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Computer arithmetics 
•  Computer numbers are cleverly designed, 

but 
– Very different from high-school mathematics 
– There are some surprises 

•  Choose representation with care: 
– When to use int, short, long, byte, … 
– When to use double or float 
– When to use decimal floating-point 
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Overview, number representations 
•  Integers 

– Unsigned, binary representation 
– Signed 

•  Signed-magnitude 
•  Two’s complement (Java and C# int, short, byte, …) 

– Arithmetic modulo 2n 
•  Floating-point numbers 

–  IEEE 754 binary32 and binary64 
• Which you know as float and double in Java and C# 

–  IEEE 754 decimal128 
•  and also C#’s decimal type 
•  and also Java’s java.math.BigDecimal 
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Unsigned integers, binary representation 

•  Decimal notation 
80510 = 8*102 + 0*101 + 5*100 = 805 
A place is worth 10 times that to the right 

•  Binary notation 
11012= 1*23 + 1*22 + 0*21 + 1*20 = 13 
A place is worth 2 times that to the right 

•  Positional number systems: 
– Base is 10 or 2 or 16 or … 

•  Any non-positional number systems? 

20 1 
21 2 
22 4 
23 8 
24 16 
25 32 
26 64 
27 128 
28 256 
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Binary numbers 

• A bit is a binary digit: 0 or 1 
• Easy to represent in electronics 
•  (But some base-10 hardware in the 

1960es) 
• Counting with three bits: 
 000, 001, 010, 011, 100, 101, 110, 111 

• Computing:  
1 + 1 = 10 
010 + 011 = 101 

“There are 10 kinds 
of people: those 
who understand binary  
and those who don’t” 
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Hexadecimal numbers 
•  Hexadecimal numbers have base 16 
•  Digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F 

32516 = 3 * 162 + 2 * 161 + 5*160 = 805 

Each place is worth 16 times that ... 
•  Useful alternative to binary 

–  Because 16 = 24 

–  So 1 hex digit = 4 binary digits (bits) 

•  Computing in hex: 
A + B = 15 
AA + 1 = AB 
AA + 10 = BA 

160 1 

161 16 

162 256 

163 4096 

164 65536 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 

8 1000 
9 1001 
A 1010 
B 1011 
C 1100 
D 1101 
E 1110 
F 1111 
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Negative integers 
•  Signed magnitude: A sign bit and a number 

– Problem: Then we have both +0 and -0 
•  Two’s complement: Negate all bits, add 1 

• Only one zero 
•  Easy to compute with 
•  Requires known size of number, e.g. 4, 8, 16, 32, 64 bits 

•  Examples of two’s complement, using 4 bits: 
-3 is represented by 1101 because 3 = 00112 so 

complement is 1100; add 1 to get -3 = 11012 

-1 is represented by 1111 because 1 = 00012 so 
complement is 1110; add 1 to get -1 = 11112 

-8 is represented by 1000 because 8 = 10002 so 
complement is 0111; add 1 to get -8 = 10002 
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Integer arithmetics modulo 2n 

•  Java and C# int is 32-bit two’s-complement 
– Max int is 231-1 = 2147483647 
– Min int is –(231) = –2147483648 
–  If x = 2147483647 then x+1 = –2147483648 < x 
–  If n = –2147483648 then –n = n 

00000000000000000000000000000000 = 0 
00000000000000000000000000000001 = 1 
00000000000000000000000000000010 = 2 
00000000000000000000000000000011 = 3 
01111111111111111111111111111111 = 2147483647 
11111111111111111111111111111111 = -1 
11111111111111111111111111111110 = -2 
11111111111111111111111111111101 = -3 
10000000000000000000000000000000 = -2147483648 
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An obviously non-terminating loop? 
int i = 1; 
while (i > 0)  
  i++; 
System.out.println(i); 

Does terminate! 

Values of i: 

1 
2 
3 
… 

2147483646 
2147483647 

-2147483648 
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Binary fractions 
•  Before the point: …, 16, 8, 4, 2, 1 
•  After the point: 1/2, 1/4, 1/8, 1/16, … 

•  But  
–  how many digits are needed before the point? 
–  how many digits are needed after the point? 

•  Answer: Binary floating-point (double, float) 
–  The point is placed dynamically 

0.5 = 0.12 

0.25 = 0.012 

0.75 = 0.112 

0.125 = 0.0012 

2.125 = 10.0012 

7.625 = 111.1012 

118.625 = 1110110.1012 
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Some nasty fractions 
•  Some numbers are not representable as 

finite decimal fractions: 
1/7 = 0.142857142857142857…10 

•  Same problem with binary fractions: 
1/10 = 0.00011001100110011001100…2 

•  Quite unfortunate: 
– Float 0.10 is 0.100000001490116119384765625 
– So cannot represent 0.10 krone or $0.10 exactly 
– Nor 0.01 krone or $0.01 exactly 

•  Do not use binary floating-point  
(float, double) for accounting! 
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An obviously terminating loop? 
double d = 0.0; 
while (d != 1.0) 
  d += 0.1; 

Values of d: 
0.10000000000000000000 
0.20000000000000000000 
0.30000000000000004000 
0.40000000000000000000 
0.50000000000000000000 
0.60000000000000000000 
0.70000000000000000000 
0.79999999999999990000 
0.89999999999999990000 
0.99999999999999990000 
1.09999999999999990000 
1.20000000000000000000 
1.30000000000000000000 

Does not 
terminate! 

d never equals 1.0 
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History of floating-point numbers 
•  Until 1985: Many different designs, anarchy  

– Difficult to write portable (numerical) software 
•  Standard IEEE 754-1985 binary fp 

–  Implemented by all modern hardware 
– Assumed by modern programming languages 
– Designed primarily by William Kahan for Intel 

•  Revised standard IEEE 754-2008 
– binary floating-point as in IEEE 754-1985 
– decimal floating-point (new) 

•  IEEE = “Eye-triple-E” = Institute of Electrical 
and Electronics Engineers (USA) 
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IEEE floating point representation 
•  Signed-magnitude  

–  Sign, exponent, significand: s * 2e-b * c 

•  Representation: 
–  Sign s, exponent e, fraction f (= significand c minus 1) 

Java, C# bits 
e 

bits 
f 

bits 
range bias b sign. 

digits 

float, 
binary32 

32 8 23 ±10-44 to ±1038 127 7 

double, 
binary64 

64 11 52 ±10-323 to ±10308 1023 15 

Intel ext. 80 15 64 ±10-4932 to ±104932 16635 19 

s eeeeeeee fffffffffffffffffffffff 
0 01111111 00000000000000000000000 = 1.0 

float 
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Understanding the representation 
•  Normalized numbers 

– Choose exponent e so the significand is 1.ffffff… 
– Hence we need only store the .ffffff… not the 1. 

•  Exponent is unsigned but a bias is subtracted 
– For 32-bit float the bias b is 127 

s eeeeeeee fffffffffffffffffffffff 
0 00000000 00000000000000000000000 = 0.0 
1 00000000 00000000000000000000000 = -0.0   
0 01111111 00000000000000000000000 = 1.0 
0 01111110 00000000000000000000000 = 0.5 
1 10000101 11011010100000000000000 = -118.625 
0 01111011 10011001100110011001101 = 0.1 
0 01111111 00000000000000000000001 = 1.0000001 
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A detailed example 
•  Consider x = -118.625 
•  We know that 118.625 = 1110110.1012 

•  Normalize to 26 * 1.1101101012 

•  So  
– exponent e = 6, represented by 6+127 = 133 
–  significand is 1.1101101012 

–  so fraction f = .1101101012 

–  sign is 1 for negative 

s eeeeeeee fffffffffffffffffffffff 
1 10000101 11011010100000000000000 = -118.625 
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The normalized number line 

•  Representable with 2 f bits and 2 e bits:   
(So minimum e is -1 and maximum e is 2) 

•  Same relative precision for all numbers 
•  Decreasing absolute precision for large ones 

20 

1.002 x 2-1 = 0.5 
1.012 x 2-1 = 0.625 
1.102 x 2-1 = 0.75 
1.112 x 2-1 = 0.875 
1.002 x 20 = 1 
1.012 x 20 = 1.25 
1.102 x 20 = 1.5 
1.112 x 20 = 1.75 

1.002 x 21 = 2 
1.012 x 21 = 2.5 
1.102 x 21 = 3 
1.112 x 21 = 3.5 
1.002 x 22 = 4 
1.012 x 22 = 5 
1.102 x 22 = 6 
1.112 x 22 = 7 
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Units in the last place (ulp) 
•  The distance between two neighbor numbers 

is called 1 ulp = unit in the last place 

•  A good measure of 
–  representation error 
–  computation error 

•  Eg java.lang.Math.log documentation says 
"The computed result must be  
within 1 ulp of the exact result." 

•    
21 

s eeeeeeee fffffffffffffffffffffff 
0 01111111 00000000000000000000000 = 1.0 
0 01111111 00000000000000000000001 = 1.0000001 

1 ulp 
difference 



Special “numbers” 
•  Denormal numbers, resulting from underflow 
•  Infinite numbers, resulting from 1.0/0.0, Math.log(0), … 
•  NaNs (not-a-number), resulting from 0.0/0.0, Math.sqrt(-1), … 

Exponent e-b Represented number 
–126...127 Normal: ±10-38 to ±1038 

–127 Denormal, or zero: ±10-44 to ±10-38, and ±0.0 
128 Infinities, when f=0…0 
128 NaNs, when f=1xx…xx 

s eeeeeeee fffffffffffffffffffffff 
1 10000101 11011010100000000000000 = -118.625 
0 00000000 00010000000000000000000 = 7.346E-40 
0 11111111 00000000000000000000000 = Infinity 
1 11111111 00000000000000000000000 = -Infinity 
s 11111111 10000000000000000000000 = NaN 
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Why denormal numbers? 
•  To allow gradual underflow, small numbers 
•  To ensure that x–y==0  if and only if  x==y 
•  Example (32-bit float): 

– Smallest non-zero normal number is 2-126 

– So choose x=1.012*2-126 and y=1.002*2-126: 

s eeeeeeee fffffffffffffffffffffff 
0 00000001 01000000000000000000000 = x 
0 00000001 00000000000000000000000 = y 
0 00000000 01000000000000000000000 = x-y 

•  What would happen without denormal? 
– Since x-y is 2-128 it is less than 2-126 

– So result of x-y would be represented as 0.0 
– But clearly x!=y, so this would be confusing 
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Why infinities? 
•  1: A simple solution to overflow 

– Math.exp(100000.0) gives +Infinity 
•  2: To make “sensible” expressions work 

– Example: Compute f(x) = x/(x2+1.0) 
– But if x is large then x2 may overflow 
– Better compute: f(x) = 1.0/(x+1.0/x) 
– But if x=0 then 1.0/x looks bad, yet want f(0)=0 

•  Solution:  
– Let 1.0/0.0 be Infinity 
– Let 0.0+Infinity be Infinity 
– Let 1.0/Infinity be 0.0 
– Then 1.0/(0.0+1.0/0.0) gives 0 as should for x=0 
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Why NaNs? 
•  A simple and efficient way to report error 

– Languages like C do not have exceptions 
– Exceptions are 10,000 times slower than (1.2+x) 

•  Even weird expressions must have a result 
0.0/0.0 gives NaN 
Infinity – Infinity gives NaN 
Math.sqrt(-1.0) gives NaN 
Math.log(-1.0) gives NaN 

•  Operations must preserve NaNs 
NaN + 17.0 gives NaN 
Math.sqrt(NaN) gives NaN 
and so on 
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What about double (binary64)? 
•  The same, just with 64=1+11+52 bits instead of 32 

•  Double 0.1 is really this exact number:   
0.1000000000000000055511151231257827021181583404541015625 

s eeeeeeeeeee ffffffffffffffffffffffffffffffffffffffffffffffffffff 
0 00000000000 0000000000000000000000000000000000000000000000000000 = 0.0 
1 00000000000 0000000000000000000000000000000000000000000000000000 = -0.0 
0 01111111111 0000000000000000000000000000000000000000000000000000 = 1.0 
0 01111111110 0000000000000000000000000000000000000000000000000000 = 0.5 
1 10000000101 1101101010000000000000000000000000000000000000000000 = -118.625 
0 11111111111 0000000000000000000000000000000000000000000000000000 = Infinity 
1 11111111111 0000000000000000000000000000000000000000000000000000 = -Infinity 
s 11111111111 1000000000000000000000000000000000000000000000000000 = NaN 
0 00000000000 0001000000000000000000000000000000000000000000000000 = 1.39E-309 
0 01111111011 1001100110011001100110011001100110011001100110011010 = 0.1 
0 01111111110 1111111111111111111111111111111111111111111111111111 = 0.999...9 

0.1+0.1+0.1+0.1+0.1+ 
0.1+0.1+0.1+0.1+0.1, 
clearly not equal to 1.0 
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IEEE addition 
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IEEE subtraction 
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IEEE multiplication 
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IEEE division 
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IEEE equality and ordering 

•  Equality (==, !=) 
–  A NaN is not equal to anything, not even itself 
–  So if y is NaN, then y != y 

•  Ordering: –∞ < –2.0 < –0.0 == 0.0 < 2.0 < +∞ 
–  All ordering comparisons involving NaNs give false 
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Java and C# mathematical functions 

sqrt(-2.0) = NaN sqrt(NaN) = NaN 

log(0.0) = -Inf log(NaN) = NaN 

log(-1.0) = NaN 

sin(Inf) = NaN sin(NaN) = NaN 

asin(2.0) = NaN 

exp(10000.0) = Inf exp(NaN) = NaN 

exp(-Inf) = 0.0 

pow(0.0, -1.0) = Inf pow(NaN, 0.0) = 1 in Java 

•  In general, functions behave sensibly 
– Give +Infinity or –Infinity on extreme arguments 
– Give NaN on invalid arguments 
– Preserve NaN arguments, with few exceptions 
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Rounding modes 
•  High-school: round 0.5 upwards 

– Rounds 0,1,2,3,4 down and rounds 5,6,7,8,9 up 
•  Looks fair 
•  But dangerous: may introduce drift in loops 

•  IEEE-754: 
– Rounds 0,1,2,3,4 down and rounds 6,7,8,9 up 
– Rounds 0.5 to nearest even number (or more 

generally, to zero least significant bit) 
•  So both 1.5 and 2.5 round to 2.0 
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Basic principle of IEEE floating-point 

•  So the machine result of x*y is the rounding 
of the “real” result of x*y  

•  This is simple and easy to reason about 
•  … and quite surprising that it can be 

implemented in finite hardware 

“Each of the computational operations … shall be 
performed as if it first produced an intermediate 
result correct to infinite precision and unbounded 
range, and then rounded that intermediate result to 
fit in the destination’s format”  
(IEEE 754-2008 §5.1) 
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Loss of precision 1 (ex: double) 
•  Let double z=253, then z+1.0==z  

– because only 52 digits in fraction 
0 10000110100 0000000000000000000000000000000000000000000000000000=z 
0 10000110100 0000000000000000000000000000000000000000000000000000=z+1 
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Loss of precision 2 (ex: double) 
Catastrophic cancellation 

•  Let v=9876543210.2 and w=9876543210.1 
•  Big and nearly equal; correct to 16 decimal places 
•  But their difference v–w is correct only to 6 places 
•  Because fractions were correct only to 6 places 

v   = 9876543210.200000 
w   = 9876543210.100000 
v-w =          0.10000038146972656 

Garbage, 
why? 

0 10000100000 0010011001011000000010110111010100011001100110011010 = v 
0 10000100000 0010011001011000000010110111010100001100110011001101 = w 

0 01111111011 1001100110011010000000000000000000000000000000000000 = v-w 

Would be non-zero in full-precision 0.1 
38 

v   = 9876543210.20000076293945312500 
w   = 9876543210.10000038146972656250 
v-w =          0.10000038146972656250  

The exact 
actual 

numbers 
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Case: Solving a quadratic equation 
•  The solutions to ax2 + bx + c = 0 are  

 when d = b2 – 4ac > 0. 
•  But subtraction -b±√d may lose precision 

when b2 is much larger than 4ac; in this case 
the square root is nearly b.   

•  Since √d >= 0, compute x1 first if b<0,  
else compute x2 first 

•  Then compute x2 from x1; or x1 from x2 
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Bad and good quadratic solutions 

•  When a=1, b=109, c=1 we get 
–  Bad algorithm: x1 = -1.00000e+09 and x2 = 0.00000 
–  Good algorithm: x1 = -1.00000e+09 and x2 = -1.00000e-09 

double d = b * b - 4 * a * c; 
if (d > 0) {  
  double y = Math.sqrt(d); 
  double x1 = (-b - y)/(2 * a); 
  double x2 = (-b + y)/(2 * a); 
} 

double d = b * b - 4 * a * c; 
if (d > 0) { 
  double y = Math.sqrt(d); 
  double x1 = b > 0 ? (-b - y)/(2*a) : (-b + y)/(2*a); 
  double x2 = c / (x1 * a); 
} else ... 

Bad 

Good 

Bad 
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Case: Linear regression 
•  Points (2.1, 5.2), (2.2, 5.4), (2.4, 5.8) have 

regression line y = α + β x with α = 1 and β = 2 
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Bad way to compute α and β 

•  This recipe was used for computing by hand 
•  OK for points near (0,0) 
•  But otherwise may lose precision because it 

subtracts large numbers SSX and SX*SX/n 

double SX = 0.0, SY = 0.0, SSX = 0.0, SXY = 0.0; 
for (int i=0; i<n; i++) { 
  Point p = ps[i]; 
  SX += p.x; 
  SY += p.y; 
  SXY += p.x * p.y; 
  SSX += p.x * p.x; 
} 
double beta = (SXY - SX*SY/n) / (SSX - SX*SX/n); 
double alpha = SY/n - SX/n * beta; 

Large and 
nearly 

identical 

Large and 
nearly 

identical 
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Better way to compute α and β 
double SX = 0.0, SY = 0.0; 
for (int i=0; i<n; i++) { 
  Point p = ps[i]; 
  SX += p.x; 
  SY += p.y; 
} 
double EX = SX/n, EY = SY/n; 
double SDXDY = 0.0, SSDX = 0.0; 
for (int i=0; i<n; i++) { 
  Point p = ps[i]; 
  double dx = p.x - EX, dy = p.y - EY; 
  SDXDY += dx * dy; 
  SSDX += dx * dx; 
} 
double beta = SDXDY/SSDX; 
double alpha = SY/n - SX/n * beta; 

•  Mathematically equivalent to previous one, 
but much more precise on the computer 
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Example results 

Move Bad Good Correct 

0 
α 1.000000 1.000000 1.000000 

β 2.000000 2.000000 2.000000 

10 M 
α 3.233333 -9999998.99 -9999999.00 

β 1.000000 2.000000 2.000000 

50 M 
α  50000005.47 -49999999.27 -499999999.00 

β -0.000000 2.000000 2.000000 

•  Consider (2.1, 5.2), (2.2, 5.4), (2.4, 5.8) 
•  And same with 10 000 000 or 50 000 000 

added to each coordinate 

Wrong 

Very 
wrong!! 
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An accurate computation of sums 
•  Let double[] xs = { 1E12, -1, 1E12, -1, … } 
•  The true array sum is  9,999,999,999,990,000.0 

double S = 0.0; 
for (int i=0; i<xs.length; i++) 
  S += xs[i]; 

double S = 0.0, C = 0.0; 
for (int i=0; i<xs.length; i++) { 
  double Y = xs[i] - C, T = S + Y; 
  C = (T - S) - Y; 
  S = T; 
} 

20,000 elements 

Naïve sum, 
error = 992  

Kahan sum, 
error = 0  

C is the error 
in the sum S 

Note that C = (T-S)-Y = ((S+Y)-S)-Y may be non-zero 
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C# decimal, and IEEE decimal128 
•  C#’s decimal type is decimal floating-point 

–  Has 28 significant digits 
–  Has range ±10-28 to ±1028 
–  Can represent 0.01 exactly 
–  Uses 128 bits; computations are a little slower 

•  IEEE 754 decimal128 is even better 
–  Has 34 significant (decimal) digits 
–  Has range ±10-6143 to ±106144 
–  Can represent 0.01 exactly 
–  Uses 128 bits in a very clever way (Mike Cowlishaw, IBM) 

•  Java’s java.math.BigDecimal 
–  Has unlimited number of significant digits 
–  Has range ± 10-21474836478 to ±102147483647  
–  Computations are a lot slower 

Use decimal for 
accounting 

(dollars, euro, 
kroner)! 
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Floating-point tips and tricks 
•  Do not compare floating-point using ==, != 

–  Use Math.abs(x–y) < 1E-9 or similar 
–  Or better, compare difference in ulps (next slide)    

•  Do not use floating-point for currency ($, kr) 
–  Use C# decimal or java.math.BigDecimal 
–  Or use long, and store amount as cents or øre 

•  A double stores integers <= 253-1 ≈ 8*1015 exactly 
•  To compute with very small positive numbers 

(probabilities) or very large positive numbers 
(combinations), use their logarithms 
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Approximate comparison 
•  Often useless to compare with "==" 
•  Fast relative comparison: difference in ulps 
•  Consider x and y as longs, subtract: 

48 

static boolean almostEquals(double x, double y, int maxUlps) { 
  long xBits = Double.doubleToRawLongBits(x), 
       yBits = Double.doubleToRawLongBits(y), 
       MinValue = 1L << 63; 
  if (xBits < 0) 
    xBits = MinValue - xBits; 
  if (yBits < 0) 
    yBits = MinValue - yBits; 
  long d = xBits - yBits; 
  return d != MinValue && Math.abs(d) <= maxUlps; 
} 

1.0 == 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 is false 
almostEquals(1.0, 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1, 16) is true 
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What is that number really? 
•  Java's java.math.BigDecimal can display 

the exact number represented by double d: 

49 

new java.math.BigDecimal(d).toString() 

double 0.125 = 0.125 
float 0.125f = 0.125 

double 0.1  
       = 0.1000000000000000055511151231257827021181583404541015625 
float 0.1f  
       = 0.100000001490116119384765625 

double 0.01  
       = 0.01000000000000000020816681711721685132943093776702880859375 
float 0.01f  
       = 0.00999999977648258209228515625 
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