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Abstract

In (Aumiiller, Bernhardsson, Faithful, Information Systems, 2020), a bench-
marking framework for nearest neighbor search implementations was introduced.
This framework was used to evaluate a selection for nearest neighbor search
algorithms on different datasets. This companion paper details the experimental
setup and provides a step-by-step description to reproduce the original results.

1. Introduction

Nearest neighbor search is one of the central techniques in many diverse
areas of computer science such as image processing, recommender systems, data
mining, and machine learning. The task of a nearest neighbor search algorithm
is to preprocess a dataset X C R? of n d-dimensional data points to answer
nearest neighbor queries: Given a query point z € R?, return the k nearest
neighbors to z in X. While this can be efficiently solved for low-dimensional
settings, such as d € {2, 3}, exact algorithms often fall back to being similar (or
worse) than a linear scan in high dimensions, a phenomenon called the “curse of
dimensionality” .

This paper is a companion paper to [I], in which a benchmarking framework
for implementations of nearest neighbor search algorithms is presented. [If
focused on a succinct description of the general approach of the framework, and
presented an evaluation of state-of-the-art nearest neighbor search algorithms at
the end of 2017 until submission in mid-2018.

Relation to current state of ANN-Benchmarks. This paper details the exact
steps needed to reproduce the plots in the paper [I]. Since the submission of the
paper, many new algorithms were added to ann-benchmarks, and existing ones
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were refined. See http://ann-benchmarks. com| for an up-to-date overview of
nearest neighbor search implementations.

A note to the reviewers. To speed up the reproducibility process, we would
appreciate if problems are directly reported as issues via https://github.com/
maumueller/ann-benchmarks-reproducibility.

2. Experiments in Aumiiller et al. [1]

We invite the reader to first take a look at [I] to get an idea about the
scope of the framework. In a nutshell, we used our framework to compare
many state-of-the-art nearest neighor search algorithms on a broad collection
of high-dimensional datasets. From each dataset, a certain collection of points
was chosen as queries and presented to the algorithmsﬂ Implementations were
measured on their ability to quickly return a “good approximation” of the true
nearest neighbors. Usually, this means that the throughput (measured in queries
per second) was put into relation to the average recall (the average of the fraction
of correct nearest neighbors among the query answers over all queries).

Results were reported on these performance/quality measures, but also on
questions such as “how long does it take to build an index that will allow to
achieve a recall of at least .97” and “how adaptive are algorithms?”

3. Framework Overview

3.1. Code base

ANN-Benchmarks is primarily written in Python. It takes care of setting up
and running an experiment. An experiment consists of running k-NN queries for
a specified implementation on a predefined dataset. All implementations consid-
ered in [I] are listed in Table[l] One run consists of building the index for a list of
dataset points (using parameters related to index building), and running queries
with parameters related to query processing. The authors of the individual imple-
mentations provided these parameter choices themselves, and ann-benchmarks
just carries out the experiment using these parameters. The actual wrappers for
the implementations are found in ann_benchmarks/algorithms/, a standard
set of parameters can be found in algos.yaml.

3.2. An Querview over the Architecture

ANN-Benchmarks uses Docker to encapsulate different implementations. This
was a necessary step to allow easy handling of different implementations, which
each have their own dependencies. It also allows to limit the resources of each
container, since we run all implementations single-threaded and enforce a limit

IFor [1I] those queries were chosen at random, but more refined approaches were later
introduced in [2].
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Principle Algorithms

graph-based KGraph (KG) [3], SWGraph (SWG) [4, (5], HNSW [6] 5], PyNNDescent (NND) [7],
PANNG [S], ONNG [S, ]
tree-based FLANN [I0], BallTree (BT) [B], Annoy (A) [11], RPForest (RPF) [12], MRPT [13]
LSH MPLSH [14, ]
other Multi-Index Hashing (MIH) [I5] (exact Hamming search),
FAISS-IVF (FAI) [16] (inverted file)

Table 1: Overview of tested algorithms (abbr. in parentheses).

Dataset Internal Name #Data/#Query Dim. Metric
SIFT sift-128-euclidean 1000000 / 10000 128 Euclidean
GIST gist-960-euclidean 1000000 / 10000 960 Euclidean
GLOVE glove-100-angular 1183514 / 10000 100 Angular
NYTimes nytimes-256-angular 234791 / 10000 256 Euclidean
Rand-Euclidean random-10nn-euclidean 1000000 / 10000 128 Angular
SIFT-Hamming sift-256-hamming 1000000 / 1000 256 Hamming
Word2Bits word2bits-800-hamming 399000 / 1000 800 Hamming

Table 2: Datasets under consideration.

on the memory usage. The main controller that manages all experiments lives
outside the Docker environment and invokes different Docker containers based
on the experiment that is run. During setup of the container, it mounts the
Python module and the data/ folder containing all datasets as read-only into
the container, and mounts the results/ directory as read-write.

Since docker-in-docker environments and parallel docker environments are
difficult to manage, we assume in this reproducibility that we start with a fresh
Ubuntu 18.04 VM.

8.8. Dataset format

Table [2] gives an overview over the datasets considered in [I]. Generating
these datasets is done by the script create_datasets.py, which internally calls
ann_benchmarks/dataset.py. Each dataset is internally stored as an hdf5 file,
that contains the dataset points, the query points, the ids of the 100-nearest
neighbors to each query point, and the distances of these points to the query.
Since building this ground truth takes a considerable amount of time, all datasets
are stored on https://ann-benchmarks.com. Before creating the dataset locally,
the script always tries to download the hdf5 file first.

3.4. Result format

After finishing a run, a single hdf5 file containing the results of the run
is written to the file system in the results/ folder. See Figure [1] for a partial
snapshot of this directory. We stress that we write the raw answer of the query
algorithm of the algorithm under consideration, that means the identifiers of the


https://ann-benchmarks.com

results/
| gist-960-euclidean
10
| _annoy
t euclidean_100_100
euclidean_100_1000
| BallTree(nmslib)
euclidean_vptree_desiredRecall _O_1_tuneK_10_false
euclidean_vptree_desiredRecall_0_2_tuneK_10_false
| bruteforce-blas
L euclidean
| faiss-ivf
teuclidean,1024,1
euclidean_1024_10

Figure 1: Overview over results in results folder

nearest neighbors returned for the individual queries. Only later on, this data is
used to compute metrics such as (approximate) recall. The hierarchy it uses is
dataset/number_of_nearest_neighbors/algorithm/. Each file contains the results
of a single run (i.e., one set of query parameters). Each file contains general
information of the run and details of the measurements, such as the identifiers of
the nearest neighbors that were returned, query times, build time of the index,
etc. The result file can be explored in the interactive Python console as shown
in Figure [2|

3.5. Post-Processing Results

After running the experiments, there are a couple of choices to visualize or
process the data for another setting. The script plot.py creates a single PNG
plot on a specific dataset for two gives metrics, such as recall and throughput.
create_website.py generates a website that visualizes all runs that can be
found in the results/ directory, split up by dataset (with varying algorithms)
or algorithm (with varying datasets). For reproducing [I], the main scripts are
data_export.py and reproducibility/generate_result_tables.py, which exports the
raw data to a csv file and generates data that can be plotted via pgfplots. The
latter script also has special code to generate Figures 10 and 13 in [I].

4. Reproducibility Experiment

This section describes the workflow to reproduce the experimental results
from [I]. The original experiments were carried out on an Amazon EC2 c5.4xlarge
instance, which was equipped with Intel Xeon Platinum 8124M CPU (16 available
cores, 3.00 GHz, 25MB L3 Cache) and 32 GB of RAM using Amazon Linux. For
the sake of reproduction, we ran the scripts below on a local machine with 2x
14-core Intel Xeon E5-2690v4 (2.60GHz) with 512 GB of RAM using Ubuntu



>>> f = hbpy. File(”euclidean_reverse_1_true_100")

>>> dict (f)

{’metrics’: <HDF5 group ”/metrics” (3 members)>, ’
— distances ’: <HDF5 dataset ”distances”: shape
< (1000, 10), type "’<f4”>, ’times’: <HDF5 dataset
<  "times”: shape (1000,), type "<f47>, 6 ~’
— mneighbors’: <HDF5 dataset "neighbors”: shape
— (1000, 10), type "<i4”>}

>>> dict(f.attrs)

{’algo’: ’kgraph’, ’distance’: ’euclidean’, ’
<~ run_count’: 2, ’batch_mode’: False, ’'dataset’:
— ’gist —960—euclidean’, ’build_time’:
— 2678.368325471878, ’count’: 10, ’name’: ’KGraph
< (euclidean)’, ’best_search_time’:
— 0.01496616005897522, ’index_size’: 2022140.0, ’
< expect_extra’: False, ’candidates’: 10.0}

>>> f[”times” |[:10] # individual query times of the

— first 10 queries
array ([0.0064466 , 0.01282668, 0.00558615, 0.0106256
— , 0.01036716, 0.005831 , 0.00877213,
< 0.01525331, 0.00530338, 0.01109028],
dtype=float32)

Figure 2: Structure of the HDF5 result file.

16.10 with kernel 4.4.0. In Section [5] we report on the differences between these
two architectures.

4.1. Reproduction from a fresh Ubuntu 18.04 installation

Figure |3| provides an overview over the whole reproducibility process.

Installation. We provide a Vagrantfile in the research artifacts discussed in
Section [7| that automatically sets up a VM ready to carry out the experiments.

To reproduce all steps, start from a fresh installation of Ubuntu 18.04. Next,
install Docker as outlined on https://docs.docker.com/engine/install/
ubuntu/. Then, install Python 3.6 as follows:

$ sudo apt—get update
$ sudo apt—get install —y python3—pip build—essential git

Finally, clone the repository and install necessary dependencies and compile
and install the nearest neighbor search implementations mentioned in Table [T}
The --proc flag specifies that the installation should use five processes in parallel.

$ git clone https://github.com/maumueller/ann—benchmarks—
reproducibility


https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Running Experiments Paper as LaTeX source
iy generotes
s — :
- results/ paper.tex
-eproducibility/run_experiments.sh '
i ':‘ Reproduced Paper
¥

data_export.py <> E is used in
generates i E —
E i -

A

Py paper.pdf
res.csv é i
generates
N build_bar tex
generate_result_tables.py (f

r result_tables/

—

Figure 3: Overview of the reproducibility process.

$ c¢d ann—benchmarks—reproducibility
$ pip3 install —rrequirements.txt
$ python3 install.py —proc 5

We note that these steps will work for more recent versions of Python, but
the file requirements.txt has to be updated to contain recent versions of
libraries. At the time of writing this article, the most recent choices for each
library worked well. At the end of running the installation script, the individual
implementations will report on a successful or failed installation. It is necessary
that all installations succeeded before proceeding.

Running CPU-based experiments. We are now ready to run all CPU-based
experiments by running

$ PY=python3 PARALLELISM=10 bash reproducibility/
run_experiments.sh

All individual runs of experiments in this part are carried out on a single
CPU using Docker. The environmental variable PARALLELISM can be used to
spawn multiple containers in parallel. For a 10-core machine, we suggest using
a value of 5. On the machine specified above, we used PARALLELISM=20.
The environmental variable PY can be used to point to a custom Python 3.6
installation, e.g., provided by Anaconda. Note that for the largest dataset GIST-
960-Euclidean, around 20GB of RAM are necessary per process, which meant
in our setup that we had a peak memory usage of 400 GB. The environmental
variable GISTPARALLELISM controls the number of parallel instances run for
the GIST dataset. Invoking

$ PY=python3 PARALLELISM=10 GISTPARALLELISM=3 bash
reproducibility /run_experiments.sh



corresponds to 3 parallel runs on GIST, and 10 on all other datasets. A machine
used for running this experiment should contain at least 64GB of RAM. On
our test machine, reproducing all CPU based experiments with the parameters
above took around 4 days.

Running GPU-based experiments. The paper [I] contains a single run of a GPU-
based variant in Figure 12. This run was carried out in a local environment
outside a docker container. To reproduce this run, we provide a script in re-
producibility /run_gpu.sh. A Linux-based environment with a CUDA runtime
of at least 10.0 is necessary. This can be checked by inspecting the output of
nvidia-smi. Furthermore, the nvidia-runtime for docker must be installed,
as detailed in https://github.com/NVIDIA/nvidia-docker. If these require-
ments are met, the GPU run is reproduced by running:

$ python3 install.py —algorithm faissgpu
$ bash reproducibility /run_gpu.sh

Our machine was equipped with a Quadro M4000 with compute engine 5.2
and all runs where finished within 10 minutes. If the reproducibility environment
features an older GPU, the version of the compute engine must be manually set
during compilation of FAISS in install/Dockerfile.faissgpu by editing the
flag DCMAKE_CUDA_ARCHITECTURES="75;72;52".

Reproducing the Paper From The Results. If all runs above have been carried
out, we can start reproducing the plots in the paper. Run

$ sudo python3 data_export —out res.csv

$ mkdir —p paper/result_tables/

$ python3 reproducibility/create_result_tables.py res.csv
paper/result_tables/

to create all the raw tables used by pgfplots during the final IATEX compilation.
Since exporting the results will compute all quality metrics, it took around 1
hour on our machine. (However, results are cached, so this cost applies only
once.) Now, compile the paper by changing to the paper directory and compiling
paper.tez, i.e.,

$ cd paper && latexmk —pdf paper.tex

This requires a standard latex installation for scientific writing. If such a system
is not present, we provide another Docker container in paper. The reproducibility
steps are then

$ docker build . —t ann—benchmarks—reproducibility —latex
$ docker run —it —v ”$(pwd)” /:/app/:rw ann—benchmarks—
reproducibility —latex :latest

from within the paper directory. The compilation will fail (or miss certain plot
lines) if some runs did not finish in time. The compilation log will contain the
name of all runs that are missing, which allows to individually re-run some
experiments, for example with longer timeouts.
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The final PDF can be seen in paper/paper.pdf and the plots can be compared
to the original paper [I].

4.2. Reproduction from the original raw results

To avoid rerunning all experiments, the raw result of the original runs can be
accessed from the research artifacts (see Section . It is required to complete
the Installation step in Section 4.1. Unpack the results into the ann-benchmarks
folder, and run the same steps as above.

5. Differences between [I] and our reproducibility experiment

Since most of our experiments consider the raw throughput achieved by the
implementations, the compute architecture has a big influence on the individual
plots. The throughput results on the Intel Xeon E5-2690v4 are roughly 1.5
to 2 times slower than the architecture used in the original paper. However,
general trends translate well into the new setting. Figure 4| and Figure |5| compare
Figure 7 in [I] to the measurements on the machine used for reproduction.
While absolute performance decreases, performance trends are comparable. We
added two versions of [I] using the original results and the results from the
reproducibility work to research artifacts discussed in Section [7]

We noticed the following differences between the reproduced plots and [I].

1. Performance of NND. The implementation of PyNNDescent [7] performed
worse (in relation to others) on the new setup. We tried other (old) versions,
but the results were the same. More recent versions perform much better
(being on par with HNSW in many cases), but we decided to report using
an old version that is closer to the original performance.

2. Omitted data points. To improve the readability of the plots, we
manually removed some data points in the original paper. For example,
Figure 6 contained many data points with recall close to 1 which were
removed. The reproduced version does not clean such data points.

3. Differences in Figure 9. PANNG is much faster in the reproducibility
setup than in the original paper. This is because PANNG and ONNG are
part of one library, and we had to use a more recent version to include
ONNG. In the original paper, PANNG experiments where carried out in spring
2017, whereas the ONNG runs were done in autumn 2018. Furthermore, the
line for Annoy (eucl.)on the plot to the left was wrong in the original
paper. The performance is much better, as reported in the reproducibility
experiment. One can see the mistake by a careful comparison between
Figure 4 (bottom, left) and Figure 9 in [1].

4. Longer build times. We were not able to build indices that would allow
for the same recall of HNSW on the reproducibility architecture. We
increased the timeout to 12 hours (from 6 in the original paper) for an
individual experiment.
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5. Differences in Figure 12. The reproducibility machine has more cores
and thus batch runs on the CPU are faster. On the other hand, its GPU
is worse, so the GPU runs are slower. This means that the differences
between CPU and GPU runs in Figure 12 are not as pronounced as in the
original paper.

6. Reflection on the Reproducibility Setup

Given the use of Docker in the ann-benchmarks setup, it proved difficult to
provide a fully dockerized environment. We thus had to resort to providing a
VM image which uses docker internally. However, this makes it difficult to run
the GPU-based experiments. On the other hand, ann-benchmarks comes with a
very lightweight set of dependencies and is easy to install locally.

ANN-Benchmarks is a work in progress. Many parts of the benchmarking
framework and the benchmarked implementations changed over time. This
present paper describes the steps to reproduce [I], but the very same setup
works for producing all results on more recent versions. In particular, we used
the version of ann-benchmarks from January 2021 to reproduce the old results
from 2017 and 2018. The main difficulty was in tracing the exact versions of the
nearest neigbor search implementations in their GitHub repositories.

Of the time of writing, ann-benchmarks compares 26 different nearest neighbor
search implementations while the experiments in this paper used only 14. See
ann-benchmarks.com for an up-to-date overview of nearest neighbor search
algorithms.

7. Research Artifacts

All research artifacts are provided in [I7]. Tt fixes the version of the code used
to produce the results in this reproducibility study. It also contains tar archives
containing (i) all datasets used in the study, (ii) the original raw results used to
produce [1I, (iii) the raw results that we got from this reproducibility work, and
(iv) a Vagrantfile that spawns an Ubuntu VM ready to run all experiments.
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