊥ 0 0 0/+ 0/+
d ⊥ ⊥ ⊥ + + +

T 0
(⊥) T 1

(⊥) T 2
(⊥) T 3

(⊥) T 4
(⊥)=T 5

(⊥)

(c) Fixed-point iteration.

Fig. 5. Combining CFG, lattice, and transfer functions to perform dataflow analysis
(as a fixed-point iteration).

Analysis: Figure 5 shows how to combine the control-flow graph, lattice, and
transfer functions to perform dataflow analysis on a tiny example program. First
(cf. Figure 5(a)), a control-flow graph is built from the program and annotated
with program points (which are the entry and exit points of the statement nodes).
In our example, there are four such program points which we label with the
letters a to d. Second (cf. Figure 5(b)), the annotated CFG is turned into a whole-
program transfer function, T : L4 → L4, which works on four copies of the lattice,
L, since we have four program points (a to d). The entry point, a, is assigned
an initialization value which depends on the analysis (here, a =⊥). For each
program point, we simulate the effect of the program using transfer functions
(e.g., b = fx=0(a)) and the least-upper bound operator for combining flows (e.g.,
c = b�d). Third (cf. Figure 5(c)), we use the Fixed-Point Theorem [8] to compute
the least fixed-point of the function, T , by computing T i(⊥) for increasing values
of i (depicted in the columns of the figure), until nothing changes. (Similarly, we
can calculate the greatest fixed-point by computing T i(�) instead of T i(⊥) for
increasing values of i, but that would, in general, result in less precise analysis

10 Intraprocedural Dataflow Analysis for Software Product Lines

results.) As seen in Figure 5(c), we reach a fixed point in five iterations (since
T 4(⊥) = T 5(⊥)) and hence, the least fixed-point and result of the analysis, is:
a =⊥, b = 0, c = 0/+, d = + (which is the unique least fixed-point of T). From
this we can deduce that the value of the variable x is always zero at program
point b, it is zero-or-positive at point c, and positive at point d. (Note that,
in practice, the fixed-point computation is often performed using more efficient
iteration strategies.)

5 Dataflow Analyses for SPLs

In Section 2 we claimed that analyzing SPLs is important and that the naive
brute force approach can be costly. In this section, we show how to take any
feature-oblivious intraprocedural dataflow analysis and automatically turn it
into a feature-sensitive analysis.

We present four different ways of performing dataflow analysis for software
product lines (summarized in Figure 8). The four analyses calculate the same
information, but in qualitatively different ways. To illustrate the principles, we
use a deliberately simple example analysis; sign analysis of one variable, x, and
use it to analyze an intentionally simple method, m (cf. Figure 6(a)) that increases
and decreases a variable, depending on the features enabled.







(a) Example SPL method

c={A} : c�={B} : c��={A,B} :

int x=0;
x++;

int x=0;
x--;

int x=0;
x++;
x--;

(b) and its three distinct method variants
(configurations: {A}, {B}, and {A,B}).

Fig. 6. A tiny example of an SPL method along with its three distinct method variants.

The program uses features F = {A,B} and we assume it has a feature model
ψFM = A ∨ B which translates into the following set of valid configurations:
[[ψFM]] = {{A}, {B}, {A,B}}.

5.1 A0: Brute Force Analysis (Feature Oblivious)

A software product line may be analyzed intraprocedurally by building all pos-
sible methods and analyzing them one by one using a conventional dataflow
analysis as described in the previous section. A method with n features will give
rise to 2n possible end-product methods (minus those invalidated by the feature
model). For our tiny example program that has two features, A and B (and
feature model ψFM = A ∨ B), we have to build and analyze the three distinct
methods as illustrated in Figure 6(b). Figure 7(a) depicts the result of analyzing

Intraprocedural Dataflow Analysis for Software Product Lines 11

each of these three products using the simple sign-of-x analysis. (Of course, this
is a very naive approach; a slightly smarter analysis would avoid re-parsing by
building some intermediate representation of the program family.)

5.2 A1: Consecutive Analysis

We can avoid explicitly building all methods individually by making a dataflow
analysis feature-sensitive. Now, we show how to take any single-program dataflow
analysis and automatically turn it into a feature-sensitive analysis, capable of
analyzing all possible method variants. Firstly, we consider the consecutive anal-
ysis, named this way because we analyze each of the possible configurations one
at a time. We render it feature-sensitive by instrumenting the CFG with sufficient
information for the transfer functions to know whether a given statement is to
be executed or not in each configuration. This analysis will introduce variability
into the CFG and overall fixed-point iteration.

Control-Flow Graph: For each node in the CFG, we associate the set of

configurations, [[φ]], for which the node’s corresponding statement is executed.
We refer to this process as CFG instrumentation. (In related work, the idea
of annotating intermediary representation with configuration information is in
known as configuration lifting [20] or variability encoding [21], although in those
cases it is the ASTs that are annotated rather than the CFGs.)

Here is the instrumented CFG for our tiny method of Figure 6(a):

↓
[[true]]: int x=0;

↓
[[A]]: x++;

↓
[[B]]: x--;

↓

We label each node with “[[φ]]: S” where S is the statement and [[φ]] is the con-
figuration set associated with the statement. (This is similar to presence condi-

tions [22].) Unconditionally executed statements (e.g., int x=0;) are associated
with the set of all configurations, [[true]]. Statements that are nested inside sev-
eral ifdefs will have the intersection of the configuration sets. For instance,
statement S in “ifdef (φ1) ifdef (φ2) S” will be associated with the set of
configurations [[φ1]] ∩ [[φ2]] ≡ [[φ1 ∧ φ2]].

Lattice: Analyzing the configurations consecutively does not change the lat-
tice, so the lattice of this feature-sensitive analysis is the same as that of the
feature-oblivious analysis.

Transfer Functions: All we have to do in the feature-sensitive transfer
function is use the associated configuration set, [[φ]], to figure out whether or not
to apply the basic transfer function, fS , in a given configuration, c; i.e., deciding
c ∈ [[φ]] (cf. Figure 8). This membership test can be efficiently decided by using
Binary Decision Diagrams [23] (BDDs) or bit vectors for representing feature
formulae.

12 Intraprocedural Dataflow Analysis for Software Product Lines

c = {A} : c� = {B} : c�� = {A,B} :

⊥ ⊥ ⊥
↓ ↓ ↓

int x=0; int x=0; int x=0;

↓ ↓ ↓
0 0 0
↓ ↓

x++; ↓ x++;

↓ ↓
+ 0 +

↓ ↓
↓ x--; x--;

↓ ↓
+ - 0/+

(a) A0: Feature-oblivious analysis.

(c, c�, c��) = ({A}, {B}, {A,B}) :

({A} �→⊥, {B} �→⊥, {A,B} �→⊥)

↓
[[true]]: int x=0;

↓
({A} �→ 0, {B} �→ 0, {A,B} �→ 0)

↓
[[A]]: x++;

↓
({A} �→ +, {B} �→ 0, {A,B} �→ +)

↓
[[B]]: x--;

↓
({A} �→ +, {B} �→ -, {A,B} �→ 0/+)

(b) A2: Simultaneous analysis.

c = {A} : c� = {B} : c�� = {A,B} :

⊥ ⊥ ⊥
↓ ↓ ↓

[[true]]: int x=0; [[true]]: int x=0; [[true]]: int x=0;

↓ ↓ ↓
0 0 0
↓ ↓ ↓

[[A]]: x++; [[A]]: x++; [[A]]: x++;

↓ ↓ ↓
+ 0 +
↓ ↓ ↓

[[B]]: x--; [[B]]: x--; [[B]]: x--;

↓ ↓ ↓
+ - 0/+

(c) A1: Consecutive analysis.

∀c ∈ [[ψ]] :

([[ψ]] �→⊥)

↓
[[true]]: int x=0;

↓
([[ψ]] �→ 0)

↓
[[A]]: x++;

↓
([[ψ∧A]] �→ +, [[ψ∧¬A]] �→ 0)

↓
[[B]]: x--;

↓
([[ψ∧¬A∧¬B]] �→ 0, [[ψ∧A∧¬B]] �→ +,
[[ψ∧¬A∧B]] �→ -, [[ψ∧A∧B]] �→ 0/+)

(d) A3: Sim. analysis with sharing.

∀c ∈ [[ψ]] :

(⊥�→ [[ψ]])

↓
[[true]]: int x=0;

↓
(0 �→ [[ψ]])

↓
[[A]]: x++;

↓
(+ �→ [[ψ∧A]], 0 �→ [[ψ∧¬A]])

↓
[[B]]: x--;

↓
(0 �→ [[ψ∧¬A∧¬B]], + �→ [[ψ∧A∧¬B]],
- �→ [[ψ∧¬A∧B]], 0/+ �→ [[ψ∧A∧B]])

(e) A4: Sim. with sharing and merging.

Fig. 7. Results of the five analyses on our tiny example method m with feature model
ψ = A ∨ B. (Since ψ∧¬A∧¬B ≡ false, the two parts in strike out font in sub-figures
(d) and (e) will be eliminated by the normalization process (cf. Section 5.4 and 5.5).)

Intraprocedural Dataflow Analysis for Software Product Lines 13

Since the lifting only either applies the basic transfer function or copies the
lattice value, the lifted transfer function is also always monotone.

Analysis: In order to analyze a program using A1, all we need to do is
to combine the CFG, lattice, and transfer functions as explained in Section 4.
Figure 7(c) shows the result of analyzing the increase-decrease method using this
consecutive feature-sensitive analysis. As can be seen, the consecutive feature-
sensitive analysis needs one fixed-point computation for each configuration. A0
and A1 compute the same information (the same fixed-point solution); the only
difference is whether the applicability of statements, c ∈ [[φ]], is evaluated before
or after compilation.

5.3 A2: Simultaneous Analysis

Another approach is to analyze all configurations simultaneously by using a lifted

lattice that maintains one lattice element per valid configuration. As opposed to
the consecutive analysis, the simultaneous analysis needs only one fixed-point
computation. This analysis will thus further introduce variability into the lattice
and the transfer functions in that they will now work on not one configuration,
but a sequence of configurations. Again, this analysis will be feature-sensitive

and it can also be automatically derived from the feature-oblivious analysis.
Control-Flow Graph: The CFG of A2 is the same as that of A1 as it al-

ready includes the necessary information for deciding whether or not to simulate
execution of a conditional statement.

Lattice: As explained, we lift the basic lattice, L, such that it has one element
per valid configuration:

L2 = [[ψFM]] → L

Note that whenever L is a lattice, then so is [[ψFM]] → L (which is isomorphic
to L|[[ψFM]]|). An example element of this lattice is:

L2 = ({A} �→ +, {B} �→ -, {A,B} �→ 0/+) ∈ [[ψFM]] → L

which corresponds to the information that: for configuration {A}, we know
that the value of x is positive (L2({A}) = +); for {B}, we know x is negative

(L2({B}) = -); and for {A,B}, we know it is zero-or-positive (L2({A,B}) =
0/+).

Transfer Functions: We lift the transfer functions correspondingly so they
work on elements of the lifted lattice in a point-wise manner. The basic trans-
fer functions are applied only on the configurations for which the statement
is executed. As an example, consider the statement “ifdef (A) x++;” where
the effect of the lifted transfer function on the lattice element L2 = ({A} �→

0, {B} �→ 0, {A,B} �→ 0) is:

L2 = ({A} �→ 0, {B} �→ 0, {A,B} �→ 0)
↓

[[A]]: x++;

↓
L�

2 = ({A} �→ +, {B} �→ 0, {A,B} �→ +)

14 Intraprocedural Dataflow Analysis for Software Product Lines

The basic transfer function is applied to each of the configurations for which the
ifdef formula A is satisfied. Since [[A]] = {{A}, {A,B}}, this means that the
function is applied to the lattice values of the configurations {A} and {A,B}

with resulting value: fx++(0) = +. The configuration {B}, on the other hand,
does not satisfy the formula ({B} �∈ [[A]]), so its value is left unchanged with
value, L�

2({B}) = 0. Figure 8 depicts and summarizes the effect of the lifted
transfer function on the lifted lattice.

Since the transfer function on [[ψFM]] → L only applies monotone basic trans-
fer functions on L in a point-wise manner, it is itself monotone. This guarantees
the existence of a unique and computable solution.

Analysis: Again, we simply combine the lifted CFG, lifted lattice, and lifted
transfer functions to achieve our feature-sensitive simultaneous configuration
analysis. Figure 7(b) shows the result of analyzing the increase-decrease method
using the simultaneous feature-sensitive analysis. From this we can read off the
information about the sign of the variable x at different program points, for each
of the valid configurations. For instance, at the end of the program in configu-
ration {B}, we can see that x is always negative. Compared to A1, this analysis
only has one fixed-point iteration and thus potentially saves the overhead in-
volved. However, it requires the maximum number of fixed-point iterations that
are performed in any configuration of A1 in order to reach its fixed-point because
of the pointwise lifted lattice. Again, it is fairly obvious that A1 and A2 compute
the same information; the only difference being that A1 does one fixed-point it-
eration per valid configuration whereas A2 computes the same information in
one iteration in a point-wise manner.

5.4 A3: Simultaneous Analysis with Sharing

Using the lifted lattice of the simultaneous analysis, it is possible to lazily share
lattice values corresponding to configurations that are indistinguishable in the
program being analyzed. This analysis will further the notion of variability in
the dataflow analyses as it will now be possible to reason about the equivalence
of configurations during analysis.

Control-Flow Graph: The CFG of A3 is the same as that of A2.
Lattice: To accomodate the sharing, the lifted lattice of A3 will, instead of

mapping configurations to base lattice values, map sets of configurations to base
lattice values:

L3 = 2[[ψFM]] �→ L

This allows A3 lattice values to share base lattice values for configurations that
have not yet been distinguished by the analysis. For instance, the lifted lat-
tice value of A2, L2 = ({A} �→ �, {B} �→ �, {A,B} �→ �) ∈ L2, can now
be represented by L3 = ([[A ∨ B]] �→ �) ∈ L3 where the three configurations,
[[A ∨B]] = {{A}, {B}, {A,B}}, share the base lattice value, �.

Intraprocedural Dataflow Analysis for Software Product Lines 15

Transfer Functions: The transfer functions of A3 work by lazily splitting

sets of configurations, [[ψ]], in two disjoint parts, depending on the feature con-
straint, φ, attached with the statement in question: A set of configurations for
which the transfer function should be applied, [[ψ∧φ]]; and a set of configurations
for which the transfer function should not be applied, [[ψ ∧ ¬φ]]; i.e.:

L3 = ([[ψ]] �→ �, ...)
↓

[[φ]]: S

↓
L�

3 = ([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...)

Note that [[ψ ∧ φ]] ∪· [[ψ ∧ ¬φ]] = [[(ψ ∧ φ) ∨ (ψ ∧ ¬φ)]] = [[ψ ∧ (φ ∨ ¬φ)]] =
[[ψ ∧ true]] = [[ψ]] which means that [[ψ]] is split into two parts without losing any
configurations. Of course, it might be the case that [[ψ]] is split into “nothing”, ∅,
and “everything”, [[ψ]] (which happens whenever ψ∧φ ≡ false or ψ∧¬φ ≡ false).
We eliminate such false constituents in order to ensure a minimal and finite
representation. This is taken care of by the function, normalize : L3 → L3,
which is here specified recursively on the structure of L3 where nil is the empty
list and the notation “[[φ]] �→ � :: tail” deconstructs an L3 value into its first
element ([[φ]] �→ �) and tail:

normalize([[ψ]] �→ � :: tail) =

�
normalize(tail) ψ ≡ false

[[ψ]] �→ � :: normalize(tail) ψ �≡ false

normalize(nil) = nil

The transfer function of A3 thus has the following behavior on a statement, S,
with feature constraint, φ:

L3 = ([[ψ]] �→ �, ...)
↓

[[φ]]: S

↓
L�

3 = normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...)

Analysis: As always for the analysis, we simply combine the CFG, lattice,
and transfer functions to achieve our shared simultaneous analysis. Figure 7(d)
shows how this analysis will analyze our tiny program example from earlier. A2
and A3 compute the same information; A3 just represents the same information
more compactly using sharing.

5.5 A4: Simultaneous Analysis with Sharing and Merging

In addition to configuration sharing as in A3, it is also possible to merge sets
of configurations that record the same information (i.e., sets of configurations
that map to the same base lattice value) that has earlier been split apart. For

16 Intraprocedural Dataflow Analysis for Software Product Lines

instance, what in A3 might be represented by L3 = ([[φ]] �→ +, [[ψ]] �→ +) could
instead be represented as L4 = ([[φ ∨ ψ]] �→ +), essentially merging and thereby
also sharing the sets of configurations, [[φ]] and [[ψ]]. Since each base lattice value
in the co-domain of every A4 lattice value is now unique, it seems more natural
to reverse the lattice so as to represent the above information instead as L4 =
(+ �→ [[φ ∨ ψ]]) such that base lattice values are partially mapped to sets of
configurations instead of the other way around.

Control-Flow Graph: The CFG of A4 is the same as that of the previous
feature-sensitive analyses (A1, A2, and A3).

Lattice: As mentioned above, the lattice of A4 now partially maps base
lattice values to sets of configurations:

L4 = L �→ 2[[ψFM]]

Transfer Functions: The transfer functions of A4 is easily defined as a
transformation of representation, merge, from L3 to L4, which appropriately
merges and disjoins formulae with equal base lattice values; i.e., merge : L3 →

L4, is defined as L4 = merge(L3) where:

L4(�) =

�
[[
�

L3([[φ]])=� φ]] ∃φ . L3([[φ]]) = �

undefined otherwise

A transfer function of A4 for a statement, S, with feature constraint, φ, will thus
have the following behavior:

L4 = (� �→ [[ψ]], ...)
↓

[[φ]]: S

↓
L�

4 = merge(normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...))

Analysis: Again, we simply combine CFG, lattice, and transfer functions to
achieve our reversed shared simultaneous analysis. Figure 7(e) illustrates how the
analysis analyses our tiny increase-decrease method. Of course, this particular
example does not show off the merging capabilities. If we add statement, x=0,
to the end of our tiny example method, A4 would get the analysis answer:
L4 = (0 �→ [[ψFM]]) instead of L3 = ({{A}} �→ 0, {{B}} �→ 0, {{A,B}} �→ 0) as
in A3. Note that there is a tradeoff between the cost of computing the merging
and the benefits of sharing. Whether or not this is worth while is likely to depend
on a particular analysis (and SPL) and will have to be tested experimentally (cf.
Section 7). In general, it would presumably work better on analyses with small
lattices where more information could potentially be shared.

5.6 Other Analysis Approaches

A couple of variations of the feature-sensitive analyses are possible. One could
retain the instrumented CFG calculated in A1 and A2, but then specialize [24]

Intraprocedural Dataflow Analysis for Software Product Lines 17

CFG Lattice Transfer Functions

A0, ∀c:

c �∈[[φ]]: c∈[[φ]]:

↓
↓ S

↓

L

c �∈[[φ]]: c∈[[φ]]:
�

� ↓
↓ S

�� = � ↓
�� = fS(�)

A1, ∀c:

↓
[[φ]]: S

↓
L1 = L

�
↓

[[φ]]: S

↓

�� =

�
� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]

A2:

↓
[[φ]]: S

↓

L2 =

[[ψFM]] → L

L2 = (c �→ �, ...)
↓

[[φ]]: S

↓

L�
2 = (c �→

�
� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]
, ...)

A3:

↓
[[φ]]: S

↓

L3 =

2
[[ψFM]] �→ L

L3 = ([[ψ]] �→ �, ...)
↓

[[φ]]: S

↓
L�

3 = normalize([[ψ ∧ ¬φ]] �→ �, [[ψ ∧ φ]] �→ fS(�), ...)

A4:

↓
[[φ]]: S

↓

L4 =

L �→ 2
[[ψFM]]

L4 = (� �→ [[ψ]], ...)
↓

[[φ]]: S

↓
L�

4 = merge(normalize([[ψ ∧ ¬φ]] �→ �, [[ψ ∧ φ]] �→ fS(�), ...))

Fig. 8. Summary of dataflow analyses for software product lines.

18 Intraprocedural Dataflow Analysis for Software Product Lines

the CFG prior to analysis for every configuration by resolving all conditional
statements relative to the current configuration. This approach would be a vari-
ation of A1 with a higher cost due to CFG specialization, but which in turn
saves by making membership decisions only once per CFG node. Another ap-
proach would be to transform ifdefs into normal ifs and turn feature names
into static booleans [20, 21] which could then be resolved by techniques such
as partial evaluation [24] prior to analysis. We do not explore this idea in the
paper, but rather focus on the different ways of automatically transforming a
feature-oblivious analysis into a feature-sensitive one, while staying within the
framework of dataflow analysis.

6 Analysis of the Analyses

We will now analyze and compare the feature-sensitive analyses. We begin with
a proof that all analyses A0 to A4 compute the same information. Then, we will
outline the tasks performed by each of the analyses. Finally, we will reason about
and compare the asymptotic time and space complexity of the feature-sensitive
analyses.

6.1 Equivalence of the Analyses

Lemma 1: The analyses A0, A1, A2, A3, and A4 all compute the exact same
information (same analysis result).

Proof: It is sufficient to show that for each configuration and each statement,
all transfer functions of A0, A1, A2, A3, and A4 (cf. Figure 8) compute the
exact same information (only represented in different ways by the five analy-
ses). Then, the rest follows inductively by transitivity on the entire control-flow
graph. Let configuration c and statement S with feature constraint φ be given.
We assume the input to the transfer function to associate base lattice value �
with the configuration c. We will now show that the resulting output of all of
the transfer functions for A0 to A4 associate the same (new) output base lattice
value, ��, for our configuration c. Now, we have two cases, depending on whether
or not c ∈ [[φ]].

Case c ∈ [[φ]]:

– A0: Since c ∈ [[φ]], we get that: �� = fS(�).

– A1: Here, we have that �� =

�
� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]
which means that �� = fS(�),

as required, since c ∈ [[φ]].
– A2: By assumption, the input to the transfer function gives us that L2(c) = �.

Then, the output of the transfer function is L�
2 = (c �→

�
� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]
, ...)

Intraprocedural Dataflow Analysis for Software Product Lines 19

which means that the information computed for configuration c is �� =
L�
2(c) = fS(�), as required, since c ∈ [[φ]].

– A3: Here, the input to the transfer function is assumed to associate L3([[ψ]]) =
�, for some ψ where c ∈ [[ψ]]. The output of the transfer function is then
L�
3 = normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...). Since c ∈ [[ψ]] and

c ∈ [[φ]], we conclude that c ∈ [[ψ∧φ]] which in turn means that ψ∧φ �≡ false

and hence that the information computed is �� = L�
3([[ψ ∧ φ]]) = fS(�). This

establishes that c ∈ [[ψ ∧ φ]] is mapped to �� = fS(�), as required.
– A4: Here, the input to the transfer function is assumed to associate L5(�) =

[[ψ]], for some ψ where c ∈ [[ψ]]. In case A3 above, we deduced that L�
3([[ψ ∧

φ]]) = fS(�) for L�
3 = normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...) and

that c ∈ [[ψ ∧ φ]]. This then means that for L�
4 = merge(L�

3) we have that
L�
4(fS(�)) ⊇ [[ψ ∧ φ]] � c. Hence, the information computed for configuration

c is �� = fS(�), as required.

Case c �∈ [[φ]]:

– A0: Since c �∈ [[φ]], we get that: �� = �.
– A1: Since c �∈ [[φ]], we deduce that c ∈ [[¬φ]]. Now, by definition, �� =�

� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]
, we obtain that �� = �, as required.

– A2: By assumption, the input to the transfer function gives us that L2(c) = �.

Then, the output of the transfer function is L�
2 = (c �→

�
� c ∈ [[¬φ]]

fS(�) c ∈ [[φ]]
, ...)

which means that the information computed for configuration c is �� =
L�
2(c) = �, as required, since c ∈ [[¬φ]].

– A3: Here, the input to the transfer function is assumed to associate L3([[ψ]]) =
�, for some ψ where c ∈ [[ψ]]. The output of the transfer function is L�

3 =
normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...). However, since c �∈ [[φ]], we
conclude that c ∈ [[¬φ]] and then that c ∈ [[ψ∧¬φ]] which in turn means that
[[ψ∧¬φ]] �≡ false and hence that �� = L�

3([[ψ∧¬φ]]) = �. Thus, the information
computed for c ∈ [[ψ ∧ ¬φ]] is �� = �, as required.

– A4: Here, the input to the transfer function is assumed to associate L4(�) =
[[ψ]], for some ψ where c ∈ [[ψ]]. In case A3 above, we deduced that L�

3([[ψ ∧

¬φ]]) = � for L�
3 = normalize([[ψ ∧ φ]] �→ fS(�), [[ψ ∧ ¬φ]] �→ �, ...) and that

c ∈ [[ψ∧¬φ]]. This then means that for L�
4 = merge(L�

3) we have that L
�
4(�) ⊇

[[ψ ∧ ¬φ]] � c which means the information computed for configuration c is
�� = �, as required.

�

6.2 Analysis Tasks

Figure 9 considers the overall tasks performed for each SPL method analyzed in
each of the analyses. Analyses A0, A1, and the three simultaneous analyses all

20 Intraprocedural Dataflow Analysis for Software Product Lines

differ substantially in the number of times each of the tasks are performed. Not
surprisingly, A0 needs to do a lot of (brute force) compilation and preprocessing.
The rest require only one compilation, but pay the price of instrumentation to
annotate the CFG with feature constraints. However, this is cheap in practice.
A1 performs the analysis (i.e., the fixed-point computation) for every valid con-
figuration whereas A2 toA4 only do this once. We return to these considerations,
in practice, when we discuss our experimental results (cf. Section 7).

time(A0) = |ψFM| · �time(preprocess) + time(compile) + time(analyzeA0)�
time(A1) = time(compile) + time(instrument) + |ψFM| · �time(analyzeA1)�
time(A2) = time(compile) + time(instrument) + time(analyzeA2)
time(A3) = time(compile) + time(instrument) + time(analyzeA3)
time(A4) = time(compile) + time(instrument) + time(analyzeA4)

Fig. 9. Overall tasks performed by each of the analyses.

6.3 Asymptotic Time Complexity

The time complexity of the A0 analysis is:

Time(A0) = O(|ψFM| · |G| · T0 · h(L))

where |G| is the size of the control-flow graph (which for the intraprocedural
analysis is linear in the number of statements in the method analyzed, ignoring
exceptions); T0 is the execution time of a transfer function on the L lattice; and
h(L) is the height of the L lattice. In total, we need to analyze |ψFM| method
variants. For each of these, we execute O(|G|) different transfer functions, each
of which takes execution time, T0, and can be executed a worst-case maximum
of h(L0) number of times.

Similarly, the time complexity of the A1 analysis is:

Time(A1) = O(|ψFM| · |G| · T1 · h(L1))

Since L1 = L, the main difference between the complexity of A0 and A1 is
the time it takes to evaluate a transfer function (i.e., T0 vs. T1). In A1, the
statement applicability condition, c ∈ [[φ]], is evaluated for each transfer function.
In contrast, in A0, this condition is evaluated at preprocessing time.

Analogously, we can quantify the asymptotic time complexity of A2:

Time(A2) = O(|G| · T2 · h(L2))

which is similar to A1, except that we do not need to analyze |ψFM| times and
that the numbers are parameterized by the A2 lattice and transfer functions.
For the height of the lattice L2, we have:

Intraprocedural Dataflow Analysis for Software Product Lines 21

h(L2) = h([[ψFM]] → L1) = h(L|ψFM|
1

) =
�

c∈[[ψFM]]

h(L1) = |ψFM| ·h(L1)

Note, however, that this is a purely theoretically worst case that does not natu-
rally arise in practice because of the pointwise nature of A2. Since all configura-
tions are independent, the penalty for A2 will not be the sum, but rather only
the maximum number of fixed-point iterations of A1. In practice, we have not
observed any significant cost on behalf of A2 from this effect, as we will see in
Section 7. The remaining speed factor between A1 and A2 thus boils down to:

A1 : A2 = |ψFM| · T1 : T2

In theory, we would not expect any difference in the speed of the two analyses;
A1 makes a sequence of n analyses and A2 makes one analysis in which each step
costs n. However, as we will see in Section 7, A2 has better cache performance
than A1, since statement nodes only have to be retrieved and evaluated once
per transfer function in A2, instead of once per configuration as in A1. Apart
from data, also the fixed-point iteration code only runs once instead of once per
configuration.

The speed of the analyses A3 and A4 depends on the sharing potential which
is intimately dependent on a particular SPL. In Section 7, we will see how A3
does on our benchmarks.

6.4 Asymptotic Space Complexity

In terms of memory consumption, the asymptotic space complexity of the anal-
yses is simply proportional to the amount of data occupied by the lattice values.
For the analyses A1 and A2 this becomes:

Space(A1) = O(|G| · log(|L1|))
Space(A2) = O(|G| · log(|L2|))

Comparing the two, we can derive that:

log(|L2|) = log(|[[ψFM]] → L1|) = log(|L|ψFM|
1

|) = log(|L1|
|ψFM|) = |ψFM|·log(|L1|)

which thus means that the difference is:

Space(A2) = |ψFM| · Space(A1)

This relationship is also evident when comparing Figures 7(c) and 7(b). Although
A2 requires n = |ψFM| times more memory to run, it is always possible to cut the
A2 lattice into k slices of n/k columns (i.e., analyze n/k number of configurations
at a time). This provides a way to in some sense combine the time and space
characteristics of A1 with A2 to A4.

As for performance, the memory consumption of the analyses A3 and A4
depends on the sharing potential which will vary from SPL to SPL. Again, we
will see how A3 does in practice in Section 7.

22 Intraprocedural Dataflow Analysis for Software Product Lines

7 Evaluation

We first present our study settings. Then, we present our results in terms of total
analysis time (incl. compilation) and analysis-time only (excl. compilation). We
discuss the results and use the knowledge gained from the experiments to derive
an interprocedurally combined analysis which is faster than each of our individual
analyses, on all benchmarks. Finally, we look briefly at cache implications and
memory consumption of our analyses.

7.1 Study settings

To validate the ideas, we have implemented and evaluated the performance and
memory characteristics of an intraprocedural version of the ubiquitous reaching
definitions dataflow analysis which is implemented using SOOT’s interprocedural
dataflow analysis framework for analyzing Java programs [25].

We have subsequently lifted the analysis into the four feature-sensitive anal-
yses for SPLs (A1 to A4). The sharing in the A3 and A4 analyses is represented
by bit vectors from the Colt high performance open source Java libraries [26].
Note, however, that since the current implementation of our A4 analysis uses
a sub-optimal representation which slows it down unfairly, we have excluded it
from the experiments below. Since we are using intraprocedural analyses which
analyze one method at a time, we use the local set of features of each method,
Flocal, instead of F which significantly reduces the size of the lattices we work
with. (Recall that the number of potential configurations is exponential in the
number of features.)

Benchmark LOC |F| |2Flocal | max. |ψFM| avg. |ψFM| #methods

Graph PL 1,350 18 512 (2
9
) 106 3.91 135 (528)

MM08 5,700 14 128 (2
7
) 24 1.84 285 (523)

Prevayler 8,000 5 8 (2
3
) 8 1.28 779 (1,001)

Lampiro 45,000 11 4 (2
2
) 4 1.01 1,944 (1,971)

BerkeleyDB 84,000 42 128 (2
7
) 40 1.64 3,604 (5,905)

Fig. 10. Size metrics for our five SPL benchmarks.

We have chosen five qualitatively different SPL benchmarks, listed in Fig-
ure 10. The table summarizes: LOC, as the number of lines of code; |F|, as the
number of features in the SPL; |2Flocal |, as the maximum number of potential
configurations of any one method in the SPL, given |Flocal| features; max. |ψFM|,
as the maximum number of valid configurations in a method; avg. |ψFM|, as the
average number of valid configurations in a method; and #methods, as the num-
ber of methods (with the total number of distinct methods, including variations
of the same method, in parentheses). Graph PL (aka., GPL) is a small product
line for desktop applications [3]; it has a bit more than a thousand lines of code
with intensive feature usage. MobileMedia08 (aka., MM08) is a product line for

Intraprocedural Dataflow Analysis for Software Product Lines 23

mobile applications for dealing with multimedia [27]; it is slightly larger than
Graph PL and has moderate feature usage. Prevayler is an in-memory database
for Java applications [3] which was not developed as an SPL but has been turned
into an SPL as part of a research project; it is a bit larger than MM08 and has
low feature usage. Lampiro is a product line for instant-messaging clients [18];
it is more moderately sized and also has very low feature usage. Last but not
least, BerkeleyDB is a product line for databases [3]; it has 84K lines of code
and moderate feature usage.

The histograms in Figure 11 illustrate the distribution of the number of dis-
tinct valid methods per number of features in a method for each of the SPLs.
Graph PL (depicted in Figure 11(a)), for instance, has 27 methods without fea-
tures each of which need to be analyzed in 20 = 1 configuration (i.e., 27 ∗ 1 = 27
distinct valid methods to analyze). It has 75 methods with one feature that
each need to be analyzed in 21 = 2 valid configurations (i.e., 75 ∗ 2 = 150 dis-
tinct valid methods to analyze). Finally, e.g., it has one method with 9 features
which amounts to 29 = 512 potential configurations of which 106 are valid (i.e.,
1 ∗ 106 = 106 distinct valid methods to be analyzed which can be seen as the
rightmost bar). Note that when plotted this way, the area shown in the his-
tograms is thus directly proportional to the number of distinct methods to be
analyzed.

The leftmost white bar represents methods without feature usage and thus
trivially only one configuration. On such methods, we expect the simultaneous
analyses A2 to A4 to suffer an overhead penalty compared to A1 from having to
represent a single base lattice value as either: in A2, as a list of one value; or in
A3 and A4, as a set of one value trivially without prospects of sharing. We have
thus plotted those bars in a different color (white) to emphasize the difference
while the rest of the method bars are plotted in gray.

As can be seen, the five benchmark SPLs have qualitatively different fea-
ture usage profiles. The histogram of Graph PL is dominated by one method,
Vertex.display(), with 106 valid configurations. In MobileMedia08, there is
one method, MediaListScreen.initMenu(), with 24 valid configurations and
one, handleCommand() in the class MediaController, with 20. Prevayler has
one method, PrevaylerFactory.publisher(), with 23 = 8 valid configurations
and two methods with 22 = 4 valid configurations. Lampiro only has one method,
RegisterScreen.xmppLogin(), with 22 = 4 valid configurations and 24 meth-
ods with 21 = 2 valid configurations. In BerkeleyDB, the highest number of valid
configurations, 40, is achieved by DbRunAction.main().

Our analyses currently interface with CIDE (Colored IDE) [3] for retrieving
the conditional compilation statements. CIDE is a tool that enables developers to
annotate feature code using background colors rather than ifdef directives, re-
ducing code pollution and improving comprehensibility. Conceptually, CIDE uses
a restricted form of ifdefs for which only conjunction of features is permitted.

We have executed the analyses on a 64-bit machine with an Intel R� CoreTM

i7 3820 CPU running at 3.6GHz with 32GB of memory (16GB allocated to the

24 Intraprocedural Dataflow Analysis for Software Product Lines

(a
)
G
ra
p
h
P
L

0

40

80

120

160

0 1 2 3 4 5 6 7 8 9

(b
)
M
M
08

0

40

80

120

160

0 1 2 3 4 5 6 7 8 9

(c
)
P
re
va
y
le
r

0

200

400

600

0 1 2 3 4 5 6 7 8 9

(d
)
L
am

p
ir
o

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8 9

(e
)
B
er
ke
le
y
D
B

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9

Fig. 11. Histogram showing the distribution of number of distinct valid methods per
numbers of features in a method. The x-axis plots the number of features in a method
(with the maximum such in bold face). The y-axis plots the number of distinct valid
methods; e.g., Graph PL has one method with 106 valid (out of 29 = 512 potential)
configurations which alone account for the entire rightmost bar in Fig. 11(a).

JVM for the experiment) and 10MB of level three cache. The operating system
is Linux Mint 13 with kernel 3.2.0-23-generic.

7.2 Results and Discussion of A0 vs. A1 vs. A2 vs. A3

We now present the results3 obtained from our empirical study. We first present
and discuss our results pertaining to the sum of analyzing all configurations for
each SPL. First, we look at total time (incl. compilation), then at the analysis-

time only (excl. compilation). Hereafter, we will investigate the analyses more
closely and use our insights to combine the analyses so as to obtain an even
faster combined analysis. Finally, we look at caching and memory consumption
characteristics of our analyses. All times are given as the sum (for all methods)
of the median of ten runs.

Total Time: Figure 12 plots the total time (including compilation) of the
reaching definitions analysis on each of our five benchmarks where we use the
feature-oblivious brute-force analysis, A0, as a baseline. For A0, the total time
is shown in black whereas the feature-sensitive analyses, A1 to A3 are plotted
in dark gray, light gray, and white, respectively. The percentages below the

3 Results are available at: http://twiki.cin.ufpe.br/twiki/bin/view/SPG/EmergentAndDFA

Intraprocedural Dataflow Analysis for Software Product Lines 25

(a
)
G
ra
p
h
P
L

0

100

200

300

400

500

A0

100%

A1

25%

A2

15%

A3

14%

msec

(b
)
M
M
08

0

100

200

300

400

500

A0

100%

A1

36%

A2

29%

A3

28%

msec

(c
)
P
re
va
y
le
r

0

50

100

150

200

A0

100%

A1

84%

A2

83%

A3

84%

msec

(d
)
L
am

p
ir
o

0

1000

2000

3000

A0

100%

A1

103%

A2

107%

A3

106%

msec

(e
)
B
er
ke
le
y
D
B

0

2000

4000

6000

A0

100%

A1

40%

A2

36%

A3

35%

msec

Fig. 12. Total time: A0 (black) vs. A1 (dark gray) vs. A2 (light gray) vs. A3 (white).

histograms are given in relation to the speed of the baseline analysis, A0. All
times comprise the tasks outlined in Figure 9 (except preprocessing in the case
of A0). For each method, the time computed for A0 is the average of the slowest
and fastest configuration multiplied with the number of valid configurations.
We have to do this estimation because several configurations, although valid
according to the feature model, generate code that does not compile. Also, since
the CIDE API does not currently provide an efficient way of getting the color of
a line, we omit the time of this calculation from the CFG instrumentation time.

We see that for Lampiro in which most methods are normal featureless ones,
the analyses are, as expected, all fairly equal in speed. This is because most of
the analysis effort is spent on conventional featureless methods (cf. the white bar
of Figure 11). For Prevayler which has low feature usage, the feature-sensitive
approaches are all fairly equal in speed; around 15% faster than A0. The feature-
sensitive analyses all save time on its many two-configuration methods which
they, unlike A0, do not have to compile in two variants. On the SPLs with
higher feature usage (MobileMedia08, BerkeleyDB, and especially Graph PL),
the analyses A1 to A3 are all substantially faster than A0 as they do not have
to compile methods with many configurations in all possible variants.

We see that the gain factor of A3 relative to A0 on each SPL is: 7.3 for
Graph PL; 3.5 for MobileMedia08; 2.9 for BerkeleyDB; 1.2 for Prevayler; and,
not surprisingly, close to one (0.94) for Lampiro. So for SPLs with high feature
usage, we have a speed up of about seven, about three on SPLs with moderate
feature usage, and around one for SPLs with low feature usage.

The reason for the drastic speed-up is compilation overhead in that A0 has
to compile each method in every single valid configuration (see Figure 9). On

26 Intraprocedural Dataflow Analysis for Software Product Lines

the other hand, A1 to A3 only need to compile each method once to obtain the
instrumented CFG on which the analyses operate, even if multiple analyses are
subsequently performed. In the following, we will thus focus on the times of the
analyses themselves; i.e., without compilation and instrumentation.

(a
)
G
ra
p
h
P
L

0

20

40

60

80

A1

100%

A2

36%

A3

31%

msec

(b
)
M
M
08

0

20

40

60

80

A1

100%

A2

48%

A3

43%

msec

(c
)
P
re
va
y
le
r

0

10

20

30

40

A1

100%

A2

95%

A3

101%

msec

(d
)
L
am

p
ir
o

0

500

1000

1500

2000

2500

A1

100%

A2

105%

A3

104%

msec

(e
)
B
er
ke
le
y
D
B

0

200

400

600

800

A1

100%

A2

66%

A3

59%

msec

Fig. 13. Analysis-only time: A1 (dark gray) vs. A2 (light gray) vs. A3 (white).

Analysis-Time Only: Figure 13 plots the analysis-time only of running the
reaching definitions analysis on all configurations of all methods (i.e., excluding
compilation). Obviously, we retain the same pattern for the feature-sensitive
analyses as in Figure 12, but we now plot A1 as a baseline making it easier to
compare the analyses A1 to A3. For Lampiro and Prevayler with low feature
usage, we see little difference between the speed of the analyses. For the SPLs
with higher feature usage (MobileMedia08, BerkeleyDB, and Graph PL), we see
that A2 is between a third and two thirds faster than A1; and we see that A3
is slightly faster than A2.

As we shall see, the speed difference between the analyses will increase with
the number of valid configurations of a method. A2 is faster than A1 on many-
configuration methods because it has better cache properties; and, A3 is faster
than A2 on such methods because it can share information between its configu-
rations and hence avoid computations.

In fact, if we look at the method with the highest number of configurations
in our benchmarks (Vertex.display() in Graph PL which has 106 valid config-
urations and accounts for 63% of the A1 analysis time on that entire SPL), A2
is five times faster than A1. A3 is in turn three times faster than A2 and thereby
15 times faster than A1. This method has many equivalent configurations that

Intraprocedural Dataflow Analysis for Software Product Lines 27

are indistinguishable by #ifdefs (i.e., for which the same #ifdef blocks apply).
The sharing can thereby avoid many redundant basic transfer function compu-
tations. Here, A1 would have to execute the fixed-point algorithm 106 times,
feching and re-feching the same data for each statement over and over.

Recall that A2 in principle has to do as many fixed-point iterations as are
needed for the slowest converging configuration, unnecessarily reiterating already
converged configurations. Our data, however, indicates that this is not a problem
in practice. In the analysis,A2 only executes as little as 0.21% more basic transfer
functions than A1 on BerkeleyDB; only 0.06% more on Graph PL; and virtually
0% more on Lampiro, MobileMedia08, and Prevayler.

Beyond the Sum of All Methods: So far, the discussion has focused on the
sum of the time for analyzing all methods in each given SPL. By looking at the
data for each method in isolation, we can see that the feature sensitive approaches
behave differently for different kinds of methods. A number of factors have an
effect on the performance of our approaches; including: number of configurations,
number of statements, and the number of assignments (relevant for reaching
definitions).

Knowledge on which analyses are good under what conditions may allow us
to use heuristics to combine the analyses to obtain a combined analysis strategy
which is even faster than any of A1 to A3, individually. We will now investigate
one factor, namely the number of configurations as a predictor of which analysis
is fastest and see if the differences between A1 to A3 are statistically significant.
In the following, we deliberately exclude a benchmark, Prevayler, from our
studies so that we may subsequently use it to evaluate our heuristics on a fresh
SPL in an unbiassed manner. We decided to do this to increase confidence that
the lessons learned and heuristics constructed are not merely coincidental on our
data set and will be applicable to other SPLs as well. When we look at which
analyses are best on which methods, interesting information emerges.

|ψFM| N A1:A1 A1:A2 A1:A3 Fastest

106 1 1.00 5.15 15.1
[20..72] 11 1.00 4.17 10.5
[12..18] 24 1.00 3.36 6.19 A3

8 27 1.00 2.97 3.81
6 19 1.00 2.49 3.11
5 4 1.00 2.11 2.55
4 212 1.00 1.84 1.83
3 60 1.00 1.67 1.54 A2
2 1,158 1.00 1.30 1.12
1 4,452 1.00 0.83 0.75 A1

Fig. 14. Fastest analysis of A1 vs. A2 vs. A3 according to number of configurations
(average speed ratios in relation to A1, for methods of all SPLs, excluding Prevayler).

28 Intraprocedural Dataflow Analysis for Software Product Lines

Figure 14 compares the speed of A1 vs. A2 vs. A3 on all methods of the five
SPLs according to varying number of valid configurations. |ψFM| is the number
of valid configurations and N is the number of methods in all SPLs with that
particular configuration count. The next three columns give the average speed
ratio for each analysis in relation to A1 and the final column declares the fastest
analysis as the winner (the analysis with the highest ratio, shown in bold face).

For methods with only one configuration, A2 and A3, as expected, incur an
overhead penalty, compared to A1. For methods with two to four configurations,
we see that A2 is the fastest analysis (although there is practically no difference
on four configurations). On methods with more than four configurations, A3
seems to be the fastest. Also, we see a clear tendency for A2, and especially A3,
to accelerate relative to A1 as the number of configurations increase. We also
note that the relationship between the ratios and the number of configurations is
non-linear, so we cannot mix data across number of configurations when testing
for statistical significance.

Not surprisingly, A1 is best when considering all methods in all SPLs (ex-
cluding Prevayler) with one configuration; it outperforms A2 and A3 on 94%
and 96% of the methods, respectively. However, when we consider methods with
more than one configuration, A2 and A3 perform better than A1 on 94% and
72% of the methods, respectively.

To further support our claim that A1 performs differently than A2, respec-
tively, A3, we execute the Wilcoxon paired difference test. We use this statistical
test rather than a t-test because our data is not normally distributed. If we sub-
scribe to the common convention of using a 95% confidence interval (α = 0.05),
we are able to reject the null hypothesis that A1 = A2, respectively, A1 = A3
when comparing the data for methods with one configuration. Similarly, we get
statistical significant differences when comparing A1 vs. A2 and in turn A3 on
methods with two configurations. In conclusion, A1 is statistically significantly
better on one-configuration methods than A2 and A3 and worse on the other
methods.

When repeating this experiment on A2 vs. A3, we are able to ascertain that
the speed of two analyses are statistically significantly different on all groups of
methods of n configurations, for all values of n, except n = 4, where we get a
p-value of 0.45 > α.

This is also backed up by empirical evidence that A2 perform better than A3
on 76% of methods with less than four configurations. Conversely, A3 is better
than A2 on 93% of the methods with more than four configurations. Finally, and
perhaps most interestingly, on the 212 methods with exactly four configurations,
A2 wins on 105 methods while A3 wins on 107; i.e., we get an almost 50 : 50
probability (we, in fact, get 49.5 : 50.5).

In conclusion, we have demostrated statistically significant difference between
our analyses apart from A2 vs. A3 on methods with four configurations where
it does not seem to matter which of the analyses we select.

Intraprocedural Dataflow Analysis for Software Product Lines 29

Combining the Analyses: In intraprocedural analysis, methods are analyzed
individually, one at a time, which means that we can easily analyze different
methods using different analyses. The following analysis strategy, A*, select the
fastest analysis (according to the lessons learned and Figure 14) depending on
the number of configurations, n, when analyzing a particular method:

A*(n) =






A1 n = 1

A2 1 < n ≤ 4

A3 4 < n

We somewhat arbitrarily chose to select A2 on methods with four configura-
tions, but we might as well have chosen A3 as the difference is not statistically
significant on such methods.

(a
)
G
ra
p
h
P
L

0

20

40

60

80

A1

100%

A2

36%

A3

31%

A*
27%

msec

(b
)
M
M
08

0

20

40

60

80

A1

100%

A2

48%

A3

43%

A*
41%

msec

(c
)
P
re
va
y
le
r

0

10

20

30

40

A1

100%

A2

95%

A3

101%

A*
84%

msec

(d
)
L
am

p
ir
o

0

500

1000

1500

2000

2500

A1

100%

A2

105%

A3

104%

A*
99%

msec
(e
)
B
er
ke
le
y
D
B

0

200

400

600

800

A1

100%

A2

66%

A3

59%

A*
57%

msec

Fig. 15. Effectiveness of the combined Analysis: A* (shown in black).

Figure 15 plots the effectiveness of this new combined analysis A* against the
analyses A1 to A3. As expected, this leads to a slightly more efficient analyses.
In fact, we observe that A* is consistently faster than each of its constituent
analyses, on all our benchmarks. We even see improvements on our fresh SPL,
Prevayler (cf. Figure 15(c)), that we deliberately excluded from the study when
devising A*. Of course, this SPL only has one method with 8 configurations, so
it does not exercise A3 a lot. Even so, it increases the confidence that our lessons
learned, and A*, in particular, are, at least to some extent stable and not merely
coincidental.

The gain factors for A* relative to A0 are thus: 7.6 on Graph PL; 3.6 on
MobileMedia08, 2.9 on BerkeleyDB; 1.2 on Prevayler; and 1.0 on Lampiro.
In the end, we go from about three times faster on Graph PL with A3 (31%)

30 Intraprocedural Dataflow Analysis for Software Product Lines

compared to A1, to about four times faster with A* (27%). Compared to A0,
its average gain factor across our five benchmarks is now 3.3 and, for Graph PL,
we now obtain a gain factor of almost eight with A*.

On Caching and Data Locality: When looking at the methods with more
than one configuration in Figure 14, we see that A2 is consistently faster than
A1. We claim that this is due to data locality and caching issues. In A2, base
lattice values are represented as a list structure and processed in sequence
on statement nodes of the CFG along with their associated information (e.g.,
the configuration-set instrumentation and other relevant data stored for the
fixed-point computation). In terms of caching, this is better strategy than A1
which scatter computations and values across independent configuration runs,
re-loading the same information over and over for every configuration.

Cache enabled: Cache disabled:

Benchmark A1 A2 A1:A2 A1 A2 A1:A2

Graph PL 38K 59K 1 : 1.5 139K 91K 1 : 0.7

MM08 43K 37K 1 : 0.9 125K 68K 1 : 0.5

Prevayler 317 371 1 : 1.2 1.1K 0.7K 1 : 0.6

Lampiro n/a n/a n/a n/a n/a n/a

BerkeleyDB 303K 341K 1 : 1.1 972K 567K 1 : 0.6

Fig. 16. Number of cache misses in A1 vs. A2 when analyzing methods with more
than four configurations, under two different caching schemes: cache enabled (normal
usage) vs. cache disabled (simulated cacheless scenario).

Figure 16, plots the cache misses of A1 vs. A2 when analyzing methods
beyond four configurations under two different caching schemes. First, the “nor-
mal condition” where caching is enabled. Second, in a simulated cacheless sce-
nario where we artificially disable caching by filling up the level three cache by
traversing (and thereby loading into the cache) an 10MB bogus array prior to
the execution of each transfer function. We see that A1 generally incurs more
cache misses than A2 (except on MobileMedia08). However, the figure reveals
that disabling caching indeed hurts A1 more than A2, presumably since data
now has to be re-loaded on every configuration iterations of A1. We take this as
indication that A2 has better cache properties than A1.

On Memory Consumption of Analyses: Figure 17 lists the space consump-
tion of the lattice information occupied by the analyses A1 to A3. The units
for A1 to A3 are given as the number of assignments in the reaching definitions
base lattice values (e.g., |{x=1, y=2, z=4}| = 3). For each SPL, we give numbers
for the method with the highest number of configurations and the highest A2
count (which for Graph PL and BerkeleyDB coincide).

If we compare the memory usage of A1 and A2, we see that A2 takes up
more memory (except, of couse, on featureless methods). Generally, it uses close

Intraprocedural Dataflow Analysis for Software Product Lines 31

Benchmark Max. memory consuming method |ψFM| A1 A2 A3 A1:A2 A2:A3

Graph PL Vertex.display() 106 8.7K 569K 160K 1 : 65 3.5 : 1

MM08 MediaController.handleCommand() 20 12K 204K 146K 1 : 17 1.4 : 1

MM08 MediaListScreen.initMenu() 24 792 12K 8.3K 1 : 15 1.5 : 1

Prevayler P’J’.recoverPendingTransactions() 2 3.9K 7.1K 6.9K 1 : 1.8 1.0 : 1

Prevayler PrevaylerFactory.publisher() 8 102 423 174 1 : 4.1 2.4 : 1

Lampiro Inftree.clinit() 1 3.2M 3.2M 3.2M 1 : 1.0 1.0 : 1

Lampiro RegisterScreen.xmppLogin() 4 7.7K 31K 14K 1 : 4.0 2.1 : 1

BerkeleyDB DbRunAction.main() 40 36K 1.2M 614K 1 : 33 2.0 : 1

Fig. 17. Memory consumption of lattice information: A1 vs. A2 vs. A3.

to (although slightly less than) the number of valid configurations times more
memory. This is consistent with our expectations from Section 6. Excess memory
consumption has not been a problem on any of our five benchmarks.

We also see that the memory usage is reduced with the sharing of A3. The
shared analysis A3 may reduce space usage anywhere between a factor of one
to about 3.5 (in the case of Vertex.display() of Graph PL), depending on the
number of configurations.

8 Related Work

Data-Flow Analysis: The idea of making dataflow analysis sensitive to state-
ments that may or may not be executed is related to path-sensitive dataflow
analysis. Such analyses compute different analysis information along different
execution paths aiming to improve precision by disregarding spurious informa-
tion from infeasible paths [37] or to optimize frequently executed paths [38].
Earlier, disabling infeasible dead statements has been exploited to improve the
precision of constant propagation [39] by essentially running a dead-code analysis
capable of tagging statements as executable or non-executable during constant
propagation analysis.

Predicated dataflow analysis [40] introduced the idea of using propositional
logic predicates over runtime values to derive so-called optimistic dataflow values
guarded by predicates. Such analyses are capable of producing multiple analysis
versions and keeping them distinct during analysis much like our simultaneous
analyses. However, their predicates are over dynamic state rather than SPL
feature constraints for which everything is statically decidable.

The novelty in our paper is the application of the dataflow analysis framework
to the domain of SPLs giving rise to the concept of feature-sensitive analyses
that take conditionally compiled code and feature models into consideration so
as to analyze not one program, but an entire SPL family of programs.

Analysis of SPLs: Recently and inspired by our work, Bodden proposed [11] a
mechanism for encoding dataflow analyses specified via the IFDS framework [42]
in a graph representation using the more general IDE analysis framework [43]
and use that to add SPL configurations on top of the analysis, thereby essentially

32 Intraprocedural Dataflow Analysis for Software Product Lines

“lifting” an IFDS dataflow analysis. The idea has not yet been evaluated. Inter-
estingly, all of our analysis approaches A1 to A4 apply equally to that context
and insights from this paper could benefit in that work.

Thüm et al. survey analysis strategies for SPLs [29], focusing on parsing [12],
type checking [13, 44], model checking [45, 46], and verification [20, 47, 21]. The
surveyed work does not include product line dataflow analysis approaches, but
shares with our work the general goal of checking properties of a product line with
reduced redundancy and efficiency. Similar to our work, a number of approaches
covered by the survey adopt a family-based analysis strategy, manipulating only
family artifacts such as code assets and feature model as in our feature-sensitive
analyses, A1 to A4. Contrasting, product-based strategies, such as the A0 brute-
force generate-and-analyze approach we use as baseline, manipulate products
and therefore might be too expensive for product lines having a large number of
products. Product-based strategies, however, might be appealing because they
can simply reuse existing analyses.

In SPLs, there are features whose presence or absence do not influence the
test outcomes, which makes many feature combinations unnecessary for a par-
ticular test. This idea of selecting only relevant features for a given test case
was proposed in a recent work [41]. It uses dataflow analysis to recover a list of
features that are reachable from a given test case. The unreachable features are
discarded, decreasing the number of combinations to test. In contrast, we defined
and demonstrated how to automatically make any conventional dataflow anal-
ysis able to analyze product lines in a feature-sensitive way. Thus, our feature-
sensitive idea might be used in such a work (testing). For example, it might
further reduce the time spent figuring out which relevant feature combinations
to test.

Safe composition (SC) relates to the safe generation and verification of prop-
erties for SPL assets providing guarantees that the product derivation process
generates products with properties that are obeyed [13, 44, 32, 31, 35]. Safe com-
position may help in finding type and definition-usage errors like undeclared
variables, undeclared fields, multiply declared variables, unimplemented abstract
methods, or ambiguous methods. We complement safe composition, since when
using our feature-sensitive idea, we are able to catch any errors expressible as a
dataflow analysis (e.g., uninitialized variables and null pointers).

In the parsing context, Kaestner et al. [12] provide a variability-aware parser
which is capable of parsing code without preprocessing it. The parser also per-
forms instrumentation as we do, but on tokens, instead of statements. When
the parser reaches a token instrumented with feature A, it splits into branches.
Then, one parser assumes that feature A is selected and another assumes that
A is not. So, the former consumes the token and the latter skips it. To avoid
parsing tokens repeatedly (like a parenthesis instrumented with no feature), the
branches are joined. This approach is similar to our shared simultaneous anal-
yses A3 and A4, where we lazily split and merge sets of configurations. In the
verification context, Thüm et al. [36] show how to formally prove that contracts
are satisfied by a product line implementation. They also report significant re-

Intraprocedural Dataflow Analysis for Software Product Lines 33

duction, but not as much as we discuss here in the paper, of the verification time
for a small example.

Classen et al. [45, 21] shows that behavioral models offer little means to relate
different products and their respective behavioral descriptions. To minimize this
limitation, they present a transition system to describe the combined behavior of
an entire SPL. Additionally, they provide a model checking technique supported
by a tool capable of verifying properties for all the products of an SPL once. Like
our work, they claim that checking all product combinations at once instead of
each product separately is faster. Their model checking algorithm was on average
3.5 times faster than verifying products separately which is comparable to our
results. A related approach for model checking of product lines [33] proposes a
process algebra extension to represent variability, but brings no performance re-
sults. Similarly, Lauenroth et al. [34] focus on extending I/O-automata, bringing
preliminar feasibility performance results.

We recently proposed the concept of emergent interfaces [6]. These interfaces
emerge on demand to give support for specific SPL maintenance and thus help
developers understand and manage dependencies between features. Feature de-
pendencies such as assigning a value to a variable used by another feature, have
to be generated by feature-sensitive analyses. Thus, our present work may be
used to generate emergent interfaces to support SPL maintenance. Our analyses
are more efficient than the brute-force approach, which is important to improve
the performance during the computation of emergent interfaces.

9 Conclusion

In this paper, we presented four approaches for taking any conventional dataflow
analysis and automatically lifting it into a feature-sensitive analysis, A1 to A4,
capable of analyzing all configurations of an SPL without having to generate all
its products explicitly.

To evaluate these approaches, we applied them to the ubiquitous reach-
ing definitions dataflow analysis and lifted it to produce four different feature-
sensitive analyses. Experimental validation of three of these indicated that the
feature-sensitive approaches were significantly faster than the naive brute-force
approach, especially for SPLs with intensive feature usage.

When investigating closer, we found that the number of configurations may
serve as a predictor for which of the analyses A1 to A3 that is likely to be the
fastest. The consecutive approach (A1) was statistically significantly faster on
methods with only one configuration as A2 and A3 incur an overhead penalty
from representing analysis values as a list of one, respectively, a set of one ele-
ment. The simultaneous approach (A2) was statistically significantly fastest on
methods with two to three configurations. On methods with four configurations,
there was no significant difference between A2 and A3. Finally, on methods be-
yond four configurations, the shared approach (A3) was the fastest because it
can share values among configurations and thereby avoid redundant computa-
tions.

34 Intraprocedural Dataflow Analysis for Software Product Lines

We then combined these insights into an interprocedurally combined analysis
strategy, A*, which uses the number of configurations of each method analyzed
as a predictor for attempting to select the fastest analysis for the method. Not
surprisingly, this analysis was faster than its individual constituent analyses.
This was even true on a fresh SPL which we did not use in the analysis and
construction of the A* strategy. Hence, we have an indication that our insights
and results may apply and transfer to other SPLs.

On our biggest SPL, which also took the longest to analyze, BerkeleyDB, we
were able to cut the total analysis time from 5.4 to 1.8 seconds, compared to
the existing brute-force generate-and-analyze alternative. On our most feature-
intensive benchmark, Graph PL, we were able to reduce the total analysis time
from almost 500 msec to 63 msecs (i.e., an improvement close to an order of
magnetude). On average over the benchmarks, our analysis strategy is 3.3 times
faster than the existing feature-oblivious alternative.

We futher conclude that our four feature-sensitive approaches (A1 to A3)
have different performance and memory consumption characteristics.

Acknowledgments. We would like to thank CNPq, FACEPE, and National In-
stitute of Science and Technology for Software Engineering (INES), for partially
supporting this work. Also, we thank SPG4 members for the fruitful discussions
about this paper. We also thank Julia Lawall and the anonymous reviewers for
many comments and suggestions that helped improve this paper.

References

1. K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

2. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

3. C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines,”
in Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), (Leipzig, Germany), pp. 311–320, ACM, 2008.

4. B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan, “Can we refactor con-
ditional compilation into aspects?,” in Proceedings of the 8th ACM international
conference on Aspect-oriented software development (AOSD’09), (Charlottesville,
Virginia, USA), pp. 243–254, ACM, 2009.

5. G. A. Kildall, “A unified approach to global program optimization,” in Proceed-
ings of the 1st annual ACM symposium on Principles of programming languages
(POPL’73), (Boston, Massachusetts), pp. 194–206, ACM, 1973.

6. M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba, “Emergent feature modular-
ization,” in Onward! 2010, affiliated with the 1st ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for
Humanity (SPLASH’10), (Reno, NV, USA), pp. 11–18, 2010.

7. M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

4 http://www.cin.ufpe.br/spg

Intraprocedural Dataflow Analysis for Software Product Lines 35

8. F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Secau-
cus, USA: Springer-Verlag, 1999.

9. C. Kästner, S. Apel, and M. Kuhlemann, “A model of refactoring physically and
virtually separated features,” in Proceedings of the eighth international conference
on Generative programming and component engineering, GPCE ’09, (New York,
NY, USA), pp. 157–166, ACM, 2009.

10. C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba, “Intraprocedural dataflow
analysis for software product lines,” in AOSD, pp. 13–24, 2012.

11. E. Bodden, “Position Paper: Static flow-sensitive & context-sensitive information-
flow analysis for software product lines,” in ACM SIGPLAN Seventh Workshop on
Programming Languages and Analysis for Security (PLAS 2012), jun 2012.

12. C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger,
“Variability-aware parsing in the presence of lexical macros and conditional com-
pilation,” in Proceedings of the ACM International Conference on Object-Oriented
Programming Systems Languages and Applications (OOPSLA’11), (Portland, OR,
USA), pp. 805–824, ACM, 2011.

13. S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer, “Type safety for feature-
oriented product lines,” Automated Software Engineering, vol. 17, pp. 251–300,
September 2010.

14. H. Spencer and G. Collyer, “#ifdef considered harmful, or portability experience
with C news,” in Proceedings of the Usenix Summer 1992 Technical Conference,
(Berkeley, CA, USA), pp. 185–198, Usenix Association, June 1992.

15. M. Krone and G. Snelting, “On the inference of configuration structures from
source code,” in Proceedings of the 16th International Conference on Software En-
gineering (ICSE’04), (Los Alamitos, CA, USA), pp. 49–57, IEEE Computer, 1994.

16. M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of c prepro-
cessor use,” IEEE Transactions on Software Engineering, vol. 28, pp. 1146–1170,
December 2002.

17. J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis of the
variability in forty preprocessor-based software product lines,” in Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering (ICSE’10),
(Cape Town, South Africa), pp. 105–114, ACM, 2010.

18. C. Kästner, Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD thesis,
University of Magdeburg, Germany, May 2010.

19. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
Oriented Domain Analysis (FODA) feasibility study,” tech. rep., Carnegie-Mellon
University Software Engineering Institute, November 1990.

20. H. Post and C. Sinz, “Configuration lifting: Verification meets software configu-
ration,” in Proceedings of the 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE’08), (L´Aquila, Italy), pp. 347–350, IEEE
Computer Society, 2008.

21. S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “Detection
of feature interactions using feature-aware verification,” in Proceedings of the
26th IEEE/ACM International Conference on Automated Software Engineering
(ASE’11), (Lawrence, USA), IEEE Computer Society, November 2011.

22. K. Czarnecki and K. Pietroszek, “Verifying feature-based model templates against
well-formedness ocl constraints,” in Proceedings of the 5th international conference
on Generative programming and component engineering, GPCE ’06, (New York,
NY, USA), pp. 211–220, ACM, 2006.

23. S. B. Akers, “Binary decision diagrams,” IEEE Transactions on Computers, vol. 27,
pp. 509–516, June 1978.

36 Intraprocedural Dataflow Analysis for Software Product Lines

24. N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and automatic
program generation. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

25. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot -
a java bytecode optimization framework,” in Proceedings of the 1999 conference of
the Centre for Advanced Studies on Collaborative research (CASCON’99), pp. 13–,
IBM Press, 1999.

26. “The colt project: Open source libraries for high performance scientific and tech-
nical computing in java.” CERN: European Organization for Nuclear Research.

27. E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia,
S. Soares, F. Ferrari, S. Khan, F. C. Filho, and F. Dantas, “Evolving software
product lines with aspects: an empirical study on design stability,” in Proceedings
of the 30th International Conference on Software Engineering (ICSE’08), (Leipzig,
Germany), pp. 261–270, ACM, 2008.

28. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in software engineering: an introduction. Kluwer Academic Publishers,
2000.

29. T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake, “Anal-
ysis strategies for software product lines,” tech. rep., School of Computer Science,
University of Magdeburg, Germany, 2012. Technical Report FIN-004-2012.

30. S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “Detection of fea-
ture interactions using feature-aware verification,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
’11, (Washington, DC, USA), pp. 372–375, IEEE Computer Society, 2011.

31. B. Delaware, W. R. Cook, and D. Batory, “Fitting the pieces together: a machine-
checked model of safe composition,” in Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering, ESEC/FSE ’09, (New York, NY,
USA), pp. 243–252, ACM, 2009.

32. S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition of product
lines,” in Proceedings of the 6th international conference on Generative program-
ming and component engineering, GPCE ’07, (New York, NY, USA), pp. 95–104,
ACM, 2007.

33. A. Gruler, M. Leucker, and K. D. Scheidemann, “Modeling and model checking
software product lines,” in FMOODS, pp. 113–131, 2008.

34. K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain artifacts
in product line engineering,” in Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’09, (Washington, DC,
USA), pp. 269–280, IEEE Computer Society, 2009.

35. C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-based
product lines,” ACM Trans. Softw. Eng. Methodol., vol. 21, pp. 14:1–14:39, July
2012.

36. T. Thüm, I. Schaefer, M. Hentschel, and S. Apel, “Family-based deductive verifica-
tion of software product lines,” in Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, GPCE ’12, (New York,
NY, USA), pp. 11–20, ACM, 2012.

37. T. Ball and S. K. Rajamani, “Bebop: a path-sensitive interprocedural dataflow
engine,” in PASTE’01, (Snowbird, Utah, USA), pp. 97–103, 2001.

38. G. Ammons and J. R. Larus, “Improving data-flow analysis with path pro-
files,” in Programming Language Design and Implementation (PLDI’98), (Mon-
treal, Canada), pp. 72–84, 1998.

Intraprocedural Dataflow Analysis for Software Product Lines 37

39. M. N. Wegman and F. K. Zadeck, “Constant propagation with conditional
branches,” ACM Transactions on Programming Languages and Systems, vol. 13,
pp. 181–210, April 1991.

40. S. Moon, M. W. Hall, and B. R. Murphy, “Predicated array data-flow analysis for
run-time parallelization,” in Proceedings of the 12th International Conference on
Supercomputing (ICS’98), (Melbourne, Australia), pp. 204–211, ACM, 1998.

41. C. Hwan, P. Kim, D. Batory, and S. Khurshid, “Reducing combinatorics in testing
product lines,” in Proceedings of the 10th International Conference on Aspect-
oriented Software Development (AOSD’11), (Porto de Galinhas, Brazil), pp. 57–68,
ACM, 2011.

42. T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via
graph reachability,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’95, (New York, NY, USA),
pp. 49–61, ACM, 1995.

43. M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow analysis with
applications to constant propagation,” in Selected papers from the 6th international
joint conference on Theory and practice of software development, TAPSOFT ’95,
(Amsterdam, The Netherlands, The Netherlands), pp. 131–170, Elsevier Science
Publishers B. V., 1996.

44. C. Kästner and S. Apel, “Type-checking software product lines - a formal ap-
proach,” in Proceedings of the 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE’08), (L’Aquila, Italy), pp. 258–267, 2008.

45. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin, “Model
checking lots of systems: efficient verification of temporal properties in software
product lines,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE ’10), (Cape Town, South Africa), pp. 335–344,
ACM, 2010.

46. A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic model checking
of software product lines,” in ICSE, pp. 321–330, 2011.

47. C. H. P. Kim, E. Bodden, D. Batory, and S. Khurshid, “Reducing configurations to
monitor in a software product line,” in 1st International Conference on Runtime
Verification (RV), vol. 6418 of LNCS, (Malta), Springer, November 2010.

