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Abstract

In (Aumüller, Bernhardsson, Faithful, Information Systems, 2020), a bench-
marking framework for nearest neighbor search implementations was introduced.
The framework was used to evaluate a selection for nearest neighbor search
algorithms on different datasets. This reproducibility companion paper details
the experimental setup and provides a step-by-step description to reproduce the
original results.

1. Introduction1

Nearest neighbor search is one of the central techniques in many diverse2

areas of computer science such as image processing, recommender systems, data3

mining, and machine learning. The task of a nearest neighbor search algorithm4

is to preprocess a dataset X ⊆ Rd of n d-dimensional data points to answer5

nearest neighbor queries: Given a query point x ∈ Rd, return the k nearest6

neighbors to x in X. While this can be efficiently solved for low-dimensional7

settings, such as d ∈ {2, 3}, exact algorithms often fall back to being similar (or8

worse) than a linear scan in high dimensions, a phenomenon called the “curse of9

dimensionality”.10

The present paper is a reproducibility companion paper of our primary11

paper [1], which introduces a benchmarking framework for implementations of12

nearest neighbor search algorithms called ANN-Benchmarks. [1] focused on a13

succinct description of the general approach of the framework, and presented an14

evaluation of state-of-the-art nearest neighbor search algorithms at the end of15

2017 until the submission in mid-2018.16

As discussed by Chirigati et al. in [2], many areas of science are in a repro-17

ducibility crisis. In particular in experimental computer science, there exist little18
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systematic effort to ensure soundness and reproducibility of experimental results.19

The contribution of the present paper is to provide an exact reproducibility20

protocol for benchmarking approximate nearest neighbor search algorithms,21

thus contributing to increasing reproducibility in this area. Firstly, it allows to22

reproduce our primary paper [1]. Secondly, it contains information on how to23

extend ANN-Benchmarks to include new algorithms and datasets, thus serving24

as starting point for future research on the topic.25

Relation to current state of ANN-Benchmarks. This reproducibility companion26

paper details the exact steps needed to reproduce the plots in the paper [1].27

Since the submission of the paper, many new algorithms were added to ANN-28

Benchmarks, and existing ones were refined. See http://ann-benchmarks.com29

for an up-to-date overview of nearest neighbor search implementations. While30

the current setup targets the reproduction of [1], the steps mentioned here are31

also valid for the more recent version of the benchmarking tool.32

Experiments in Aumüller et al. [1]. We invite the reader to first take a look at33

[1] to get an idea about the scope of the framework. In a nutshell, we used our34

framework to compare many state-of-the-art nearest neighbor search algorithms35

on a broad collection of high-dimensional datasets. From each dataset, a certain36

collection of points was chosen as queries and presented to the algorithms.137

Implementations were measured on their ability to quickly return a “good38

approximation” of the true nearest neighbors. Usually, this means that the39

throughput (measured in queries per second) was put into relation to the average40

recall (the average of the fraction of correct nearest neighbors among the query41

answers over all queries).42

Results were reported on these performance/quality measures, but also on43

questions such as “how long does it take to build an index that will allow to44

achieve a recall of at least .9?” and “how adaptive are algorithms?”45

A note to the reviewers. To speed up the reproducibility process, we would46

appreciate if problems are directly reported as issues via https://github.com/47

maumueller/ann-benchmarks-reproducibility.48

2. ANN-Benchmarks framework overview49

2.1. Code base50

ANN-Benchmarks is primarily written in Python. Please refer to Table 1 for51

technical and legal information of the source code.52

ANN-Benchmarks takes care of setting up, running, and evaluating a nearest53

neighbor search experiment. An experiment consists of running k-NN queries for54

a specified implementation on a predefined dataset. All implementations consid-55

ered in [1] are listed in Table 2. One run consists of building the index for a list of56

1For [1] those queries were chosen at random, but more refined approaches were later
introduced in [3].
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ANN-Benchmarks Description
Github Repository https://github.com/maumueller/

ann-benchmarks-reproducibility/
Release used in this work is minor revision1

Legal code license MIT
Source code languages Python 3
Runtime requirements Python at least 3.6, Docker version at least 1.41
Documentation Source code and readme

Table 1: Technical and legal information of the latest version of the ANN-Benchmarks software
library used in our experiments.

dataset points (using parameters related to index building), and running queries57

with parameters related to query processing. The authors of the individual imple-58

mentations provided these parameter choices themselves, and ANN-Benchmarks59

just carries out the experiment using these parameters. The actual wrappers for60

the implementations are found in ann benchmarks/algorithms/, a standard61

set of parameters can be found in algos.yaml.62

2.2. An Overview over the Architecture63

ANN-Benchmarks uses Docker to encapsulate different implementations. A64

conceptional overview over the architecture is given in Figure 1. This was a65

necessary step to allow easy handling of different implementations, which each66

one having its own dependencies. The Python runner invokes these Docker67

containers with the arguments necessary to run the experiment at hand. One68

container contains exactly one library tested by the benchmarking framework.69

Using Docker allows to limit the resources of each container, since we run70

all implementations single-threaded and enforce a limit on the memory usage.71

The main controller that manages all experiments lives outside the Docker72

environment and invokes different Docker containers based on the experiment73

that is run. During setup of the container, it mounts the Python module and74

the data/ folder containing all datasets as read-only into the container to read75

the data, and mounts the results/ directory as read-write to write the results76

back to the filesystem.77

2.3. Dataset format78

Table 3 gives an overview over the datasets considered in [1]. Generating79

these datasets is done by the script create datasets.py, which internally calls80

ann benchmarks/dataset.py. Each dataset is internally stored as an hdf581

file, that contains the dataset points, the query points, the ids of the 100-82

nearest neighbors to each query point, and the distances of these points to the83

query. Since building this ground truth takes a considerable amount of time,84

all datasets are stored on https://ann-benchmarks.com. Before creating the85

dataset locally, the script always tries to download the hdf5 file first. For the86

sake of reproducibility, all of the datasets are stored in the research artifacts87

detailed in Section 3.2.88
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Figure 1: Conceptual overview over the architecture.

Principle Algorithms

graph-based KGraph (KG) [4], SWGraph (SWG) [5, 6], HNSW [7, 6]
PyNNDescent (NND) [8], PANNG [9], ONNG [9, 10]

tree-based FLANN [11], BallTree (BT) [6], Annoy (A) [12]
RPForest (RPF) [13], MRPT [14]

LSH MPLSH [15, 6]
other Multi-Index Hashing (MIH) [16] (exact Hamming search),

FAISS-IVF (FAI) [17] (inverted file)

Table 2: Overview of tested algorithms (abbr. in parentheses).

2.4. Result format89

After finishing a run, a single hdf5 file containing the results of the run90

is written to the file system in the results/ folder. See Figure 2 for a partial91

snapshot of this directory. We stress that we write the raw answer of the query92

algorithm of the algorithm under consideration, that means the identifiers of the93

nearest neighbors returned for the individual queries. Only later on, this data is94

used to compute metrics such as (approximate) recall. The hierarchy it uses is95

dataset/number of nearest neighbors/algorithm/. Each file contains the results96

of a single run (i.e., one set of query parameters). Each file contains general97

information of the run and details of the measurements, such as the identifiers of98

the nearest neighbors that were returned, query times, build time of the index,99

etc. The result file can be explored in the interactive Python console as shown100

in Figure 3.101

2.5. Post-Processing results102

After running the experiments, there are a couple of choices to visualize or103

process the data for another setting. The script plot.py creates a single PNG104

plot on a specific dataset for two given metrics, such as recall and throughput.105

create website.py generates a website that visualizes all runs that can be106

found in the results/ directory, split up by dataset (with varying algorithms)107
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results/

gist-960-euclidean/

10/

annoy/

euclidean 100 100

euclidean 100 1000

BallTree(nmslib)/

euclidean vptree desiredRecall 0 1 tuneK 10 false

euclidean vptree desiredRecall 0 2 tuneK 10 false

bruteforce-blas/

euclidean

Figure 2: Overview over results in results/ folder

>>> f = h5py.File("euclidean_reverse_1_true_100")

>>> dict(f)

{’metrics ’: <HDF5 group "/metrics" (3 members)>, ’

↪→ distances ’: <HDF5 dataset "distances": shape

↪→ (1000 , 10), type "<f4">, ’times’: <HDF5

↪→ dataset "times": shape (1000 ,), type "<f4">,

↪→ ’neighbors ’: <HDF5 dataset "neighbors":

↪→ shape (1000 , 10), type "<i4" >}

>>> dict(f.attrs)

{’algo’: ’kgraph ’, ’distance ’: ’euclidean ’, ’

↪→ run_count ’: 2, ’batch_mode ’: False , ’dataset

↪→ ’: ’gist -960- euclidean ’, ’build_time ’:

↪→ 2678.368325471878 , ’count ’: 10, ’name’: ’

↪→ KGraph(euclidean)’, ’best_search_time ’:

↪→ 0.01496616005897522 , ’index_size ’:

↪→ 2022140.0 , ’expect_extra ’: False , ’

↪→ candidates ’: 10.0}

>>> f["times"][:10] # individual query times of

↪→ the first 10 queries

array ([0.0064466 , 0.01282668 , 0.00558615 ,

↪→ 0.0106256 , 0.01036716 , 0.005831 ,

↪→ 0.00877213 , 0.01525331 , 0.00530338 ,

↪→ 0.01109028] ,

dtype=float32)

Figure 3: Structure of the HDF5 result file.5



Dataset Internal Name Data/Query d Metric

SIFT sift-128-euclidean 1 000 000/10 000 128 Eucl.
GIST gist-960-euclidean 1 000 000/10 000 960 Eucl.
GLOVE glove-100-angular 1 183 514/10 000 100 Cos.
NYTimes nytimes-256-angular 234 791/10 000 256 Eucl.
Rand-Euclidean random-10nn-euclidean 1 000 000/10 000 128 Cos.
SIFT-Hamming sift-256-hamming 1 000 000/1 000 256 Ham.
Word2Bits word2bits-800-hamming 399 000/1 000 800 Ham.

Table 3: Datasets under consideration.

or algorithm (with varying datasets). For reproducing [1], the main scripts are108

data export.py and reproducibility/generate result tables.py, which exports the109

raw data to a csv file and generates data that can be plotted via pgfplots. The110

latter script also has special code to generate Figures 10 and 13 in [1].111

2.6. Adding a new dataset112

Adding a new dataset works by writing a Python function that takes care113

of downloading and parsing the original dataset into numpy arrays. ANN-114

Benchmarks takes care of computing the ground truth nearest neighbors auto-115

matically. The code for this has to be added to ann benchmarks/datasets.py116

by adding the respective function that calls write output as its final step, and117

adding the dataset in the bottom to the dictionary DATASETS. If runs on these118

datasets should be carried out, the dataset name has to be included in the for119

loops present in reproducibility/run experiments.sh.120

2.7. Adding a new algorithm121

Adding a new implementation of an ANN algorithm requires to install the122

algorithm in a docker environment. If the library is called XXX, the installation123

goes into the file install/Dockerfile.XXX that inherits the ann-benchmarks124

base image. Next, a wrapper class that inherits from BaseANN has to be added125

to the wrappers in ann benchmarks/algorithms/. Finally, an entry into the126

algos.yaml file has to be created that points to the constructor, the docker127

image, and contains the collection of parameters that should be tested. If128

runs with this implementation should be carried out, the yaml entries found129

in reproducibility/ have to be edited to add the implementation with the130

parameter space that should be inspected. Most prominently, this has to be131

done in reproducibility/standard runs.yaml.132

3. The reproducibility experiments133

This section describes the workflow to reproduce the experimental results134

from [1]. The original experiments were carried out on an Amazon EC2 c5.4xlarge135

instance, which was equipped with Intel Xeon Platinum 8124M CPU (16 available136

cores, 3.00 GHz, 25MB L3 Cache) and 32 GB of RAM using Amazon Linux.137
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Platform Operating Sys. Configuration Tested by
Ubuntu 1†,♢ Ubuntu 16.10 2x 14-core Intel Xeon E5-2690v4 Authors

2.60GHz, 512 GB RAM
Quadro M4000, 6 TB HDD

Ubuntu 2† Ubuntu 18.04 12-core Intel Xeon E5645 Authors
2.40GHz, 48 GB RAM, 2 TB HDD

Reviewers
Reviewers

Table 4: Detailed configurations of platforms used in the reproducibility study. † supports
CPU-based experiments; ♢ supports GPU-based experiments.

Platform Libraries & Env. Variables Running time (CPU) Tested by
Ubuntu 1 Python 3.6.5, Cuda 10.2 4 days, 2 hours, 17 mins Authors

PARALLELISM = 20
Ubuntu 2 Python 3.6.5 9 days, 27 mins Authors

PARALLELISM = 3
GISTPARALLELISM = 1

Reviewers
Reviewers

Table 5: Timings, libraries, and environmental variables used for reproducing the experiments.

Table 4 reports on the configurations used to reproduce the results of the138

experiment. Table 5 reports on the time it took to carry out the experiments,139

and the environmental variables used for running them on the specific machines.140

More details on the requirements to run all experiments can be found below.141

Minimum requirements. To run all experiments, a modern (Intel) CPU with142

AVX-2 support, at least 20 GB of RAM, and a GPU supporting CUDA 10.2143

or newer is required. If a GPU is not present, the GPU experiments cannot be144

carried out. If fewer than 20 GB of RAM are present, the dataset GIST-960-145

Euclidean cannot be processed. If fewer than 10 GB of RAM are available, the146

experiments cannot be run. If the CPU does not support AVX-2, the algorithm147

ONNG cannot run. At least 30 Gb of free space is necessary on a fresh installation148

to run all experiments.149

3.1. General Overview150

Figure 4 depicts the overall flow of the reproducibility protocol. There are two151

ways to carry out the reproducibility protocol. If an existing Linux-based machine152

is available, one can set up the framework following the guide in Section 3.3.153

Otherwise, a Vagrant box is available that sets up an Ubuntu 18.04 VM with154

a pre-installed framework. This method is covered in Section 3.4. After the155

installation succeeded, one can proceed to carry out the experiments as described156

in Section 3.5. After completing these experiments, raw results are processed157

into csv files and plots that allow reproducing the paper.158

7



Figure 4: Overview over the reproducibility protocol. The framework can be installed on an
existing system or using a Vagrant box that sets up a virtual machine with Ubuntu 18.04.
Afterwards, experiments can be carried out. From these, quality metrics are computed and the
original paper is reproduced. Detailed checks are possible via inspecting intermediate outputs,
such as the csv file.

3.2. Research Artifacts159

All research artifacts are provided in [18]. It fixes the version of the code160

used to produce the results in this reproducibility study. It also contains tar161

archives containing (i) all datasets used in the study, (ii) the original raw results162

used to produce [1], (iii) the raw results that we got from this reproducibility163

work, (iv) a Vagrantfile that spawns an Ubuntu VM ready to run all experiments,164

and (v) a tar file containing all binary Docker images. In these research arti-165

facts, as well as in the Github repository at https://github.com/maumueller/166

ann-benchmarks-reproducibility/, the steps necessary to install, run, and167

evaluate the reproducibility protocol are documented, enabling easy copy-and-168

pasting in a more convenient way than from a PDF.169
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Step Installation Guide for Ubuntu 18.04

(1)

Install docker
$ sudo apt-get remove docker docker-engine docker.io containerd runc
$ sudo apt-get update && sudo apt-get -y install apt-transport-https

ca-certificates curl gnupg lsb-release
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg |

sudo gpg - -dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
$ echo ”deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/ubuntu $(lsb release -cs) stable” |
sudo tee /etc/apt/sources.list.d/docker.list >/dev/null

$ sudo apt-get update && sudo apt-get install -y docker-ce docker-ce-cli containerd.io
$ sudo usermod -aG docker $USER # logout and login again

(2)

Install nvidia-docker (GPU, requires working nvidia driver)

$ distribution=$(. /etc/os-release;echo $ID$VERSION ID)
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list |

sudo tee /etc/apt/sources.list.d/nvidia-docker.list
$ sudo apt-get update
$ sudo apt-get install -y nvidia-docker2
$ sudo systemctl restart docker

(3)

Install Python 3.6, Git, LATEX(for post-processing)

$ sudo apt-get update
$ sudo apt-get install -y python3-pip build-essential git texlive-fonts-extra texlive-science latexmk

(4)

Clone Github Repository, prepare docker images, setup datasets
$ git clone https://github.com/maumueller/ann-benchmarks-reproducibility
$ cd ann-benchmarks-reproducibility
$ pip3 install -r requirements py36.txt # requirements py38.txt if running Python 3.8.
$ python3 install.py - -proc 5
$ wget https://zenodo.org/record/4607761/files/data.tar?download=1 -O data.tar
$ tar xf data.tar

Table 6: Installation guide on existing machine

3.3. Installation on an Existing Linux System170

Installation. To install the software on an existing machine, a version of Linux171

with a Python version of at least 3.6 and a Docker version of at least 1.41 is172

required. For Ubuntu 18.04, the steps to set up a machine are detailed in Table 6.173

Step (1) in this table sets up Docker on the system. Step (2) sets up the GPU174

support for Docker containers in Ubuntu. Step (3) sets up a Python installation175

and LATEX. These first three steps depend on the choice of distribution and will176

vary on existing systems. Step (4) sets up the local framework and will not177

vary. At the end of running the installation script install.py, the individual178

implementations will report on a successful or failed installation. It is necessary179

that all installations succeeded before proceeding.180
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Step Installation Guide from Vagrantfile

(1)
Install Virtualbox and Vagrant on Ubuntu
$ sudo apt-get update && sudo apt-get install -y wget virtualbox vagrant

(2)

Install Vagrant Box
$ mkdir ann-benchmarks-reproducibility && cd ann-benchmarks-reproducibility
$ wget https://zenodo.org/record/4607761/files/Vagrantfile?download=1 -O Vagrantfile
Edit Line 51 and 52 in Vagrantfile to set suitable CPUs and RAM for the VM
$ vagrant up
$ vagrant ssh

Table 7: Vagrant guide

Troubleshooting.181

• pip3 install -r requirements py36.txt (or pip3 install -r requirements py38.txt)182

does not succeed. If the local Python installation already has different183

versions of the necessary libraries installed, the installation might fail.184

In this case, pip3 install -r requirements.txt will try to install the185

dependencies without fixing library versions. If this does not work as well,186

we recommend creating virtual environments to start with a clean state187

for reproduction, as discussed https://docs.python.org/3.8/tutorial/188

venv.html.189

• python3 install.py - -proc 5 reports failed installations. While we190

fixed all versions of the git repositories of the tested implementations,191

we do not control these repositories. If an installation fails, the research192

artifacts [18] contain binary images of the containers used for this repro-193

ducibility experiment. These can be loaded into docker via docker load194

< docker-images.tar.gz.195

If these steps do not help, we recommend to set up a fresh VM using Vagrant as196

detailed in the next subsection.197

3.4. Installation using Vagrant198

We provide a Vagrantfile in the research artifacts discussed in Section 3.2 that199

automatically sets up a VM ready to carry out the experiments. A step-by-step200

installation guide for this case is given in Table 7. (The installation of Vagrant201

will be different on non-Ubuntu-based systems.) This setup does not allow to202

carry out the GPU experiments.203

3.5. Running experiments204

All the details to run the experiments and reproduce the paper are given in205

Table 8. Figure 5 provides a more detailed view on running and processing the206

experiments and the raw results.207

10

https://docs.python.org/3.8/tutorial/venv.html
https://docs.python.org/3.8/tutorial/venv.html
https://docs.python.org/3.8/tutorial/venv.html


Figure 5: Overview of the reproducibility process in Table 8.

General comments. Before detailing the execution of the experiments, we provide208

the following general remarks.209

• Log files. Running the experiments will give an high-level overview over210

the status of the experiments. Detailed logs are stored in logs/. Each211

dataset and k-NN combination, for k ∈ {10, 100}, creates exactly one log212

file.213

• Failures. If experiments are interrupted, the framework will recover and214

only run those experiments for which it did not yet store results. Thus, the215

scripts can be re-run exactly as they are and do not have to be adapted.216

• Graceful degradation. The framework gracefully handles unavailable217

installations and resource limitations, e.g., the amount of RAM available.218

It will fail on carrying out these experiments, as can be seen in the detailed219

logs, but will attempt to run all other experiments.220

• Detailed overview. Appendix A contains detailed information about221

the amount of time certain experiments take and the amount of memory222

that is approximately necessary to carry out these experiments.223

• Adapting experiments. The main bash script will take care of running224

$ python3 run.py - -algorithm ALGO - -dataset DATA - -count225

[10, 100] [- -batch]226

with the arguments to reproduce the paper. If certain runs should be left227

out, they can be removed from the bash script in reproducibility/run experiments.sh228

or the yaml configuration files in reproducibility/, or the experiments229

can be started directly by invoking python3 run.py.230
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Step Running Experiments and Reproducing Results

(1)

Running CPU-based experiment

$ PY=python3 PARALLELISM=10 GISTPARALLELISM=3
bash reproducibility/run experiments.sh | tee -a runs.log

(2)

Installing and running GPU-based experiment

$ python3 install.py - -algorithm faissgpu
$ bash reproducibility/run gpu.sh

(3)

Create output files

$ sudo chmod -R 777 results && python3 data export.py - -out res.csv
$ mkdir -p paper/result tables/
$ python3 reproducibility/create result tables.py res.csv paper/result tables/
$ python3 reproducibility/generate and verify plots.py

(4a)
Produce LATEX paper with working latex installation

$ cd paper && latexmk -pdf paper.tex

(4b)

Produce LATEX from Docker

$ cd paper
$ docker build . -t ann-benchmarks-reproducibility-latex
$ docker run -it -v ”$(pwd)”/:/app/:rw ann-benchmarks-reproducibility-latex:latest

Table 8: Running guide for experiments

Running CPU-based experiments. First, we run all CPU-based experiments by231

invoking:232

$ PY=python3 PARALLELISM =10 GISTPARALLELISM =3 bash233

reproducibility/run_experiments.sh | tee -a runs.234

log235

The environmental variable PY can be used to point to a custom Python236

3.6 installation, e.g., provided by Anaconda. All individual runs of experiments237

in this part are carried out on a single CPU using Docker. The environmental238

variable PARALLELISM can be used to spawn multiple containers in parallel. On239

the machine Ubuntu 1, we used PARALLELISM=20. In general, around 10 GB240

of RAM are needed per process for most of the datasets. Thus, on a machine241

with 32GB of RAM, PARALLELISM can be set to at most 3. Note that for the242

largest dataset GIST-960-Euclidean, around 20GB of RAM are necessary per243

process, which meant in our setup that we had a peak memory usage of 400 GB.244

The environmental variable GISTPARALLELISM controls the number of parallel245

instances run for the GIST dataset. This was set to 20 as well on the Ubuntu 1246

machine. On a machine with 32GB of RAM, GISTPARALLELISM must be set to247

1. The script run experiments.sh will report on the time it took to carry out248

all experiments.249

Running GPU-based experiments. The paper [1] contains a single run of a250

GPU-based experiments in Figure 12. This run was carried out in a local251
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Step Reproduce Results From Primary Paper

(1)

Getting raw results

$ wget https://zenodo.org/record/4607761/files/results original.tar?download=1 -O results.tar
$ tar xf results.tar

(2)

Create output files

$ sudo chmod 777 -R results/
$ python3 data export.py - -out res.csv
$ mkdir -p paper/result tables/
$ python3 reproducibility/create result tables.py res.csv paper/result tables/
$ python3 reproducibility/generate and verify plots.py

(3a)
Produce LATEX paper with working latex installation

$ cd paper && latexmk -pdf paper.tex

(3b)

Produce LATEX from Docker

$ cd paper
$ docker build . -t ann-benchmarks-reproducibility-latex
$ docker run -it -v ”$(pwd)”/:/app/:rw ann-benchmarks-reproducibility-latex:latest

Table 9: Reproduce paper from existing, raw results. Requires installation steps from Table 6
or Table 7 to be completed; the working directy is ann-benchmarks-reproducibility.

environment outside a docker container. To reproduce this run, we provide a252

script in reproducibility/run gpu.sh. A Linux-based environment with a CUDA253

runtime of at least 10.2 is necessary. This can be checked by inspecting the254

output of nvidia-smi. Furthermore, the nvidia-runtime for Docker must be255

installed, as detailed in Table 6. If these requirements are met, the GPU run is256

reproduced by running:257

$ python3 install.py --algorithm faissgpu258

$ bash reproducibility/run_gpu.sh259

Ubuntu 1 was equipped with a Quadro M4000 with compute engine 5.2 and260

all runs were finished within 10 minutes. If the reproducibility environment261

features an older GPU, the version of the compute engine must be manually set262

during compilation of FAISS in install/Dockerfile.faissgpu by editing the263

flag DCMAKE CUDA ARCHITECTURES="75;72;52".2264

3.6. Processing Raw Results265

If all runs above have been carried out, we can start reproducing the plots in266

the paper. Run267

$ sudo chmod 777 -R results/268

$ python3 data_export.py --out res.csv269

2An overview over the compute engines can be found on https://developer.nvidia.com/

cuda-gpus.
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$ mkdir -p paper/result_tables/270

$ python3 reproducibility/create_result_tables.py res.271

csv paper/result_tables/272

$ python3 reproducibility/generate_and_verify_plots.py273

to create all the raw tables used by pgfplots during the final LATEX compilation.274

Since exporting the results will compute all quality metrics, it took around 1275

hour on our machine. (However, results are cached, so this cost applies only276

once.) All runs that have to be completed in order to build the paper are listed in277

Table 10. The script generate and verify plots.py will generate the plot tex278

files necessary to compile the document. It will also list missing data points from279

Table 10, e.g., because the computation timed out, a too old CPU architecture280

was used, or no GPU was present. It will print the commands that can be used281

to directly re-run these experiments. However, the paper can be compiled even282

if files are missing, the respective lines in plots are then just omitted. Compile283

the paper by changing to the paper directory and compiling paper.tex, i.e.,284

$ cd paper && latexmk -pdf paper.tex285

This requires a standard latex installation for scientific writing that was installed286

in Table 6. If such a system is not present, we provide another Docker container287

in paper. The reproducibility steps are then from within the paper directory.288

The final PDF can be seen in paper/paper.pdf and the plots can be compared to289

the original paper [1].290

3.7. Comparison to Original Results291

The result of the final step of the previous section is a version of the paper292

that is produced from the results obtained by running the experiments. A more293

detailed comparison can be achieved by comparing the csv files individually. We294

provide a Jupyter notebook eval.ipynb with some example comparisons in the295

Github repository.296

3.8. Reproduction from the original raw results297

To avoid rerunning all experiments, the raw result of the original runs can be298

accessed from the research artifacts (see Section 3.2). It is required to complete299

the Installation step in Table 6. Then, carry out the steps in Table 9.300

3.9. Reflection on the Reproducibility Setup301

Given the use of Docker in the ANN-Benchmarks setup, it proved difficult302

to provide a fully dockerized environment. We resorted to providing a VM303

image which uses docker internally. However, this makes it difficult to run the304

GPU-based experiments. On the other hand, ANN-Benchmarks comes with a305

very lightweight set of dependencies and is easy to install locally.306

ANN-Benchmarks is a work in progress. Many parts of the benchmarking307

framework and the benchmarked implementations changed over time. This308

present reproducibility companion paper describes the steps to reproduce [1],309

but the very same setup works for producing all results on more recent versions.310
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Dataset Count Implementations
gist-960-euclidean 100 mrpt, annoy, SW-graph(nmslib),

faiss-ivf, hnsw(nmslib), pynndescent
glove-100-angular 10 bruteforce-blas, BallTree(nmslib), hnsw(nmslib),

pynndescent, annoy, SW-graph(nmslib), faiss-ivf,
kgraph, flann, NGT-onng

100 BallTree(nmslib), hnsw(nmslib), pynndescent, annoy,
SW-graph(nmslib), faiss-ivf, kgraph, flann, NGT-onng

nytimes-256-angular 10 hnsw(nmslib), annoy, faiss-ivf
random-10nn-euclidean 10 pynndescent, annoy, SW-graph(nmslib), faiss-ivf,

kgraph, hnsw(nmslib), NGT-onng
sift-128-euclidean 10 faiss-ivf-gpu-batch, BallTree(nmslib), hnsw(nmslib),

pynndescent, annoy, SW-graph(nmslib), faiss-ivf-batch
faiss-gpu-bf-batch, hnsw(nmslib)-batch, faiss-ivf,
kgraph, flann, NGT-onng

100 BallTree(nmslib), hnsw(nmslib), pynndescent, annoy,
SW-graph(nmslib), faiss-ivf, kgraph, flann, NGT-onng

sift-256-hamming 10 annoy-euclidean, NGT-panng, annoy, faiss-ivf
word2bits-800-hamming 10 annoy-euclidean, NGT-panng, annoy, faiss-ivf

Table 10: Runs that need to finish before generating all plots.

In particular, we used the version of ANN-Benchmarks from January 2021 to311

reproduce the old results from 2017 and 2018. The main difficulty was in tracing312

the exact versions of the nearest neighbor search implementations in their GitHub313

repositories.314

Of the time of writing, ANN-Benchmarks compares 26 different nearest315

neighbor search implementations while the experiments in this reproducibility316

companion paper used only 14. See ann-benchmarks.com for an up-to-date317

overview of nearest neighbor search algorithms.318

4. Differences regarding our primary paper319

Since most of our experiments consider the raw throughput achieved by the320

implementations, the compute architecture has a big influence on the individual321

plots. The throughput results on Ubuntu 1 are roughly 1.5 to 2 times slower than322

the architecture used in the primary paper. However, general trends translate323

well into the new setting. Figure 6 and Figure 7 compare Figure 7 in [1] to the324

measurements on the machine used for reproduction. While absolute performance325

decreases, performance trends are comparable. We added two versions of [1]326

using the original results and the results from the reproducibility work to research327

artifacts discussed in Section 3.2.328

We noticed the following differences between the reproduced plots and [1].329

1. Performance of NND. The implementation of PyNNDescent [8] performed330

worse (in relation to others) on the new setup. We tried other (old) versions,331
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Figure 6: Original: Recall-QPS (1/s) tradeoff - up and to the right is better, 10-nearest
neighbors unless otherwise stated, left: Annoy, middle: FAISS-IVF, right: HNSW. Recall measures
the fraction of actual nearest neighbors among the returned 10 points of the implementation,
averaged over 10 000 queries; QPS (queries per second) measures the time it took to answer
these queries.
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Figure 7: Reproduced: Recall-QPS (1/s) tradeoff - up and to the right is better, 10-nearest
neighbors unless otherwise stated, left: Annoy, middle: FAISS-IVF, right: HNSW.
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but the results were the same. More recent versions perform much better332

(being on par with HNSW in many cases), but we decided to report using333

an old version that is closer to the original performance.334

2. Omitted data points. To improve the readability of the plots, we335

manually removed some data points in the original paper. For example,336

Figure 6 contained many data points with recall close to 1 which were337

removed. The reproduced version does not clean such data points.338

3. Differences in Figure 9. PANNG is much faster in the reproducibility339

setup than in the original paper. This is because PANNG and ONNG are340

part of one library, and we had to use a more recent version to include341

ONNG. In the original paper, PANNG experiments where carried out in spring342

2017, whereas the ONNG runs were done in autumn 2018. Furthermore, the343

line for Annoy (eucl.) on the plot to the left was wrong in the original344

paper. The performance is much better, as reported in the reproducibility345

experiment. One can see the mistake by a careful comparison between346

Figure 4 (bottom, left) and Figure 9 in [1].347

4. Longer build times. We were not able to build indices that would allow348

for the same recall of HNSW on the reproducibility architecture. We349

increased the timeout to 12 hours (from 6 in the original paper) for an350

individual experiment.351

5. Differences in Figure 12. The reproducibility machine has more cores352

and thus batch runs on the CPU are faster. On the other hand, its GPU353

is worse, so the GPU runs are slower. This means that the differences354

between CPU and GPU runs in Figure 12 are not as pronounced as in the355

original paper.356

6. Improvements in Performance in Reproducibility Setup. Despite357

the performance differences inherent in the different CPU architectures, we358

also noticed that a few data point had improved on the slower architecture.359

This is because we set the timeout of individual experiments much higher,360

allowing for all indices to finish building. In the original paper, some of361

these runs timed out. However, this does not affect the conclusions drawn362

from the results. These differences can be seen in the Jupyter notebook363

eval.ipynb that is part of the Github repository.364
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dataset count batch #experiments #experiments left

glove-100-angular 10 false 57 533
sift-128-euclidean 10 false 63 470
random-10nn-euclidean 10 false 63 407
glove-100-angular 10 false 1 406
nytimes-256-angular 10 false 51 355
glove-100-angular 100 false 57 298
sift-128-euclidean 100 false 63 235
gist-960-euclidean 10 false 63 172
gist-960-euclidean 100 false 63 109
sift-256-hamming 10 false 35 74
word2bits-800-hamming 10 false 35 39
sift-128-euclidean 10 true 39 0

Table A.11: Experiments carried out by running reproducibility/run experiments.sh.

[18] M. Aumüller, E. Bernhardsson, A. Faithfull, Research Artifacts for Repro-410

ducibility Paper ”ANN- Benchmarks: A benchmarking tool for approximate411

nearest neighbor search”.412

URL https://doi.org/10.5281/zenodo.4607761413

Appendix A. Detailed running times414

Table A.11 collects the number of experiments carried out by running the415

CPU-based experiments. Table A.12 summarizes the running times for carrying416

out individual parts of the reproducibility protocol on a single thread. Each417

individual experiment can be re-run by invoking python3 run.py with the418

- -dataset argument pointing to the dataset, and - -algorithm pointing to the419

algorithm as labeled in the table. For example, running420

$ python3 run.py --algorithm faiss -ivf --dataset gist421

-960- euclidean --count 10422

will repeat the experiment in the row table below that tests faiss-ivf on the423

GIST dataset with 10-NN queries, and take roughly 3 hours to finish.424

Note. The current size cannot be trusted because indices were built in parallel425

and the index size is estimated from the memory usage before and after building.426

(For example, notice some of the negative values.) We are currently re-running427

all experiments in a single thread. We will add these numbers to the next version.428

algorithm dataset count batch Size (GB) build (h) total (h)

BallTree(nmslib) gist-960-euclidean 10 False 3.77 7.93 7.95

Continued on next page
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algorithm dataset count batch Size (GB) build (h) total (h)

BallTree(nmslib) gist-960-euclidean 100 False 7.96 5.67 5.87
BallTree(nmslib) glove-100-angular 10 False 1.36 2.32 2.35
BallTree(nmslib) glove-100-angular 100 False 1.37 2.52 2.53
BallTree(nmslib) nytimes-256-angular 10 False 0.82 5.81 5.83
BallTree(nmslib) random-10nn-euclidean 10 False 1.98 4.72 4.77
BallTree(nmslib) sift-128-euclidean 10 False 1.39 1.16 1.37
BallTree(nmslib) sift-128-euclidean 100 False 1.39 1.11 1.13
NGT-onng gist-960-euclidean 10 False -1.97 5.06 5.23
NGT-onng gist-960-euclidean 100 False 5.60 5.08 5.19
NGT-onng glove-100-angular 10 False 2.31 1.46 1.50
NGT-onng glove-100-angular 100 False 1.96 9.98 9.99
NGT-onng nytimes-256-angular 10 False 1.16 6.21 6.23
NGT-onng random-10nn-euclidean 10 False 2.96 6.08 6.10
NGT-onng sift-128-euclidean 10 False 1.85 0.74 0.77
NGT-onng sift-128-euclidean 100 False 0.80 1.29 1.38
NGT-panng sift-256-hamming 10 False 1.99 0.38 0.46
NGT-panng word2bits-800-hamming 10 False 1.73 1.86 1.87
SW-graph(nmslib) gist-960-euclidean 10 False 3.14 5.00 5.06
SW-graph(nmslib) gist-960-euclidean 100 False 4.11 3.86 4.01
SW-graph(nmslib) glove-100-angular 10 False 1.54 1.53 1.54
SW-graph(nmslib) glove-100-angular 100 False 1.54 1.57 1.58
SW-graph(nmslib) nytimes-256-angular 10 False 0.56 0.38 0.39
SW-graph(nmslib) random-10nn-euclidean 10 False 1.55 6.29 6.30
SW-graph(nmslib) sift-128-euclidean 10 False 1.27 0.62 0.63
SW-graph(nmslib) sift-128-euclidean 100 False 1.27 0.58 0.58
annoy gist-960-euclidean 10 False 2.67 2.20 2.76
annoy gist-960-euclidean 100 False 5.24 1.65 1.67
annoy glove-100-angular 10 False 7.60 0.92 1.26
annoy glove-100-angular 100 False 7.63 0.93 0.98
annoy nytimes-256-angular 10 False 1.54 0.36 0.37
annoy random-10nn-euclidean 10 False 6.83 1.63 1.79
annoy sift-128-euclidean 10 False 5.77 0.68 0.69
annoy sift-128-euclidean 100 False 5.77 0.58 0.58
annoy sift-256-hamming 10 False 6.61 0.25 0.36
annoy word2bits-800-hamming 10 False 2.15 0.10 0.22
annoy-euclidean sift-256-hamming 10 False 6.70 0.69 0.70
annoy-euclidean word2bits-800-hamming 10 False 3.31 0.43 0.43
bruteforce-blas glove-100-angular 10 False 0.00 0.00 0.00
faiss-gpu-bf sift-128-euclidean 10 True 0.63 0.00 0.01
faiss-ivf gist-960-euclidean 10 False 4.80 3.14 3.14
faiss-ivf gist-960-euclidean 100 False 5.00 1.73 1.89
faiss-ivf glove-100-angular 10 False 0.65 0.26 0.38

Continued on next page
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algorithm dataset count batch Size (GB) build (h) total (h)

faiss-ivf glove-100-angular 100 False 0.66 0.26 0.26
faiss-ivf nytimes-256-angular 10 False 0.41 0.23 0.26
faiss-ivf random-10nn-euclidean 10 False 1.22 0.45 0.45
faiss-ivf sift-128-euclidean 10 False 0.71 0.30 0.31
faiss-ivf sift-128-euclidean 10 True 0.71 0.30 0.41
faiss-ivf sift-128-euclidean 100 False 0.72 0.26 0.34
faiss-ivf sift-256-hamming 10 False 1.40 0.43 0.45
faiss-ivf word2bits-800-hamming 10 False 1.68 0.54 0.55
faiss-ivf-gpu sift-128-euclidean 10 True 0.69 0.05 0.06
flann gist-960-euclidean 10 False 4.18 9.01 9.07
flann gist-960-euclidean 100 False 5.20 8.07 8.07
flann glove-100-angular 10 False 0.78 7.73 7.86
flann glove-100-angular 100 False 0.78 7.80 7.81
flann nytimes-256-angular 10 False 0.40 0.14 0.14
flann random-10nn-euclidean 10 False 2.03 11.86 11.86
flann sift-128-euclidean 10 False 1.02 1.63 1.64
flann sift-128-euclidean 100 False 1.02 1.68 1.68
hnsw(faiss) gist-960-euclidean 10 False 1.89 25.91 26.14
hnsw(faiss) gist-960-euclidean 100 False 4.15 26.24 26.24
hnsw(faiss) glove-100-angular 10 False 1.39 17.04 17.04
hnsw(faiss) glove-100-angular 100 False 1.39 16.43 16.44
hnsw(faiss) nytimes-256-angular 10 False 0.47 14.28 14.37
hnsw(faiss) random-10nn-euclidean 10 False 1.09 13.36 13.39
hnsw(faiss) sift-128-euclidean 10 False 1.26 8.13 8.24
hnsw(faiss) sift-128-euclidean 100 False 1.28 7.24 7.26
hnsw(nmslib) gist-960-euclidean 10 False 4.35 5.77 5.85
hnsw(nmslib) gist-960-euclidean 100 False 5.49 4.29 4.30
hnsw(nmslib) glove-100-angular 10 False 4.64 22.41 22.41
hnsw(nmslib) glove-100-angular 100 False 1.93 5.76 5.76
hnsw(nmslib) nytimes-256-angular 10 False 0.83 6.84 6.84
hnsw(nmslib) random-10nn-euclidean 10 False 3.26 8.95 9.18
hnsw(nmslib) sift-128-euclidean 10 False 2.79 5.22 5.22
hnsw(nmslib) sift-128-euclidean 10 True 2.79 0.53 0.53
hnsw(nmslib) sift-128-euclidean 100 False 2.79 5.33 5.33
kgraph gist-960-euclidean 10 False 1.57 1.24 1.40
kgraph gist-960-euclidean 100 False 5.77 0.86 0.98
kgraph glove-100-angular 10 False 13.22 3.35 3.35
kgraph glove-100-angular 100 False 13.22 3.25 3.25
kgraph nytimes-256-angular 10 False 3.80 1.49 1.50
kgraph random-10nn-euclidean 10 False 2.13 0.59 0.60
kgraph sift-128-euclidean 10 False 2.41 0.26 0.37
kgraph sift-128-euclidean 100 False 2.41 0.24 0.24

Continued on next page
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algorithm dataset count batch Size (GB) build (h) total (h)

mih sift-256-hamming 10 False 1.47 0.42 0.50
mih word2bits-800-hamming 10 False 6.54 0.34 0.44
mrpt gist-960-euclidean 100 False 7.82 0.88 0.88
pynndescent gist-960-euclidean 10 False 1.31 12.04 12.06
pynndescent gist-960-euclidean 100 False 6.69 8.68 8.68
pynndescent glove-100-angular 10 False 5.05 3.60 3.60
pynndescent glove-100-angular 100 False 6.24 3.48 3.49
pynndescent nytimes-256-angular 10 False 1.01 2.76 2.84
pynndescent random-10nn-euclidean 10 False 6.31 14.80 14.80
pynndescent sift-128-euclidean 10 False 4.69 4.71 5.54
pynndescent sift-128-euclidean 100 False 5.13 4.29 4.95
pynndescent sift-256-hamming 10 False 6.14 3.21 3.23
pynndescent word2bits-800-hamming 10 False 3.98 1.88 1.89
rpforest glove-100-angular 10 False 19.90 9.76 10.11
rpforest glove-100-angular 100 False 19.31 9.64 9.66
rpforest nytimes-256-angular 10 False 5.37 4.21 5.03

Total: 452h
Table A.12: Summary of individual running time and memory
requirements to carry out individual parts of the reproducibility
framework.
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