
Software Programmable DSP Platform Analysis
Episode 1, Tuesday 12 April 2005

Welcome!
Course Contents and Goals
Administrivia

Compilation environment
Preprocessor
Compiler
Assembler & Linker

Compiler Architecture

Lexical Analysis
Tokens
Regular Expressions

Syntactical Analysis
Context Free Grammars
Derivations
Parse Trees

Andrzej Wąsowski Episode 1: Welcome! 1–2

Goals

You will

• undestand the C programming language much better.

• understand compilation error messages much better.

• know abilities and limitations of compilers.
• be able to program more efficiently by:

• producing more efficient code.
• using less time for development.

• be able read compiler documentation with understanding.

• be able to choose appropriate options for compiling your code.

• be able evaluate which compiler is more suitable for your application.

• learn various objective functions for code optimization.

Andrzej Wąsowski Episode 1: Welcome! 1–4

Software Programmable
Signal Processing Platform Analysis

Andrzej Wąsowski

Contents

• Structure of a compiler

• Architecture and instruction set of DSPs/VLIW

• Implementation of a compiler for DSPs

• Lexical analysis

• Parsing

• Diagnostics

• Register allocation

• Code selection

• Code optimization

Andrzej Wąsowski Episode 1: Welcome! 1–3

The course, teachers, lectures, exercises

• Teachers: Andrzej Wąsowski (compilers), Ole Olsen (architecture)

• The course home page is:
http://www.itu.dk/~wasowski/teach/dsp-compiler/

• Contains: resources, schedule, exercise sheets and breaking news.

• Lecture slides are available from the course website (schedule)

• Please do ask questions during lectures.

• Reading: sections from Appel’s Modern Compiler Implementation in C
supplemented by other material distributed during the course.

• Dates: 12 April, 15 April (afternoon only), 19 April, 4 May

• Each module consists of approx. 90 minute lecture and 90 minute
tutorial. A day contains two lectures and two tutorials.

• Exercises give practical experience with the content of the lecture. In
depth understanding requires devoting more time to them than
available at the tutorial session.

Andrzej Wąsowski Episode 1: Welcome! 1–6

Compilation Environment: Example

The following program:

hello.c

#define MSG "Hello, world!\n"
extern int printf(const char *format, ...);
/* A comment before the main function */
int main(int argc, const char * argv[])
{

printf(MSG);
return 0;

}

requires: preprocessing, compiling, assembling and linking with the startup
code as well as with the standard C library.

Andrzej Wąsowski Episode 1: Compilation environment 1–8

Non objectives

You will not
• be able to modify an existing compiler without excessive effort,

• but you will be able to do so after someone introduces you to the
implementation details of this particular compiler.

• be able to implement a compiler from scratch,
• but you will know enough to succeed without greater obstacles when

guided by a comprehensive textbook.

• know how to implement advanced language features of contemporary
programming languages like:

• objects, polymorphism, garbage-collectors, aspects, higher order
functions, etc.

• This topic belongs to CS traditionally, so shop for programming languages
courses in nearby CS departments.

• learn programming languages theory (type systems, semantics, etc)
• learn mathematical linguistics (regular, context-free languages, etc)

• but we will touch the issue at minimal required extent.

Andrzej Wąsowski Episode 1: Welcome! 1–5

Compilation Environment

preprocessor

.c
&

.h
fi
le
s

compiler
single .c

file

.asm

file

librarian

assembler

linker

single .obj

file

obj & library

obj & library

files

files

single library

file

executable or image

file

• Preprocessor expands macrodefinitions (#define’s), joins continued
lines, removes comments (in C), includes files (#include).

• Compiler translates a single source file into assembly file

• Assembler translates .asm file to a binary .o file

• Linker consolidates bits and pieces into a single program.

• Modern linkers can perform global program optimizations, too.

Andrzej Wąsowski Episode 1: Compilation environment 1–7

Compilation Environment: Example (compiled)

Hello.c compiled by the GNU C compiler, targeting x86, giving hello.s

.file "hello.c"

.section .rodata
.LC0: .string "Hello, world!\n"

.text
.globl main

.type main, @function
main: pushl %ebp

movl %esp, %ebp
pushl $.LC0
call printf
leave
movl $0, %eax
ret

• This step is our main point of interest.
• The C program is translated into a flat list of simple instructions.
• Instructions and addresses are symbolic (mnemonics and labels).

Andrzej Wąsowski Episode 1: Compilation environment 1–10

Compilation Environment: Example (assembled)
Assembler resolves symbolic addresses and translates symbolic
instructions to binary values. External symbols remain unresolved. Below
statistics for the object file hello.o assembled from hello.s (GNU C/x86):

SYMBOL TABLE:
00000000 l df *ABS* 00000000 hello.cpp
00000000 l d .text 00000000
00000000 l d .data 00000000
00000000 l d .bss 00000000
00000000 l d .rodata 00000000
00000000 l d .eh_frame 00000000
00000000 l d .note.GNU-stack 00000000
00000000 l d .comment 00000000
00000000 g F .text 00000023 main
00000000 *UND* 00000000 printf
00000000 *UND* 00000000 __gxx_personality_v0

This object (.o) file needs to be linked with the C library or another .o file
that provides the printf function.
In modern compilers the assembly is often incorporated in the compiler.

Andrzej Wąsowski Episode 1: Compilation environment 1–12

Compilation Environment: Example (preprocessed)

hello.c

extern int printf(const char *format, ...);

int main(int argc, const char * argv[])
{

printf("Hello, world!\n");
return 0;

}

• Expanded macros

• Removed comments

• Included files (not in the example)

Andrzej Wąsowski Episode 1: Compilation environment 1–9

Compilation Environment: Example (compiled II)
Hello.c compiled with TI’s cl6x giving hello.asm (fragment):

SL1: .string "Hello, world!",10,0
CALL .S1 _printf
STW .D2T2 B3,*SP-(16)
MVKL .S2 RL0,B3
MVKL .S1 SL1+0,A3
MVKH .S1 SL1+0,A3
STW .D2T1 A3,*+SP(4)
|| MVKH .S2 RL0,B3 ;CALL OCCURS

RL0: LDW .D2T2 *++SP(16),B3
ZERO .D1 A4
NOP 3
RET .S2 B3

• The assembly language of 67xx is different from x86.
• Compiler translates a portable code to a platform specific one.
• Some instructions are put in parallel (STW||MVKH).
• NOP (no operation) instructions are inserted.
• Seemingly nonlinear execution (call place and parameter passing).

Andrzej Wąsowski Episode 1: Compilation environment 1–11

Architecture of a compiler (II)

lexer

parser

semantic analysis

translation

optimizer

register allocation

assembler

ASCII
character

stream
(file)

"v" "o" "i"
"d" " " "m"
"a" "i" "n"
. . .

stream of tokens
(words)

kwVOID id("main") LPAREN
id("int") COMMA id("argc") . . .

abstract syntax
tree (AST)

annotated
abstract syntax
tree (AST)

flat list of
instructions
(triples,
quadraples)

flat list of
instructions

(triples, quadraples)

symbolic
instructions with

labels

r123 ← r12 + r3

jz L5
jmp [r123]
. . .

r123 ← r12 + r3

jz L5
jmp [r123]
. . .

machine
instructions
without local
labels (.o file)

AX ← BX+CX
jz L5
jmp [AX]
. . .

f0 07 67 a4 5d cd . . .

Andrzej Wąsowski Episode 1: Compiler Architecture 1–14

Lexical analysis: Tokens (continued)

The program

float match0 (char *s) /* find a zero */
{

if (!strncmp(s,"0.0", 3))
return 0.;

}

is translated to:
FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN LBRACE IF

LPAREN BANG ID(strncmp) LPAREN ID(S) COMMA STRING(0.0)
COMMA NUM(3) RPAREN RPAREN RETURN REAL(0.0) SEMI

RBRACE EOF

• Lexer also removes comments (done by the preprocessor in C)

• Lexer removes white space from the code

• What are the words we need? How do we specify them?

Andrzej Wąsowski Episode 1: Lexical Analysis 1–16

Architecture of a compiler

• Compilers are divided into layers, called stages or passes.

• Typically a stage inputs some kind of program representation,
processes it and produces a different kind of program representation.

• The first stage typically inputs text files. The last stage typically outputs
machine code, eg. an image that can be stored in EEPROM or a
binary file that can be executed on your dekstop.

• The front parts of the compiler perform analyses, while the back parts
of the compiler perform syntheses.

Andrzej Wąsowski Episode 1: Compiler Architecture 1–13

Lexical analysis: Tokens

• A source program is represented as a sequence of characters

• A lexical analyzer (a lexer) breaks the sequence of characters into a
sequence of corresponding tokens (like “words”).

ID foo n14 last
NUM 73 0 00 515 082
REAL 66.1 .5 10. 1e67 5.5e-10
IF if
NOTEQ !=
LPAR (
RPAR)

Andrzej Wąsowski Episode 1: Lexical Analysis 1–15

Regular Expressions

a An ordinary character stands for itself
ε The empty string.
M‖N Alternation, chosing from M or N
M · N Concatenation, M followed by an N
M∗ Repetition zero or more times, Kleene’s closure
M+ Repetition one or more times
M? Optional
[a − zA − Z] Character set
. Any single character except newline

The longest prefix of current input that can match any regular expression is
taken as the next token.

Andrzej Wąsowski Episode 1: Lexical Analysis 1–18

Lexer Generators

• Lexer generators are programs that given a regular expression
definitions for token types generate a program (lexer) able to translate
a stream of characters to a stream of tokens.

• This is achieved by translating regular expressions to deterministic
finite automata, similar to Mealy machines.

• The translation algorithm is standard and well known. More
information in Appel, section 2.3–2.4.

• A popular free lexer generator targetting C is flex (see also lex in
Appel, section 2.5).

• There exist such tools for any general purpose programming language.

Andrzej Wąsowski Episode 1: Lexical Analysis 1–20

Describing Tokens

An identifier is a sequence of letters and digits; the first character
must be a letter. The underscore _ counts as a letter. Upper- and
lowercase letters are different. If the input stream has been
parsed into tokens up to a given character, the next token is taken
to include the longest string of characters that could possibly
constitute a token. Blanks, tabs newlines, and comments are
ignored except as they serve to separate tokens. Some white
space is requried to separate otherwise adjacent identifiers,
keywords and constants.

• How do we write a program that detects identifiers?

• We need a precise way to describe them first.

• Regular expresssions offer such a way.

Andrzej Wąsowski Episode 1: Lexical Analysis 1–17

Examples of Regular Expressions

if an if keyword (IF)

[a − z][a − z0 − 9]∗ a simple identifier (ID), note: no
capital letters

[0 − 9]+ a decimal number (NUM)

([0 − 9]+”.”[0 − 9]∗)‖([0 − 9]∗”.”[0 − 9]+) a real number (REAL)

(”//”[a − z]∗”\n”)‖(””‖”\n”‖”\t”)∗)∗ whitespace and one line comment

How can we describe the C identifier token? (2 slides ago)

Andrzej Wąsowski Episode 1: Lexical Analysis 1–19

A Sample Straight-Line Programs

a := 5+3;
b := (print (a, a+1), 10+a);
print(b)

Token representation returned by the (hypothetical) lexer:

ID(a) ASSGN DEC(5) PLUS DEC(3) SEMI ID(b) ASSGN LPAR
PRINT LPAR ID(a) COMMA ID(a) PLUS DEC(1) RPAR COMMA
DEC(10) PLUS ID(a) RPAR SEMI . . .

• How we decide whether this token stream constitutes a legal program?

• How do we translate it to a tree?

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–22

A Grammar for Straight-Line Programs

Statement → Statement SEMI Statement
Statement → ID ASSGN Expression
Statement → PRINT LPAR List RPAR

Expression → ID
Expression → DEC
Expression → Expression PLUS Expression
Expression → LPAR Statement COMMA Expression RPAR

List → Expression
List → List COMMA Expression

• Terminals are capitalized

• Nonterminals: Statement, Expression, List

• Statement is the start symbol.

• See also Grammar 3.1, p. 41 in Appel.

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–24

Straight-Line Programs

Consider a simple (toy) language of straight-line programs.
The execution of the following program

a := 5+3;
b := (print (a, a+1), 10+a);
print(b)

produces

8 9
18

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–21

Syntactical Analysis: Parsing

• A parser inputs the stream of tokens produced by the lexer.

• The tokens are analyzed and translated into an Abstract Syntax Tree
• This analysis is performed by finding a deriviation of the program with

respect to a context free grammar of the source language.

• A context free grammar is a set of production rules describing the
language’s syntax.

• A production:

symbol → symbol symbol . . . symbol

• where symbol is either a token, called a terminal symbol now,

• or a nonterminal symbol.

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–23

The Rightmost Derivation for the Example
Statement →1 Statement ; Statement →1 Statement ; Statement ; Statement
→3 Statement ; Statement ; print(List)
→8 Statement ; Statement ; print(Expression)
→4 Statement ; Statement ; print(b)
→2 Statement ; b:=Expression ; print(b)
→7 Statement ; b:=(Statement, Expression); print(b)
→6 Statement ; b:=(Statement, Expression + Expression); print(b)
→4 Statement ; b:=(Statement, Expression + a); print(b)
→5 Statement ; b:=(Statement,10+a); print(b)
→3 Statement ; b:=(print(List),10+a); print(b)
→9 Statement ; b:=(print(List, Expression),10+a); print(b)
→6 Statement ; b:=(print(List,Expression+Expression),10+a); print(b)
→5 Statement ; b:=(print(List ,Expression +1),10+a); print(b)
→4 Statement ; b:=(print(List,a+1),10+a); print(b)
→8 Statement ; b:=(print(Expression,a+1),10+a); print(b)
→4 Statement ; b:=(print(a,a+1),10+a); print(b)
→2 a:=Expression ; b:=(print(a,a+1),10+a); print(b)
→6 a:=Expression+Expression ; b:=(print(a,a+1),10+a); print(b)
→5 a:=Expression+3; b:=(print(a,a+1),10+a); print(b)
→5 a:=5+3; b:=(print(a,a+1),10+a); print(b)

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–26

Parser Generators

• The process of parsing is a reverse of constructing a derivation.

• A parser is usually implemented as a push-down automaton (finite
automaton with a stack).

• There exists several construction algorithms (and several parsing
paradigms). See more in Appel, sections 3.2–3.3.

• Modern parsers are rarely hand-written.

• A parser generator translates a grammar description into a program
that reads a stream of tokens and constructs a parse tree.

• Popular parser generators are yacc, bison, JavaCC, jjtree, ANTLR, . . .

• Such tools exist for all general purpose languages.

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–28

It is often convenient to write character strings and symbols instead of
tokens in the grammar:

1 Statement → Statement ; Statement
2 Statement → ID := Expression
3 Statement → print (List)

4 Expression → ID
5 Expression → DEC
6 Expression → Expression + Expression
7 Expression → (Statement , Expression)

8 List → Expression
9 List → List , Expression

A stream of tokens constitutes a syntactically legal program in this
language if it can be derived using the above rules.

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–25

Parse Trees

a := 5 + 3 ; b := (print (a , a + 1) , 10 + a) ; print (b)

Statement

Statement Statement

Statement StatementASSGNID Expression

Expression PLUS Expression ID ASSGN Expression PRINT LPAR List RPAR

DEC DEC

SEMI

LPAR Statement COMMA RPARExpression

SEMI

PRINT LPAR List RPAR

ListCOMMA Expression

Expression

ID

Expression

PLUS
Expression

ID DEC

Expression

IDExpression

PLUS

Expression

DEC ID

• Sanitized parse tree (also called abstract syntax tree, or AST) is the
first, and perhaps most important form of the program representation
in the entire compilation process.

Andrzej Wąsowski Episode 1: Syntactical Analysis 1–27

