Distance Sensitive Bloom Filters
without false negatives

Mayank Goswami†, Rasmus Pagh◊
Francesco Silvestri◊ & Johan Sivertsen◊

†‡

max planck institut
informatik

IT UNIVERSITY OF COPENHAGEN

August 23, 2016
Approximate membership

Given a set \(S \) of vectors from \(\{0, 1\}^d \) we want a datastructure that when queried with some \(q \in \{0, 1\}^d \) will answer:

- 'yes' if \(q \in S \)
- 'no' if \(q \notin S \) w.p. \(> 1 - \epsilon \)

Solved by Bloom filters [Bloom, ’70] using space \(O(n \log \frac{1}{\epsilon}) \).
Optimal for approximate membership testing [Carter et al., ’78].
Approximate membership

Given a set S of vectors from $\{0, 1\}^d$ we want a datastructure that when queried with some $q \in \{0, 1\}^d$ will answer:

- 'yes' if $q \in S$
- 'no' if $q \notin S$ w.p. $> 1 - \epsilon$

Solved by Bloom filters[Bloom,'70] using space $O\left(n \log \frac{1}{\epsilon}\right)$. Optimal for approximate membership testing[Carter et al.,'78].
Distance Sensitive Approximate membership

Given a set S of vectors from $\{0, 1\}^d$ an approximation factor c and a radius r we want a data structure that when queried with some $q \in \{0, 1\}^d$ it will answer:

- 'yes' if $D(q, S) \leq r$
- 'no' if $D(q, S) > cr$ w.p. $> 1 - \epsilon$
Distance Sensitive Approximate membership

Given a set S of vectors from $\{0, 1\}^d$ an approximation factor c and a radius r we want a data structure that when queried with some $q \in \{0, 1\}^d$ it will answer:

- 'yes' if $D(q, S) \leq r$
- 'no' if $D(q, S) > cr$ w.p. $> 1 - \epsilon$

Figure: For intuition only, the box represents $\{0, 1\}^d$
Prior Work

Prior work on based on Locality Sensitive Hashing:

- Mitzenmacher & Kirsch ['06]
- Hua et. al. ['12]
Prior Work

Prior work on based on Locality Sensitive Hashing:

- Mitzenmacher & Kirsch ['06]
- Hua et. al. ['12]

False negatives
Bloom filters in practice

'No' → common, continue:

'Yes' → rare, check further

Query time
Overview

1. Upper bound for $c = O(1)$
2. Lower bound

Also in the paper: Average guarantees, Upper bound for all settings of c.
Basic idea

Consider two vectors x, y from $\{0, 1\}^d$. We take the dot product with a random vector from $z \in \{-1, 1\}^d$:

$$z \cdot (x - y) \leq r$$

If $\|x - y\|_1 \geq cr$:

$$\Pr[|z \cdot (x - y)| > r] > f(c)$$
Basic idea

Consider two vectors x, y from $\{0, 1\}^d$. We take the dot product with a random vector from $z \in \{-1, 1\}^d$:

$$z \cdot x - z \cdot y = z \cdot (x - y)$$
Basic idea

Consider two vectors x, y from $\{0, 1\}^d$. We take the dot product with a random vector from $z \in \{-1, 1\}^d$:

$$z \cdot x - z \cdot y = z \cdot (x - y)$$

If $\|x - y\|_1 \leq r$:

$$z \cdot (x - y) \leq r$$
Basic idea

Consider two vectors x, y from $\{0, 1\}^d$. We take the dot product with a random vector from $z \in \{-1, 1\}^d$:

$$z \cdot x - z \cdot y = z \cdot (x - y)$$

If $\|x - y\|_1 \leq r$:

$$z \cdot (x - y) \leq r$$

If $\|x - y\|_1 \geq cr$:

$$\Pr[|z \cdot (x - y)| > r] > f(c)$$
The signature method

Construction of the random matrix M of size $m \times d$ (m to be defined). View M as the result of d updates, each adding some value from $\{-1, 1\}$:

Example:

\[
\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 \\
\end{array}
\]

M, Initial state.
The signature method

Construction of the random matrix M of size $m \times d$ (m to be defined). View M as the result of d updates, each adding some value from $\{-1, 1\}$:

Example:

\[
\begin{array}{cccccc}
\uparrow \\
0 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 \\
\end{array}
\]

M, Update 1
The signature method

Construction of the random matrix M of size $m \times d$ (m to be defined). View M as the result of d updates, each adding some value from $\{-1, 1\}$:

Example:

\[
\begin{array}{ccccccc}
0 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & -1 & \ldots & 0 \\
\end{array}
\]

Update 2
The signature method

Construction of the random matrix \(M \) of size \(m \times d \) (\(m \) to be defined). View \(M \) as the result of \(d \) updates, each adding some value from \(\{-1, 1\} \):

Example:

\[
\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & -1 & \ldots & 0 \\
\end{array}
\]

\(M \), Update \(d \)
Signature for $c = O(1)$

Given M and some $x \in \{0, 1\}^d$ compute the signature of x by:

$$\sigma(x)_i = (m_i \cdot x^T) \mod 2 \text{ for } i \in [m]$$
Signature for $c = O(1)$

Given M and some $x \in \{0, 1\}^d$ compute the signature of x by:

$$\sigma(x)_i = (m_i \cdot x^T) \mod 2 \text{ for } i \in [m]$$

Definition (Gaps)

The *gap vector* Γ is defined by:

$$\Gamma(x, y)_i = (\sigma(x)_i - \sigma(y)_i) \mod 2 = (M(x - y))_i \mod 2$$

And the *gap* γ by:

$$\gamma(x, y) = ||\Gamma(x, y)||_1$$
Central Properties of the signature

Definition (Gap vector)
\[\gamma(x, y)_i = \sum_{i=1}^{m} |M(x - y)_i \mod 2| \]

Theorem

For each pair of vectors \(x, y \in \{0, 1\}^d \):

1. if \(D(x, y) \leq r \) then \(\gamma(x, y) \leq r \)
2. if \(D(x, y) > cr \) then \(\Pr[\gamma(x, y) > r] > 1 - \epsilon \).
Central Properties of the signature

Definition (Gap vector)

\[\gamma(x, y)_i = \sum_{i=1}^{m} |M(x - y)_i \mod 2| \]

Theorem

For each pair of vectors \(x, y \in \{0, 1\}^d \):

1. *if \(D(x, y) \leq r \) then \(\gamma(x, y) \leq r \)
2. *if \(D(x, y) > cr \) then \(\Pr[\gamma(x, y) > r] > 1 - \epsilon \).*

Time for a *small* detour.
Data-structure outline

Store the set:

\[Z = \{\sigma(x) : x \in S\}, |Z| = O(nm) \]

Query with \(q \):
- 'yes' if \(\exists z \in Z \) such that \(D(\sigma(q), z) \leq r \)
- 'no' otherwise
Let M' be the sub-matrix formed by the columns of M corresponding to entries where $(x - y)_i \neq 0$.

Example:
Let $(x - y) = \{0, 1, 1, 0, 0, \ldots, 1\}^T$ then we get

\[
M = \begin{bmatrix}
x_{11} & x_{12} & x_{13} & \cdots & x_{1d} \\
x_{21} & x_{22} & x_{23} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & x_{m3} & \cdots & x_{md}
\end{bmatrix}
\rightarrow M' = \begin{bmatrix}
x_{12} & x_{13} & x_{1d} \\
x_{22} & x_{23} & x_{2d} \\
\vdots & \vdots & \vdots \\
x_{m2} & x_{m3} & x_{md}
\end{bmatrix}
\]

M' has $D(x, y)$ non-zero entries.
Let M' be the sub-matrix formed by the columns of M corresponding to entries where $(x - y)_i \neq 0$.

Example:

Let $(x - y) = \{0, 1, 1, 0, 0, \cdots, 1\}^T$ then we get

$$M = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1d} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & x_{m3} & \cdots & x_{md} \end{bmatrix} \rightarrow M' = \begin{bmatrix} x_{12} & x_{13} & x_{1d} \\ x_{22} & x_{23} & x_{2d} \\ \vdots & \vdots & \vdots \\ x_{m2} & x_{m3} & x_{md} \end{bmatrix}$$

M' has $D(x, y)$ non-zero entries. Back to the properties
Property 1: If $D(x, y) \leq r$ then $\gamma \leq r$

$$\gamma(x, y) = \|M(x - y) \mod 2\|_1$$
Property 1: If $D(x, y) \leq r$ then $\gamma \leq r$

$$\gamma(x, y) = \|M(x - y)\mod 2\|_1 = \|M'(x - y)\mod 2\|_1$$

- Only M' contributes
- M' has $D(x, y) \leq r$ non-zero entries
Property 1: If $D(x, y) \leq r$ then $\gamma \leq r$

$$\gamma(x, y) = \|M(x - y) \mod 2\|_1 = \|M'(x - y) \mod 2\|_1$$

- Only M' contributes
- M' has $D(x, y) \leq r$ non-zero entries
- Each entry in $(x - y)$ "hits" one entry in M'
Property 1: If $D(x, y) \leq r$ then $\gamma \leq r$

$$\gamma(x, y) = \|M(x - y) \mod 2\|_1 = \|M'(x - y) \mod 2\|_1$$

- Only M' contributes
- M' has $D(x, y) \leq r$ non-zero entries
- Each entry in $(x - y)$ "'hits'" one entry in M'

$$M'(x - y) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
Property 1: If $D(x, y) \leq r$ then $\gamma \leq r$

$$\gamma(x, y) = \| M(x - y) \mod 2 \|_1 = \| M'(x - y) \mod 2 \|_1$$

- Only M' contributes
- M' has $D(x, y) \leq r$ non-zero entries
- Each entry in $(x - y)$ ”’hits”’ one entry in M'
- $M'(x - y) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
- ”Best case” they hit in separate rows, otherwise the sum is eaten by the log.
Property 1: If \(D(x, y) \leq r \) then \(\gamma \leq r \)

\[
\gamma(x, y) = \| M(x - y) \mod 2 \|_1 = \| M'(x - y) \mod 2 \|_1 \leq r
\]

- Only \(M' \) contributes
- \(M' \) has \(D(x, y) \leq r \) non-zero entries
- Each entry in \((x - y)\) "hits" one entry in \(M' \)
- \(M'(x - y) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \)
- "Best case" they hit in separate rows, otherwise the sum is eaten by the log.

No false negatives!
Property 2: If $D(x, y) > cr$ then $\Pr[\gamma > r] > 1 - \epsilon$

Definition (Odd rows)

Let m'_i denote row i of M'. We call m'_i *odd* if it has an odd number of non-zero entries.

Claim 1: An odd row increases the gap:
Property 2: If $D(x, y) > cr$ then $\Pr[\gamma > r] > 1 - \epsilon$

Definition (Odd rows)

Let m'_i denote row i of M'. We call m'_i odd if it has an odd number of non-zero entries.

Claim 1: An odd row increases the gap:

If m_i is odd, then $M(x - y)_i = \sum_{\text{odd}} \pm 1 = \text{odd}$

so

$|M(x - y)_i \mod 2| = 1$
Property 2: If $D(x, y) > cr$ then $\Pr[\gamma > r] > 1 - \epsilon$

Claim 2: There are more than r odd rows:
Property 2: If $D(x, y) > cr$ then $\Pr[\gamma > r] > 1 - \epsilon$

Claim 2: There are more than r odd rows:
Recalling the construction of M we think of M' as the result of $D(x, y) > cr$ updates.
Let Y_0 denote the number of odd rows when there are cr updates left. There are two cases:
1. If $Y_0 > cr + r$:

\[Y_0 > cr + r \rightarrow Y_{D(x,y)} > r \]
Property 2: If $D(x, y) > cr$ then $\Pr[\gamma > r] \geq 1 - \epsilon$

2. If $Y_0 \leq cr + r$:
Let Y_{cr} denote the number of odd rows turned even in the last cr updates. So the total number of odd rows is:

$$Y_0 - Y_{cr} + (cr - Y_{cr}) \geq cr - 2Y_{cr}$$
Property 2: If \(D(x, y) > cr \) then \(\Pr[\gamma > r] \geq 1 - \epsilon \)

2. If \(Y_0 \leq cr + r \):
Let \(Y_{cr} \) denote the number of odd rows turned even in the last \(cr \) updates. So the total number of odd rows is:

\[
Y_0 - Y_{cr} + (cr - Y_{cr}) \geq cr - 2Y_{cr}
\]

Use a Chernoff bound to get:

\[
\Pr[Y_{cr} \geq (c - 1)r/2] \leq e^{-\left(\frac{(c-1)^2}{c} \frac{m}{24} - \frac{(c-1)r}{2}\right)}
\]

Now let \(m \geq 24 \frac{c^2}{c-1} \max(r; \frac{2}{c-1} \log 1/\epsilon) \) to get:

\[
\Pr[Y_{cr} < (c - 1)r/2] \geq 1 - \epsilon
\]
Property 2: If \(D(x, y) > cr \) then \(\Pr[\gamma > r] \geq 1 - \epsilon \)

2. If \(Y_0 \leq cr + r \):
 Let \(Y_{cr} \) denote the number of odd rows turned even in the last \(cr \) updates. So the total number of odd rows is:
 \[
 Y_0 - Y_{cr} + (cr - Y_{cr}) \geq cr - 2Y_{cr}
 \]

 Use a Chernoff bound to get:
 \[
 \Pr[Y_{cr} \geq (c - 1)r/2] \leq e^{-((c-1)^2 \frac{m}{24} - \frac{(c-1)r}{2})}
 \]

 Now let \(m \geq 24 \frac{c^2}{c-1} \max(r; \frac{2}{c-1} \log 1/\epsilon) \) to get:
 \[
 \Pr[Y_{cr} < (c - 1)r/2] \geq 1 - \epsilon
 \]

 So the total number of odd rows is:
 \[
 Y_0 - Y_{cr} + (cr - Y_{cr}) \geq cr - 2Y_{cr} > r
 \]
 w.p. \(> 1 - \epsilon \).
The storage is dominated by the number of rows in M:
\[m \geq 24 \frac{2c^2}{c - 1} \max(r; \frac{1}{c - 1} \log 1/\epsilon) \]

Directly determining the size of each signature. When $c \leq 2$ this gives optimal $O(n(r/c + \log 1/\epsilon))$ bits. (We used small n, $cr \leq d/2$, $\epsilon < 1/4$). More parameter settings covered in the paper.
Theorem (General bound)

For $\epsilon < 1/4$ any distance sensitive approximate membership data structure must use space:

$$\Omega \left(n \left(\frac{r^2}{d} + \log \frac{1}{\epsilon} \right) \right)$$
Lower bound

We also require $|\bigcup B(x, cr) : x \in S| < 2^{d-2}$

If

$$|\bigcup B(x, cr) : x \in S| \approx 2^d - O\left(\frac{n}{d}\right)$$

we only need space $O(n)$.
Lower bound

View the data structure as a function:

\[
\binom{\{0, 1\}^d}{n} \rightarrow \{0, 1\}^s
\]

Figure: Two examples of \(S, n = 2 \)

The boxes illustrate \(\{0, 1\}^d \)
Lower bound

Some sets share answers.

$$\left(\{0,1\}^d \right) / x \rightarrow \{0,1\}^s$$

Figure: color → 'yes', else 'no'
Lower bound

The shape covering most points is the Hamming ball (see Lemma 1).

\[
\left(\binom{\{0, 1\}^d}{n}\right)/\left(\binom{|B^- r|}{n}\right) \to \{0, 1\}^s
\]
Lower bound

We can bound the number of unique answers as:

\[
\left(\frac{n}{\binom{d}{n}} \right) \geq (\exp(2r^2/d + 1))^n
\]

So

\[s \geq nr^2/d + 1\]
Lower bound

We can bound the number of unique answers as:

\[
\frac{\binom{\{0, 1\}^d}{n}}{\binom{|B^{-r}|}{n}} \geq (\exp(2r^2/d + 1))^n
\]

So

\[
s \geq nr^2/d + 1
\]

Combine with encoding argument for \(\Omega \left(n \log \frac{1}{\epsilon} \right)\) based on Carter et. al. [‘78].

\[
\Omega \left(n(r^2/d + \log \frac{1}{\epsilon}) \right)
\]
Recall upper bound

\[O \left(n\left(r/c + \log \frac{1}{\epsilon} \right) \right) \]

Still a gap to:

\[\Omega \left(n\left(r^2/d + \log \frac{1}{\epsilon} \right) \right) \]
Small \(n \)

Theorem (General bound)

For small \(n \) (fits in \(\delta cr \) dimensions) any distance sensitive approximate membership data structure must use space:

\[
\Omega \left(n \left(\frac{r}{cr} + \log \frac{1}{\epsilon} \right) \right)
\]

If \(n \) is small a structure for dimension \(d \) works for \(d' = \delta cr < d \).
Thank you!
Thank you!

Questions?
Bounding Y_{cr}

$$\Pr[Y_j = 1] \leq (Y_0 + j - 1)/m \leq 3c_r/m \rightarrow$$

$$\mu = E[Y_{cr}] \leq 3(c_r)^2/m$$
Bounding Y_{cr}

$$\mu = E[Y_{cr}] \leq 3(cr)^2/m$$

In the Chernoff-bound:

$$Pr[Y_{cr} \geq \mu(1 + \eta)] \leq e^{-\eta^2\mu/2}$$

Set $\eta = \frac{(c-1)r}{2\mu}$ to get:

$$Pr[Y_{cr} \geq (c - 1)r/2] \leq e^{-((\frac{c-1}{c})^2 m/24 - \frac{(c-1)r}{2})}$$
Bounding Y_{cr}

$$\mu = E[Y_{cr}] \leq 3(cr)^2 / m$$

In the Chernoff-bound:

$$Pr[Y_{cr} \geq \mu(1 + \eta)] \leq e^{-\eta^2 \mu / 2}$$

Set $\eta = \frac{(c-1)r}{2\mu}$ to get:

$$Pr[Y_{cr} \geq (c - 1)r / 2] \leq e^{-\left((\frac{c-1}{c})^2 \frac{m}{24} - \frac{(c-1)r}{2}\right)}$$

Now let $m \geq 24\frac{c^2}{c-1} \max(r; \frac{2}{c-1} \log 1/\epsilon)$ to get:

$$Pr[Y_{cr} < (c - 1)r / 2] \geq 1 - \epsilon$$
Bounding Y_{cr}

$$\mu = E[Y_{cr}] \leq 3(cr)^2/m$$

In the Chernoff-bound:

$$Pr[Y_{cr} \geq \mu(1 + \eta)] \leq e^{-\eta^2\mu/2}$$

Set $\eta = \frac{(c-1)r}{2\mu}$ to get:

$$Pr[Y_{cr} \geq (c - 1)r/2] \leq e^{-\left((\frac{c-1}{c})^2 \frac{m}{24} - \frac{(c-1)r}{2}\right)}$$

Now let $m \geq 24\frac{c^2}{c-1}\max(r; \frac{2}{c-1} \log 1/\epsilon)$ to get:

$$Pr[Y_{cr} < (c - 1)r/2] \geq 1 - \epsilon$$

So the total number of odd rows is:

$$Y_0 - Y_{cr} + (cr - Y_{cr}) \geq cr - 2Y_{cr} > r$$

w.p $> 1 - \epsilon$