Typed Polyadic π-calculus and Sortings

Mikkel Bundgaard and Vladimiro Sassone

April 27 2006
Overview of the talk:

Introduction

In More Detail

Conclusion
The polyadic Pi-calculus and Type Systems

- Generalisation of the monadic π-calculus as we can send a tuple of names in a single communication
- Now communication can “go wrong”, hence the need for a type system
- We consider a variant of the capability types of Pierce and Sangiorgi
- Types are assigned to names and they represent how the name can be used, hence types are tuples of types tagged with either an input, output or both tag
- The type system also has a sub type relation with bounded meets (a crucial property)
(Link) Sortings

- A **sorting** enforces a condition on bigraphs and allows us to only consider bigraphs which satisfy this condition.
- A **link** sortings enforce requirements on the kind of linkage that can occur in a bigraph.
- Technically this is done by adding sorts to the two interfaces of a bigraph and then stipulate a condition which must be satisfied.
Goal

- **Main goal**: To represent type systems using link sortings
- Prior link sortings have “only” been used to ensure that we only consider well-formed bigraphs (Leifer and Milner and O’Conchuir)
- Note the similarity between sortings and type system in both settings we add some information and then use this information to rule out ill-typed processes/bigraphs
Extending the Theory
(or sorted binding bigraphs and sortings in 3 slides)
We will not introduce binding bigraphs in this presentation. However, note that we have augmented the definition with a set of controls for edges (as we want to represent binders with sort annotation). The theory remains unchanged despite this augmentation.

Sorted binding bigraphs

- We add sorts to the interfaces and to edge controls.
- We do not assign sorts to ports, but only the node (control) as a whole.
Weakly reflecting pushout, bounded meets, etc.

- We generalise reflects pushout to weakly reflects pushout (for IPOs) to allow for a larger class of sortings.

- In a sub sorting \(\Sigma = (\Theta, \mathcal{K}, \mathcal{E}, \Phi) \) the sorts are a set \(S \) with a preorder \(\leq \) which must have bounded meets, and we have a bijective function \(\text{pack} : S^* \times Q \to S \), which takes a tuple of sorts and an element from a set \(Q \) and returns a sort.

Condition

- For every link \(l : S \) and for every point \(p : S' \) of \(l \) we must have \(S \leq S' \). (think subsumption)

- For every control \(K \in \mathcal{K} \) with \(\text{ar}(K) = n > 0 \) we associate it with an element \(q \in Q \) and require that \(s_0 \leq \text{pack}(s_1, \ldots, s_{n-1}, q) \), where \(s_0 \) is the sort of the first port on \(K \), \(s_1 \) the sort of the second, and so forth.
Sub sorting creates RPOs, weakly reflects pushout (proven by hand and not using safeness)
 ▶ For this we need that \leq is a preorder and that it has bounded meets

▲ Most sub sorted bigraphs are not opcartesian (simple counterexample using subtyping)

▲ We can use most of the existing results (bisimilarity in ST is a congruence and FPE is adequate for ST)
Polyadic π-calculus with Capability Types
Syntax

\[P ::= 0 \mid P \mid P' \mid (\nu n : S)P \mid \overline{n}\langle m_1, \ldots, m_n \rangle \cdot P \mid n(m_1 : S_1, \ldots, m_n : S_n) \cdot P \]

Reaction Relation

\[n(m_1 : S_1, \ldots, m_i : S_i) \cdot P \mid \overline{n}\langle m'_1, \ldots, m'_i \rangle \cdot Q \rightarrow_{\pi} P\{m'_1, \ldots, m'_i / m_1, \ldots, m_i\} \mid Q \]

- Only allow communication when the parties agree on the length of the tuple being communicated
- We need a type system to ensure this (and that this is preserved under reaction)
We define the set of sorts of our type system using the following rules (letting $I ::= b \mid r \mid w$):

\[
\begin{array}{ccc}
\hline
()^I :: Type & T_1 \ldots T_n :: Type & T_1 \ldots T_n :: Type \\
\hline
(T_1, \ldots, T_n)^r :: Type & (T_1, \ldots, T_n)^w :: Type \\
\hline
T_1 \ldots T_n :: Type & S_1 \ldots S_n :: Type & S_i \leq T_i \\
(T_1, \ldots, T_n; S_1, \ldots, S_n)^b :: Type \\
\end{array}
\]

- Given a $(T_1, \ldots, T_n; S_1, \ldots, S_n)^b$, T_1, \ldots, T_n input capability and S_1, \ldots, S_n output capability.
- Uses the sub sorting relation defined on the next slide.
Sub sort relation

\[
\begin{align*}
&\text{for each } i, \ T_i \leq T'_i \\
&(T_1, \ldots, T_n)^r \leq (T'_1, \ldots, T'_n)^r
\end{align*}
\]

\[
\begin{align*}
&\text{for each } i, \ T_i \leq T'_i \\
&(T'_1, \ldots, T'_n)^w \leq (T_1, \ldots, T_n)^w
\end{align*}
\]

\[
\begin{align*}
&\text{for each } i, \ T_i \leq T'_i \text{ and } S_i \leq S'_i \\
&(T_1, \ldots, T_n; S'_1, \ldots, S'_n)^b \leq (T'_1, \ldots, T'_n; S_1, \ldots, S_n)^b
\end{align*}
\]

\[
\begin{align*}
&\text{for each } i, \ T_i \leq T'_i \\
&(T_1, \ldots, T_n; S_1, \ldots, S_n)^b \leq (T'_1, \ldots, T'_n)^r
\end{align*}
\]

\[
\begin{align*}
&\text{for each } i, \ T_i \leq T'_i \\
&(S_1, \ldots, S_n; T'_1, \ldots, T'_n)^b \leq (T_1, \ldots, T_n)^w
\end{align*}
\]

- r-tag (w-tag) is a **covariant** (contravariant) constructor
- For b-tags the operator is covariant in the first part and contravariant in the second part
- This variant has **bounded meets** (contrary to the original version)
The typing relation

\[
\frac{\Gamma \vdash P : \circ \quad \Gamma \vdash Q : \circ}{\Gamma \vdash P | Q : \circ}
\quad \frac{\Gamma, n : S \vdash P : \circ}{\Gamma \vdash (\nu n : S)P : \circ}
\quad \frac{\Gamma \vdash 0 : \circ}{\Gamma \vdash 0 : \circ}
\]

\[
\frac{\Gamma(n) \leq (\Gamma(m_1), ..., \Gamma(m_n))^w \quad \Gamma \vdash P : \circ}{\Gamma \vdash \overline{n}\langle m_1, ..., m_n \rangle \cdot P : \circ}
\]

\[
\frac{\Gamma(n) \leq (S_1, ..., S_n)^r \quad \Gamma, m_1 : S_1, ..., m_n : S_n \vdash P : \circ}{\Gamma \vdash n(m_1 : S_1, ..., m_n : S_n) \cdot P : \circ}
\]

- Only input and output are interesting
- We can prove the standard properties (weakening, narrowing, subject relation)
Bigraphical Presentation
The sorted BRS $S_{BBG}^{\pi_\leq}$

- The sorted BRS is as expected, where we associate send with a contravariant operator and get with covariant operator.
- y_1, \ldots, y_n have sorts T_1, \ldots, T_n, z_1, \ldots, z_n and the edges they are connected to have sort U_1, \ldots, U_n, and the name x has sort $(U_1, \ldots, U_n; T_1, \ldots, T_n)^b$.
- The family of reaction rules is indexed by n and the sorts.
- However, this is not an optimal solution (for deriving labels).
Translation and standard properties

- we translate a well-typed process $\Gamma \vdash P : \circ$, inductively in the typing derivation of P into the homset $(\epsilon, \langle \Gamma \rangle)$
- $\langle \Gamma \rangle$ shorthand for $\langle 1, (\emptyset), \text{dom}(\Gamma), \Gamma \rangle$

Static correspondence

$\Gamma \vdash P : \circ \equiv_{\pi} \Gamma \vdash P' : \circ$ if and only if $\llbracket \Gamma \vdash P : \circ \rrbracket = \llbracket \Gamma \vdash P' : \circ \rrbracket$

- **weakening**, we can express weakening as tensoring with the idle name in bigraphs
- **narrowing**, we can express narrowing as composition

Dynamic correspondence

For every well-typed process $\Gamma \vdash P : \circ$ and agent $a : \langle \Gamma \rangle$ we have

$\llbracket \Gamma \vdash P : \circ \rrbracket \rightarrow a$ if and only if $P \rightarrow_{\pi} a_{\pi}$
Deriving Labelled Transitions

The labels are characterised using the same method as Jensen and Milner. Given \(a \xrightarrow{L} a' \). We can characterise \(a, L, \) and \(a' \) in the following forms

\[
\begin{align*}
a &= (/Z : \tilde{S})(r_a \mid b) : \langle \text{sort} \rangle \\
L &= \langle \sigma \rangle \mid r_L : \langle \text{sort} \rangle \rightarrow \langle \text{sort}' \rangle \\
a' &= \sigma(/Z : \tilde{S})(y_1, \ldots, y_n / (z_1, \ldots, z_n)c_2 \mid c_1 \mid b) : \langle \text{sort}' \rangle
\end{align*}
\]

where one of the following cases holds:

<table>
<thead>
<tr>
<th>(r_a)</th>
<th>(r_L)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{send}_{xy_1 \ldots y_n} c_1</td>
<td>\text{get}_{x(z_1 \ldots z_n)} c_2</td>
<td>\text{sub} x</td>
</tr>
<tr>
<td>\text{get}_{x(z_1 \ldots z_n)} c_2</td>
<td>\text{send}_{xy_1 \ldots y_n} c_1</td>
<td>\text{sub} x</td>
</tr>
<tr>
<td>\text{send}{x_0y_1 \ldots y_n} c_1 \mid \text{get}{x_1(z_1 \ldots z_n)} c_2</td>
<td>\text{sub} x \mid x_i / x_i^{\tilde{\tau}}</td>
<td>\text{sub} x</td>
</tr>
<tr>
<td>\text{send}{xy_1 \ldots y_n} c_1 \mid \text{get}{x(z_1 \ldots z_n)} c_2</td>
<td>1</td>
<td>\text{sub} x</td>
</tr>
<tr>
<td>\text{get}_{x(z_1 \ldots z_n)} c_2</td>
<td>1</td>
<td>\text{sub} x \mid x_i / x_i^{\tilde{\tau}}</td>
</tr>
</tbody>
</table>
The structure of the label is as expected (for synchronous π-calculus)

But what about the sorts in the outer face of the agent?

Ideally, in a transition $a \xrightarrow{L} a'$, we would like that L only changes the sort of a name if this is absolute necessary (the only name that might need sub sorting is the name communicated over)

However, the way parametric reaction rules are defined creates problems:

- it is not possible to give one minimal sorted parametric rule as this conflicts with the sorting condition
- the grounding of parametric rules (the agent we ground with should be minimal sorted in some sense)
Redundant Labels Cont.

- The IPO property of a transition, \(a \xrightarrow{L} a' \),

\[
\begin{array}{c}
L \\
\downarrow \\
\hline
a \\
C \\
\hline
a'
\end{array}
\]

enforces that the label \(L \) is minimal compared to the given agent \(a \) and the chosen ground reaction rule \(r \).

- but we have an infinite number of reaction rules

- we want to choose the minimal reaction rule (among reaction rules which only differ on the sorts in their outer face), i.e. the reaction rule that introduce the least sub sorting when deriving the label.
Solution

- We look at the sub-TS \mathcal{M} where we only consider labels without redundant sub sorting.

We use that the LTSs have the following properties (letting φ be a resorting):

- In the full TS \mathcal{L} (the TS with redundant labels) $\varphi a \xrightarrow{L} a'$ iff $a \xrightarrow{L\varphi} a'$.

- If $a \xrightarrow{L} a'$ in \mathcal{L} then $\exists \varphi. a \xrightarrow{M} a''$ and $L = \varphi M$ and $a' = \varphi a''$ in \mathcal{M}.

These properties are enough to ensure adequacy of the sub-TS.
Comparison with work on straight transitions

For *straight* transitions

- **problem**: one reaction rule can be matched in several ways
- transitions are only defined up-to isomorphism
- we need not to consider the agent for defining straightness
- every link graph is isomorphic to a straight link graph
- we know that iso-classes are adequate

For labels *without redundant sub sorting*

- **problem**: several (similar) redundant rules for a given agent
- a precise label is defined in terms of the agent involved
- we derive redundant labels and then prove that we can disregard those instead of proving that we can disregard them from the beginning
Conclusions and Future Work

Conclusions:

- It is possible to represent type systems for the π-calculus as sortings in bigraphs and to derive reasonable LTS.
- To this end we have conservatively extended and lifted some of the theory of BRSs (edge controls, weakly reflect pushouts, sortings for binding bigraphs, etc.).

Future Work

- More advanced type systems (linearity, behavioural and recursive types).
- Compare the derived congruence with typed equivalences of Hennessy et al. and Deng and Sangiorgi.
- More general connection between type system features and requirements on sorts (subtyping vs. bounded meets).
Finished