
Intermediate Representation

• After initial analyses, abstract syntax tree is
translated to an intermediate representation.

• Single back-end is used for several languages,
• and single front-end for various targets

(important for companies like TI)
• IR is a form of a tree-like language with limited

instruction set.
• Later the back-end shall translate IR to the

target instruction set.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–2

Translating a Constant

Each integer constant i is translated to CONST i.
For example:

τ() = CONST 

Should we have more types of constants (for
example floats), a distinct constructor for each of
them should be included in the IR.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–4

Software Programmable DSP
Platform Analysis
Episode 4, Tuesday 19 April 2005, Ingredients

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

Andrzej Wąsowski Episode 3: Ingredients 3–1

IR: Expressions
CONST i integer constant i

NAME n symbolic label n

TEMP t temporary (think abstract register)

OPE(e,e) evaluate e, e, return e OPE e

OPE ∈ {+,−,XOR,∗,/,&, |,�,�}

MEM(e,n) content of n cells at address e.
Often drop n to avoid clutter

CALL(f , l) Call function at address f
with arguments on list l

ESEQ(s,e) execute stmt s, evaluate expr e,
return value of e.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–3

Unary Minus

τ(−e1) = CONST 0− τ(e1)

CONST 0

τ(e)

−

Andrzej Wąsowski Episode 3: Intermediate Representation 3–6

• If v is allocated in register ri then the translation
is simply TEMP ri.

• Typically all variables that need explicit
addresses would be allocated on the stack,

• and all the others in abstract registers
(temporaries).

• Only at the later optimization steps abstract
registers will be mapped to finite number of
physical registers.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–8

Translating Addition

τ(e + e) = +(τ(e),τ(e))

τ(e1) τ(e2)

+

Andrzej Wąsowski Episode 3: Intermediate Representation 3–5

Variable Access

A stack allocated variable v at offset k:

MEM(+,TEMP fp,CONST k)

MEM

+

TEMP fp CONST k

Andrzej Wąsowski Episode 3: Intermediate Representation 3–7

IR: Statements
MOVE(TEMP t,e) move value of e to register t

MOVE(MEM(e,n),e) store value of e in n cells at e

EXP e compute value of e, discard it

JUMP e jump to program location
returned by e

CJUMP (o,e,e, t, f) compare values of e,e using
operator o, jump to label t or f
depending on the result.
o ∈ {=, ! =,<,>,≤,≥}

SEQ(s,s) execute s and then s

LABEL n label n before next instruction

Andrzej Wąsowski Episode 3: Intermediate Representation 3–10

Let ltrue be the label of the code to be executed if the
condition is true, and l f alse otherwise. Then:

τ(a > b‖c < d) =

SEQ(CJUMP(>,τ(a),τ(b), ltrue, lnext),

SEQ(LABEL lnext ,

CJUMP(<,τ(c),τ(d), ltrue, l f alse)))

where lnext is a fresh, local label.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–12

Translating Conditions (first attempt)

τ(a > b‖c < d) = ‖(> (τ(a),τ(b)),< (τ(c),τ(d))))

τ(a) τ(b) τ(c) τ(d)

‖

> <

Does not preserve C semantics: no short circuit.
Needs control statements to achieve lazy evaluation.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–9

Conditions Revisitted

• Use conditional jump (CJUMP) to shortcut
computation of disjunction.

• Only compute the right side, if the left side fails:
• Compute the left side,
• and if it is true, jump over the computation of

the right operand.
• If the left side gives fall, jump to the

computation of the right operand.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–11

While Loops

A while loop: while (e) b;

Naturally expands to:

test:if (!e)
goto done;

b;
goto test;

done:. . .

but more popular is:

goto test;
beg: b;
test:if (e)

goto
beg;

1 CJUMP per iteration
+ 1 JUMP per iteration

1 CJUMP per iteration
+ 1 JUMP to initialize

Andrzej Wąsowski Episode 3: Intermediate Representation 3–14

• More patterns of translation in Appel,
section 7.2.

• The IR language does not have the construct
for function definition (but it has calls).

• IR is suitable for representing function bodies.
• In this way platform dependent calling

conventions (entry and exit code) do not pollute
our IR, which should be general.

• This code is added by the compiler later on.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–16

τ(a > b‖c < d):

SEQ

CJUMP SEQ

>

τ(a) τ(b)

NAME ltrue NAME lnext LABEL lnext CJUMP

<

τ(c) τ(d)

NAME ltrue NAME l f alse

Andrzej Wąsowski Episode 3: Intermediate Representation 3–13

SEQ

JUMP SEQ

NAME ltest LABEL lbegin SEQ

τ(b)

SEQ

LABEL ltest CJUMP

=

τ(e)

CONST  NAME ldone NAME lbegin

The rightmost variant translated to IR.

Andrzej Wąsowski Episode 3: Intermediate Representation 3–15

And LDH *--A5[A1],A7 is even more complex

SEQ

MOVE MOVE

TEMP A5 + MEM TEMP A5

TEMP A5 � TEMP A7

TEMP A1 CONST 

(source: spru189, pp. 3-68—3-71)

Andrzej Wąsowski Episode 3: Instruction Selection 3–18

name semantics c6xxx instr.

LOAD ri ←M [rj +c] LDW ∗rj [c], ri

MEM

+

CONST

MEM

+

CONST

MEM

The last pattern matches for c = 0.

Andrzej Wąsowski Episode 3: Instruction Selection 3–20

Instruction Selection
A node in the IR tree represents a single operation.
A target (VLIW) instruction represents many.

Example LDW on C67x: LDW *-A5[A1],A7

Corresponds (roughly) to:

(spru189 pp. 3-68—3-71)

MOVE

MEM TEMP A7

−

TEMP A5 TEMP A1

Andrzej Wąsowski Episode 3: Instruction Selection 3–17

Target Instructions

name semantics c6xxx instr. pattern

ADD ri ← rj + rk ADD rj , rk , ri

+

MUL ri ← rj ∗ rk MPY rj , rk , ri

∗

ADDI ri ← rj +c ADD c, rj , ri

+

CONST

+

CONST

Andrzej Wąsowski Episode 3: Instruction Selection 3–19

name semantics c6xxx instr.

MOVEM M [rj]←M [ri] n/a

MEM

MOVE

MEM

MOVEM does not seem to have a direct C6xxx
counterpart, but we shall assume that we have it, for
simplicity of the examples.

Andrzej Wąsowski Episode 3: Instruction Selection 3–22

Maximal Munch
MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

MOVEM

ADD

LOAD

MUL

ADDI

• Tile the tree with instruction patterns
• Always possible, but solutions is not unique.
• Maximal Munch finds the largest tile for the root
• and applies itself recursively to the subtrees.

Andrzej Wąsowski Episode 3: Instruction Selection 3–24

name semantics c6xxx instr.

STORE M [rj +c]← ri STW ri ,∗rj [c]

MEM

+

CONST

MEM

+

CONST

MOVE MOVE MOVE

MEM

The last pattern matches for c = 0.

Andrzej Wąsowski Episode 3: Instruction Selection 3–21

a[i*4] = x

MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

Andrzej Wąsowski Episode 3: Instruction Selection 3–23

Another Tiling of the Same Tree
MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

STORE

ADD

LOAD

MUL

ADDI

(Fig. 9.2 left)

• Bigger by one instruction, but may be faster.
• Maximal Munch does not guarantee optimality.
• Optimal algorithm based on dynamic

programming, Appel p. 197.
Andrzej Wąsowski Episode 3: Instruction Selection 3–26

Linearization of the Tree

• Maximal Munch did the tiling top down.
• Translation to a sequence of instructions

proceeds bottom up.
• First instantiate leaves, then parents.
• The outcome:

LDW *FP[a], r

MPY 4, i, r

ADD r, r, r

ADDI x, FP, r

MOVEM ∗r←∗r

Andrzej Wąsowski Episode 3: Instruction Selection 3–25

