
From Abstract To Concrete Registers

• Instruction selection has left us with an
assembly program that uses abstract registers
(unboundedly many).

• But target architecture only has a small fixed
set of registers...

• We want to map numerous temporaries (TEMP)
into as few concrete registers as possible.

• Obviously we can only assign the same register
to two temporaries, if we do not need both of
them at the same time.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–2

Control-Flow Graphs

• Each statement is a node
• An edge from node x to y if statement x can be

directly followed by y during execution.

a← 0
L1 :b← a+1

c← c +b
a← b ∗2
if a < N goto L1

return c

a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

Andrzej Wąsowski Episode 4: Liveness Analysis 4–4

Software Programmable DSP
Platform Analysis
Episode 5, Tuesday 19 April 2005, Ingredients

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling

Cl6x Compiler Intrinsics

Andrzej Wąsowski Episode 4: Ingredients 4–1

Liveness Analysis

• Identify temporaries that cannot be active at the
same time.

• This is achieved by liveness analysis.
• Liveness analysis works on control flow graphs.
• In practice the flow graph is created from the

abstract machine program,
• but for clarity of presentation we shall use

simple language of expressions and
assignments in this lecture.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–3



a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

• a is live in nodes 2,5.
• Take one step back.
• 4 and 1 kill a.
• Live range of a is
{1→ 2,4→ 5→ 2}.

• Note: the value of a in
node 3 is completely
useless.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–6

• out-edges[n]: all edges that lead to a successor
node of n.

• in-edges[n]: all edges that lead from a
predecessor node of n.

• pred [n]: set of all predecessors of n.
• succ[n]: set of all successors of n.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–8

Live Variable
A variable is live at a given program point if its
current value may be used in later execution.

a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

• b is live in node 4.
• 4 does not define b so

b is live on input to 4.
• 3 does not define b so

b is live in 3 and on all
edges incoming.

• 3 defines b and does
not use it. b is not live
in 2. Live range of b is
{2→ 3,3→ 4}.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–5

a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

• c is used in 3,6
• One step back.
• Another one back.
• Note that c is live both

on into and out from
3, as it is both defined
and used in 3.

• c is live on entry to 1.
If c is not a parameter,
then this is a bug
(uninitialized variable).

Andrzej Wąsowski Episode 4: Liveness Analysis 4–7



Definition & Use

• An assignment to a variable x defines x .
• An occurrence of x on the right hand side of the

assignment is called a use of x .

a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

• def (3) = {c}
• use(3) = {b,c}

Andrzej Wąsowski Episode 4: Liveness Analysis 4–10

Calculation of Liveness

in[n] = use[n]∪ (out[n]−def [n])

out[n] =
⋃

s∈succ[n]

in[s].

• initialize all in[n] and out[n] sets to be empty
• compute new sets interpreting equality like

assignments
• repeat the previous step until no growth is

observed in the sets.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–12

a := 0

b := a+1

c := c+b

a := b∗2

a < N

return c

2

1

3

4

5

6

out-edges[5] = {5→ 6,5→ 2} succ[5] = {2,6}
in-edges[2] = {5→ 2,1→ 2} pred[2] = {1,5}

Andrzej Wąsowski Episode 4: Liveness Analysis 4–9

Liveness

Variable x is live on the given edge if there exists a
directed path from that edge to a use that does not
go through any def.

X is live-in in node n if it is live on any of its
in-edges.

X is live-out in node n if it is live on any of its
out-edges.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–11



Interference Graphs

• Variables a and b are in interference if a and b
cannot be allocated in the same memory space
(a register).

• Overlapping live ranges cause interference.
• Architecture constraints may cause

interferences (for example registers
participating in some instruction cannot be from
two different register files).

Andrzej Wąsowski Episode 4: Liveness Analysis 4–14

The same information presented as an
interference graph:

b

c

a

Andrzej Wąsowski Episode 4: Liveness Analysis 4–16

The result for our running example is

node live-in live-out
1 c ac
2 ca bc
3 bc bc
4 bc ac
5 ac ac
6 c

Andrzej Wąsowski Episode 4: Liveness Analysis 4–13

The following are our live ranges:

node live-in live-out
1 c ac
2 ca bc
3 bc bc
4 bc ac
5 ac ac
6 c

• We can see from this that a interferes with b
• and b interferes with c,
• but a does not interfere with c.

Andrzej Wąsowski Episode 4: Liveness Analysis 4–15



Coloring by Simplification
[Kempe 1879]

This is a coloring algorithm based on heuristics (i.e.
does not guarantee optimality):
• Assume K registers (colors) are available.
• Find a node m with less than K neighbors.
• Remove m from the graph (it will be easy to add

it and color, since it has less than K members).
• Repeat previous step until you end up with

isolated nodes.
• Assign them the first color,
• and add nodes back to the graph in the reverse

order, adding colors on the fly.
Andrzej Wąsowski Episode 4: Register Allocation 4–18

Selecting

j k b m

d

ch

g

e

f

g

h

k

d

j

e

b

f

mb m

c

mmm

c

b

f

e

j

d

k

h

g

stack: g h k d j e f b c m (source: Appel, p. 237–238)
Andrzej Wąsowski Episode 4: Register Allocation 4–20

Register Allocation

Assign as few platform registers to many
temporaries: do this by assigning a minimal number
of colors to nodes of interference graph, such that
any neighboring vertices have different colors.

b

c

a

b

c

a

A and b have been allocated in the same register.

Andrzej Wąsowski Episode 4: Register Allocation 4–17

Simplifying

j k b m

d

ch

g

e

f

g

h

k

d

j

e

b

f

mb m

c

mm

stack: g h k d j e f b c m (source: Appel, p. 237–238)
Andrzej Wąsowski Episode 4: Register Allocation 4–19



• We ignore the spill during the main run and
continue to find all other spills.

• Code is rewritten to fetch and store from
memory for each definition and use.

• Then liveness analysis and colouring has to be
rerun, as the interference graph has changed
(the new code uses new temporaries).

• Usually this process succeeds after one or two
iterations.

Andrzej Wąsowski Episode 4: Register Allocation 4–22

Compiler Intrinsics [cl6x specific!]

• Intrinsics are special functions that map directly
to inlined C67x instructions.

• They look like a function call.
• Name starts with an underscore.
• Instrinsics are directly compiled to special

instructions.
• Exhaustive list available in section 2.4.1 of

spr198.(Programmer’s Guide).

Andrzej Wąsowski Episode 4: Cl6x Compiler Intrinsics 4–24

Spilling
• Colouring by simplification may fail if the

interference graph is not k -colourable.
• If all nodes left in the graph have degrees

higher than k , an arbitrary node n has to be
removed from the graph (potential spill).

• But since the algorithm cannot be really sure if
this is a real spill, we put the node on the stack
hoping that we can still colour this with just k
colours during selection.

• If selection manages to colour n then fine.
• If neighbours of n already use k : actual spill.
• n has to be stored in memory.

Andrzej Wąsowski Episode 4: Register Allocation 4–21

On Choosing Colors

• A local variable that is not live across the call
should be allocated to the caller save registers
(so only choose from a subsset of colours).

• Similarly a local variable that is live across
several calls should be stored in a callee save
register to avoid multiple saves.

• Register allocation for threes (side-effect free
expressions) can be done much more
efficiently, see Appel p. 257.

Andrzej Wąsowski Episode 4: Register Allocation 4–23



Saturated Addition Intrinsic
In Cl6x you can achieve the same effect with:

r = _sadd(a,b);

• translated directly to SADD instruction
[spru189,3-108]

• no stack frame, entry code, exit code
• efficient execution (1 cycle)
• disadvantage: portability suffers (but C

implementations are provided for workstation
testing, profiling and compilations with other
compilers).

Andrzej Wąsowski Episode 4: Cl6x Compiler Intrinsics 4–26

Saturated Addition in Standard C

int sadd(int a, int b) {
int r;
r = a + b;
if (((aˆb) & 0x80000000) == 0) {

if ((rˆa) & 0x80000000) {
r = (a<0) ? 0x80000000:0x7fffffff;

}
}
return r; }

Many, many cycles...

Andrzej Wąsowski Episode 4: Cl6x Compiler Intrinsics 4–25

How is this implemented?

Most likely
• intrinsics are already recognized at the abstract

syntax level,
• and then are represented in IR by special

IR-instructions.
• this isntructions map directly to target

instructions during instruction selection,
• so code for function calls is not generated.

Andrzej Wąsowski Episode 4: Cl6x Compiler Intrinsics 4–27


