Abstract—Commonly, Technical Debt (TD) is used as metaphor to describe “technical compromises that are expedient in the short term, but that create a technical context that increases complexity and cost in the long term” [1]. Since TD is a metaphor, there does not exist a uniform understanding of what concretely such “technical compromises” are. Practitioners, researchers, and tools all subsume and consider widely different concepts as TD. In this paper, we set out to empirically and exploratorily, identify potential “technical compromises” that increase cost and complexity of modifications of two open-source database systems (Apache Cassandra and GCHQ Gaffer). In a manual investigation of 217 commits that are associated to 40 of the costliest and complex issues, we find that refactorings in the sense of Ur-TD [2] are often related to high complexity of modifications and that high cost is due to organization and coordination of work. Other than that, we cannot identify any “technical compromises” that can explain high cost and complexity of the studied contributions.

I. INTRODUCTION

In 1992, Cunningham describes the iterative development of the financial system WyCash and introduces the Technical Debt (TD) metaphor: “Shipping first time code is like going into debt. A little debt speeds development so long as it is paid back promptly with a rewrite.” [3]. Since then, the metaphor has attracted a lot of attention leading to many different interpretations on what TD actually is. For example, practitioners consider TD anything from “a metaphor for the accumulation of unresolved issues in a software project” [4], “the difference between what was promised and what was actually delivered” [1], over “hard-to-read code, lack of test automation, duplication, tangled dependencies, etc.” [2], to “delayed technical work that is incurred when technical shortcuts are taken” [5]. Tools, such as, SonarQube with the underlying Squale model or CAST AIP, consider TD to be mainly code smells or other structural patterns that can be detected via static analysis [6], [7]. Also researchers present various definitions of TD e.g., as “…the invisible results of past decisions about software that affect its future” [8], “those internal software development tasks chosen to be delayed, but that run a risk of causing future problems if not done eventually” [9], or as “a metaphor referring to the eventual financial consequences of trade-offs between shrinking product time to market and poorly specifying, or implementing a software product, throughout all development phases” [10].

This lack of common understanding of TD and its sources is confirmed by research [11]–[13]. Countering that conceptual fragmentation, the participants of Dagstuhl Seminar 16162 observe that the “software engineering community is converging on defining technical debt as making technical compromises that are expedient in the short term, but that create a technical context that increases complexity and cost in the long term” [1]. Since it is not defined what such technical compromises (TCs) precisely are—they are only generally described as certain “design or implementation constructs” [1], our goal in this paper is to identify concrete instances of TCs that are constitutional for TD. That is, we take the definition of TD [1] literally and apply it in our empirical and exploratory study of two open-source database systems (Apache Cassandra and GCHQ Gaffer). The driving research question for our work is: Can we identify technical compromises that cause work to be most costly and complex?

After introducing two case systems (Sec. II), we manually inspect 40 of the most complex and costly contributions from these two systems (Sec. III). We conclude (Sec. V), finding that developers actually pay back TD in the sense of Cunningham’s intended meaning of TD (now called Ur-TD [2]), i.e., refactorings to adapt systems to new mental models and use cases. Other than that, we cannot identify any TCs that can explain increased cost and complexity of the studied contributions.

The main contribution of this paper is the empirical case study, in which we attempt to distill TC (and thereby TD) out of costly and complex development work (tickets with associated commits). We are not aware of a similar study. A reproduction kit with all code and data is available online.

II. BACKGROUND

1) Terminology: Software projects often organize work via issue trackers, such as, Atlassian’s Jira. Work items in issue trackers are called tickets or issues; we use both terms synonymously. Issues can contain descriptions of any task, e.g., enhancements, new features, bugs, etc. Amongst others, tickets can be created and closed or resolved (we use the latter two synonymously). Tickets can be resolved without any modification of software, e.g., unwanted features or not reproducible bugs are marked as won’t fix (or similar) and the respective issue is closed without a modification of the respective software. Alternatively, tickets are resolved via work that modifies the respective software via one or more commits to the project’s Version Control System (VCS). We call one or more commits that resolve a ticket a contribution. Usually,
We consider into existing software, the Contribution Complexity (CC) [16] to denote the difficulty of contributing and integrating work complexity and cost in the long term. Technical compromises that are expedient in the short term, in the commit message. The commits refer to a corresponding ticket via a ticket identifier. Therefore, we consider cost to be the lead time of contributions.

Note, we use the term refactoring not only for behavior-preserving code transformations but to describe any work that tries to improve maintainability, understandability, etc. [17].

2) Case Systems: Due to limited resources and space, we decide a priori to study only two open-source Database Management Systems (DBMS): Gaffer is a large-scale entity and relation DBMS (graph database), which is created mainly by the British Government Communications Headquarters (GCHQ). Since 2015 it is an open-source project. Its sources are available on Github5, and the project uses Github’s issue tracker6. Originally developed by Facebook [18], Apache Cassandra7 is an open-source, distributed, wide-column store, NoSQL DBMS. In 2008 it was open-sourced and since 2010 it is an Apache top level project. The project uses Jira8 as issue tracker and its sources are available on Github9. Both systems are written mainly in Java and both are under Apache 2.0 license.

III. RQ: CAN WE IDENTIFY TECHNICAL COMPROMISES THAT CAUSE WORK TO BE MOST COSTLY AND COMPLEX?

In this section, we try to identify TCS that may cause contributions to take long or to be complex.

1) Method: We export all tickets, ticket identifiers, creation and closing times, etc., from the projects’ issue trackers and store them as CSV files. For all closed tickets with contribution, we compute the lead time (t_lead) as the difference between ticket closing and creation time.

We identify contributions by mapping commits to respective issues via string references in commit messages. For example, commits refer to tickets via strings matching the regular expressions (Gh\|gh-\)\d+\s\$ or CASSANDRA-\d+\$) in Gaffer and Cassandra respectively.

For all resolved issues, we compute the contribution complexity with the ConCon tool [16], which maps complexities of contributions to a score labeled low, moderate, medium, elevated, or high. Inspired by Basili [15], CC is a metric that indicates, how difficult it is for a developer to modify existing software with a given contribution. The metric combines size-based and entropy-based metrics to assess the size and dispersion of changes (change scattering within files and across methods) and thereby the complexity of contributing and integrating a change to a system.

There are 7,877 and 821 resolved tickets with contribution for Cassandra and Gaffer respectively. Average lead times for Cassandra are ca. 61.9d (min ≈ 2min, max ≈ 2320d, std ≈ 156.6d, median ≈ 9.3d) and for Gaffer are 38.9d (min ≈ 6min, max ≈ 1399d, std ≈ 120.3d, median ≈ 7.2d).

From all closed issues with contributions (filtered for outliers with 1.5 × IQR rule) [19], which excludes those lead times larger than 1.5 times the interquartile range of the 0.25 and 0.75 quantiles, we select the ten issues with longest lead times from Cassandra and Gaffer respectively. Furthermore, we select ten of the most complex CC issues from both systems respectively. That is, we select all issues with high CC score (five from Cassandra and three from Gaffer) and we randomly sample five issues with elevated CC from Cassandra and seven from Gaffer. The 40 selected issues with links to issue trackers and links to the corresponding commits are automatically converted into a Jupyter notebook, which serves as protocol during manual inspection of contributions. During inspection, we first read each of the 40 tickets with associated discussions and thereafter, we examine each of the 217 associated commits on Github directly. We map each contribution to a kind of change to be able to coarsely indicate the purpose of a contribution. We use the four change types corrective (Cor), preventive (Prv), adaptive (Adp), and perfective (Prf) change from ISO/IEC 14764-29 for categorization. Corrective changes address errors and faults in the software, preventive changes increase its understanding and maintainability, adaptive changes adapt software to changing environments, and perfective changes introduce new features and adapt it to evolving requirements.

We have no a priori list of precise “design or implementation constructs” that are TCS [1]. Our goal is to exploratively identify these. This open-ended process is inspired by Guo et al. [21], who let developers identify underspecified TD items, where in our case the main author performs identification of TC. Essentially, we try to identify TCS similar to Kitchenham’s transcendental view of software quality [22], that equates quality to “something that can be recognized but not defined”. During identification, we note our observations in our protocol, decide on the kind of change, and finally, we decide for each contribution if cost or complexity is caused by TCS that have to be circumvented.

2) Results: The left-hand side of Tab. I lists the 20 most costly tickets that are resolved with contributions, 10 for Gaffer and Cassandra respectively. To the right-hand side, the 20 tickets that are resolved with most complex contributions are listed. The full protocol with results is accessible online10.

In Gaffer, issues with longest lead times are closed after 65 to 71 days, which is almost twice the average lead time. These issues are of low, normal, or high priority (prior.), where GH-2024 does not have a priority assigned (n/a). Most of these issues to these issues are perfective changes (Prf), i.e., new features, such as, GH-139, which adds Python scripting support to the database or GH-2145, which adds a feature to return partial walks from the underlying graph. GH-259 and GH-1826 are corrective changes (bug fixes), where the former fixes a link in Javadoc and the latter fixes a serialization bug caused by a dependency. The preventive change GH-516 adds a new
example to Gaffer’s user guide. For Cassandra, most costly issues have lead times of 112/113 days, which is also almost twice the average lead time. These issues are mostly of low and normal priority, only GH-13119 is of priority urgent. Most long lasting contributions to Cassandra are corrective changes, e.g., CAS-8290, which fixes failing system start due to erroneous log file handling, or CAS-10625, which fixes a bug that prevents large dates from being read from the database.

Remember, the most complex issues in Table I are not filtered for lead time outliers. Consequently, multiple lead times of the most complex contributions are bigger than those of the most costly issues. For both systems, there are contributions that implement more than a single change type, e.g., CAS-8290, which fixes failing system start due to erroneous log file handling, or CAS-10625, which fixes a bug that prevents large dates from being read from the database.

Table I

<table>
<thead>
<tr>
<th>Issue</th>
<th>t<sub>lead</sub></th>
<th>Gaffer</th>
<th>Cassandra</th>
<th>Issue</th>
<th>t<sub>lead</sub></th>
<th>Gaffer</th>
<th>Cassandra</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH-2145</td>
<td>71d low high Prf</td>
<td>X</td>
<td>CAS-2691</td>
<td>113d low norm. Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1099</td>
<td>70d elev. norm. Prf</td>
<td>X</td>
<td>CAS-8290</td>
<td>113d low low Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-139</td>
<td>70d inter. high Prf</td>
<td>X</td>
<td>CAS-13700</td>
<td>113d low low Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-516</td>
<td>69d inter. low Prv</td>
<td>X</td>
<td>CAS-10625</td>
<td>112d low low Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-2024</td>
<td>69d inter. n/a Prf</td>
<td>X</td>
<td>CAS-11154</td>
<td>112d norm. Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-334</td>
<td>68d inter. high Prf</td>
<td>X</td>
<td>CAS-30745</td>
<td>112d low low Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-254</td>
<td>68d inter. low Prf</td>
<td>X</td>
<td>CAS-56985</td>
<td>112d inter. low Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1925</td>
<td>68d low low Cor</td>
<td>X</td>
<td>CAS-13119</td>
<td>112d low urgent Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-506</td>
<td>67d elev. norm. Prf</td>
<td>X</td>
<td>CAS-11719</td>
<td>112d inter. norm. Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1628</td>
<td>65d low low high Cor</td>
<td>X</td>
<td>CAS-11152</td>
<td>112d low norm. Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1884</td>
<td>14d high n/a Cor/Prf</td>
<td>X</td>
<td>CAS-15066</td>
<td>79d high high Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-767</td>
<td>35d high norm. Prf</td>
<td>X</td>
<td>CAS-13007</td>
<td>544d high urgent Prv/Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-938</td>
<td>302d high norm. Prf</td>
<td>X</td>
<td>CAS-97075</td>
<td>21a high norm. Prv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-720</td>
<td>4d elev. high Prf</td>
<td>X</td>
<td>CAS-80999</td>
<td>332d high norm. Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-677</td>
<td>20d elev. norm. Prv</td>
<td>X</td>
<td>CAS-11365</td>
<td>6d elev. norm. Cor</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1564</td>
<td>82d elev. critical Adp</td>
<td>X</td>
<td>CAS-14772</td>
<td>63d elev. norm. Cor/Prf/Prv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-1996</td>
<td>32d elev. norm. Prf</td>
<td>X</td>
<td>CAS-24122</td>
<td>320e low low Adp</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-622</td>
<td>34d elev. norm. Prf</td>
<td>X</td>
<td>CAS-59852</td>
<td>5d elev. norm. Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH-955</td>
<td>92d elev. n/a Cor</td>
<td>X</td>
<td>CAS-79200</td>
<td>264d elev. norm. Prf</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Analysis: Many of the contributions of long lasting issues are small. The many low and intermediate CC scores indicate small and concise changes. For example, a) commit 6c5e5a1 resolves CAS-13119 (t_{lead} ≈ 112d) by adding a single truth value as argument to a method call, which fixes a bug in a test. The issue is created on Jan. 11th 2017 together with a fix but it is first reviewed on May 3rd. b) Commit 400869 adds an extra parameter to a method call, which fixes inconsistent behavior between different versions of the database’s query language (CAS-11152 t_{lead} ≈ 112d). The issue is created on Feb. 16th 2016 together with a fix but it is first reviewed on May 31st. c) Commits 21a06c and d) 02e127 remove a link in Javadoc to resolve GH-259 (t_{lead} ≈ 68d). The issue is created on Jun. 10th 2016, the first commits are from Aug. 16th, and a day later the issue is closed after review.

More complex contributions with long lead times follow similar distributions of work activity. For example, 27 commits add support for visibilities to Gaffer’s Parquet store GH-1099, created on Jul. 26th 2017). It is a non-trivial feature, since the concept of visibility depends on the concept of authorizations, both of which have to be implemented with corresponding tests. The commit that introduces most of the new functionality (261165) is a refactoring that decouples two packages by moving code across them. Subsequently, the new feature evolves into its final form, mainly via code structure reorganization (2f1d6c7, a rename refactoring (400869), addition and modification of tests (5c31a1), or clean up code (73bd96), etc. The first commit of the contribution is from Sep. 4th 2017, most development happens between Sep. 6th to 14th, and after review (Sep. 19th), the contribution is merged to the main branch and the ticket is closed on Oct. 4th. For none of the issues with longest lead times, we can identify TC as a cause. Long lead times appear to be caused mainly by the way work is organized and coordinated, see the long periods of inactivity illustrated above.

Two of the most complex contributions are, e.g., CAS-8099 and GH-538. All the complex contributions (Table I to the right) that we examine, follow a similar pattern: A bigger change that addresses the core of the issue is accompanied by many smaller changes that integrate the solution into its environment or that evolve it into a final state. Due to constrained space, we illustrate this only for GH-538 and CAS-8099.

Ticket GH-538 requires implementation of a second –more RESTful– web-API besides the current one. The contribution that resolves the issue consists of 32 commits, which introduce the new feature and refactor the previous API accordingly. The first commit of the contribution introduces a major share of the code of the new API, where much seems to be generated by the API development tool Swagger. The initial commit is followed by many smaller changes, which add and adapt tests (e.g., 112d low norm. Cor/Prf/Prv, 112d high norm. Prf/Prv/Prv), adapt code styling (112d low norm. Prf/Prv/Prv), or clean up code (e.g., 13e5b2). The commit that introduces the major share of the new API and that has to be integrated and harmonized with the existing solution. Alone the many tests for the new API and those that have to be adapted to accommodate two versions of an API render the contribution complex.

A large scale refactoring of Cassandra’s storage engine CAS-8099, created Oct. 10th 2014, resolved Aug. 28th 2015) is realized by one of the most complex contributions (CAS-8099). The author explains in a guide to the refactoring (458798), and in a blog post (GH-1099) that the original storage engine was processing tables as maps of ordered maps of binary data (illustrated as Map< byte[] >, SortedMap< byte[] >, Cell>>, where the byte
array contains partition keys and a Cell contains binary data and a timestamp for conflict resolution. He describes, that the original design was chosen due to its simplicity and since it “was an almost direct match for the original API of Cassandra”. After the implementation of the Cassandra Query Language (CQL) (CAS-1703 in version 0.8.0-beta1), developers realize that storage engine and CQL operate on different abstractions and therefore, the original version of the storage engine cannot effectively handle all expressible queries. Consequently, developers decide to refactor the storage engine to process maps of ordered maps of Clustering$\$ and Row$\$ (Map<byte[], SortedMap<Clustering, Row>>), where Row$\$ aggregate more data than the previous Cells and Clustering$\$ aggregate more than the previous partition keys. The contribution that implements this refactoring is so complex, since the corresponding new abstractions (classes) have to be implemented (e.g., Clustering.java 66ce38 or Row.java 00e9db) together with multiple other new super- and subclasses. The new abstractions have to be integrated into code that refers to previous abstractions (e.g., ea9ab6 or 07a665), the storage format has to be refactored (e.g., 2323a7f or c6a66e or 24deb6), and in total 185 tests have to be removed (e.g., 49x470, adapted (e.g., 154080), or added (e.g., 154080).

The original version of the storage engine is not a TC. Originally, it implemented the most apt representation of a solution. First a later change (introduction of CQL) revealed a more appropriate new representation, which developers implement with the refactoring. For none of the most complex issues, we can identify TCs causing them. Instead, we observe that complexity is caused by the size of solutions in combination with required work for evolution or integration and respective tests.

4) Threats to Validity: We are no experts in either of the two systems. However, we believe that the main author who performed the manual inspection of contributions is sufficiently experienced to identify TCs. On top of eight years computer science education and more than five years teaching in programming and software engineering, he has more than five years of experience as professional software developer.

We examine only a tiny sample of 40 issues. A larger sample size might have yielded contributions containing TCs. Furthermore, the set of selected contributions depends on the ability of the two metrics lead time and CC score to accurately represent cost and complexity. However, the project’s issue trackers do not provide more precise time information and we are not aware of an alternative to ConCom to automatically determine the complexity of contributions.

Filtering lead times for outliers before examining costly contributions may hinder identification of TCs. However, we decide a priori that we do not want to manually examine abandoned or low importance contributions, which cause extreme lead times [23]. If long lead times are caused by high complexity, then we identify such issues via CC scores as illustrated in Tab.1.

The risk of “overlooking” potential TCs or searching in the wrong place can be minimized by extending the set of cases, the amount of studied contributions, and the amount of investigators inspecting them. We plan that as future work.

Open-source systems are less-likely subject to tight schedules, which may cause TC compared to proprietary software. Our case systems that are developed by a public agency or originally by a large company presumably resemble proprietary software in that regard.

IV. RELATED WORK

Previous work on TC identification relies on the assumption that small code patterns (code smells) that can be detected via static code analysis have detrimental effects on maintainability. For example, a study of 745 systems with CAST AIP (and its 1,200 static analysis rules) [24], an analysis of Hadoop with FindBugs, codevizard, etc. [25] or a study of 66 open-source Java systems with SonarQube [26] all identify the number of certain code patterns and equate these to TC. Similarly, Tufano et al. [27] associate code smells to TC when showing that these are usually introduced on artifact creation and remain in them. However, it is unclear if code patterns that are identifiable by static analysis rules increase development cost and complexity over time. For example, Abbes et al. [28] show that first the combination of two object-oriented anti-patterns increase cost of maintenance whereas Sjöberg et al. [29] demonstrate a limited effect of code smells on increased maintenance effort. Therefore, we decide in this study to investigate the reverse, i.e., can TC be identified in most costly and complex contributions.

Recent work on self-admitted TD aims to identify TCs via matching text patterns in source code that hint at sub-optimal solutions [30] or via correspondingly labeled tickets in issue trackers [31]. Xavier et al. [31] find, that design and architecture related refactorings are the main TD issues in issue trackers. That corresponds to our finding of large refactorings, i.e., resolution of Ur-TD [2], amongst the most complex contributions.

Researchers devise TD into various sub-forms, e.g., design debt, architecture debt, etc. [9]. However, it remains unclear what precisely constitutes these forms of debt and to which degree they are responsible for increased cost and complexity.

V. CONCLUSIONS & FUTURE WORK

In this paper, we search for TC by identifying “technical compromised TCs that are expedient in the short term, but that create a technical context that increases complexity and cost in the long term” [1]. We manually inspect 40 of the most complex and costly contributions with associated 217 commits from Cassandra and Gaffer to identify TC.

We find that high lead times are caused mainly by organization and coordination of work and that high complexity is caused by the size and non-triviality of applied changes that require thorough testing and integration. Concerning our research question: in the studied contributions, we cannot identify any TC i.e., “design or implementation constructs” [1], that can explain their high cost and complexity.
In future work, we plan to extend this work by studying more contributions, by extending the set of case systems and by verifying our results with the actual developers of the case systems and other domain experts.

1) Implications for Research: Since we cannot find any LCSs that are constituting TD but since we can find that developers apply refactorings when the abstractions encoded in software and mental models diverge, we believe that TD should be used as described in Ur-TD [2]. TD occurs “when my ideas diverge from my code” [2]. The drawback for research is, that Ur-TD “is generally not detectable by static analysis [since] thoughts are stubbornly hidden from static analysis tools” [2]. To identify diverging mental models and their manifestations in software, one would have to switch research focus more on how developers work and interact with software than analyzing software artifacts solely automatically.

2) Implications for Practice: Since TD is such an overloaded metaphor, see Sec. 1, we believe that practitioners should refer directly to the software qualities that are of concern instead of relying on a metaphor. However, an important lesson is that when mental models and the abstractions that are encoded in software diverge too much from each other it is important to “bite the bullet”[12] and apply even large scale refactorings as, for example, done in CAS-8099.

REFERENCES

REFERENCED URLS

[8] https://github.com/apache/cassandra
[14] https://github.com/gchq/Gaffer
[16] https://blog.crispin.se/2013/10/11/henrikkinenberg/rood-and-bad-technical-debt