Software Programmable DSP
Platform Analysis

Episode 5, Tuesday 19 April 2005, Ingredients

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling

Cléx Compiler Intrinsics

Andrzej Wasowski | Episode 4: Ingredients

Liveness Analysis

e Identify temporaries that cannot be active at the
same time.

e This is achieved by liveness analysis.
e Liveness analysis works on control flow graphs.

e In practice the flow graph is created from the
abstract machine program,

e but for clarity of presentation we shall use
simple language of expressions and
assignments in this lecture.

Andrzej Wasowski | Episode 4: Liveness Analysis

From Abstract To Concrete Registers

e Instruction selection has left us with an
assembly program that uses abstract registers
(unboundedly many).

o But target architecture only has a small fixed
set of registers...

o We want to map numerous temporaries (TEMP)
into as few concrete registers as possible.

e Obviously we can only assign the same register
to two temporaries, if we do not need both of
them at the same time.

Andrzej Wasowski | Episode 4: Liveness Analysis 4-2

Control-Flow Graphs

e Each statement is a node

e An edge from node x to y if statement x can be
directly followed by y during execution.

a<—>0
Li:b—a+1

c—cC+b

a<—bx2

ifa <N goto L,

return c

Andrzej Wasowski | Episode 4: Liveness Analysis

Live Variable

A variable is live at a given program point if its
current value may be used in later execution.

e bis live in node 4.

¢ 4 does not define b so
b is live on input to 4.

e 3 does not define b so
b is live in 3 and on all
edges incoming.

o 3 defines b and does
not use it. b is not live
in 2. ofbis
{2 —-3,3—4}.

Andrzej Wasowski | Episode 4: Liveness Analysis

a is live in nodes 2,5.
Take one step back.
4 and 1 kill a.

Live range of a is
{1-2,4—-5—2}.
Note: the value of a in
node 3 is completely
useless.

a<N

Andrzej Wasowski | Episode 4: Liveness Analysis

e Cisusedin 3,6
L p— e One step back.
NN = » Another one back.

o « Note that ¢ is live both
c=ctb| | on into and out from
3 | 3, as it is both defined
a'ZJLb*Z and used in 3.
a<N | / e cis live on entry to 1.
p— 1 If ¢ is not a parameter,

then this is a bug
(uninitialized variable).

Andrzej Wasowski | Episode 4: Liveness Analysis

out-edges[n]: all edges that lead to a successor
node of n.

in-edges|n]: all edges that lead from a
predecessor node of n.

pred[n]: set of all predecessors of n.
succ[n]: set of all successors of n.

Andrzej Wasowski | Episode 4: Liveness Analysis

out-edges(5] = {5 — 6,5 — 2} succ|5] = {2,6}
in-edges[2] ={5— 2,1 — 2} pred(2] = {1,5}

Andrzej Wasowski | Episode 4: Liveness Analysis

Liveness

Variable x is live on the given edge if there exists a
directed path from that edge to a use that does not
go through any def.

X is live-in in node n if it is live on any of its
in-edges.

X is live-out in node n if it is live on any of its
out-edges.

Andrzej Wasowski | Episode 4: Liveness Analysis

Defi nition & Use

e An assignment to a variable x defines x.

e An occurrence of x on the right hand side of the
assignment is called a use of x.

Andrzej Wasowski | Episode 4: Liveness Analysis 4-10

Calculation of Liveness

in[n] = use[n] U (out[n] — def[n])

lJ ins].

sesuccn]

out[n]

e initialize all in[n] and out[n] sets to be empty

e CcOompute new sets interpreting equality like
assignments

e repeat the previous step until no growth is
observed in the sets.

Andrzej Wasowski | Episode 4: Liveness Analysis

The result for our running example is

node \ live-in \ live-out
Cc

ac

ca bc
bc bc
ac

ac

bc
ac
C

OOk, WNPEF

Andrzej Wasowski | Episode 4: Liveness Analysis

The following are our live ranges:

node | live-in | live-out

1 C ac
2 ca bc
3 bc bc
4 bc ac
5 ac ac
6 C

¢ We can see from this that a interferes with b
e and b interferes with c,
¢ but a does not interfere with c.

Andrzej Wasowski | Episode 4: Liveness Analysis 4-15

Interference Graphs

e Variables a and b are in interference if a and b
cannot be allocated in the same memory space
(a register).

o Overlapping live ranges cause interference.

o Architecture constraints may cause
interferences (for example registers
participating in some instruction cannot be from
two different register files).

Andrzej Wasowski | Episode 4: Liveness Analysis

The same information presented as an
interference graph:

(®)
@)
©

Andrzej Wasowski | Episode 4: Liveness Analysis

Register Allocation

Assign as few platform registers to many
temporaries: do this by assigning a minimal number
of colors to nodes of interference graph, such that
any neighboring vertices have different colors.

A and b have been allocated in the same register.

Andrzej Wasowski | Episode 4: Register Allocation

Coloring by Simplifi cation

[Kempe 1879]

This is a coloring algorithm based on heuristics (i.e.
does not guarantee optimality):

e Assume K registers (colors) are available.
e Find a node m with less than K neighbors.

e Remove m from the graph (it will be easy to add
it and color, since it has less than K members).

e Repeat previous step until you end up with
isolated nodes.

e Assign them the first color,

e and add nodes back to the graph in the reverse
order, adding colors on the fly.

Andrzej Wasowski | Episode 4: Register Allocation

Simplifying

stack: ghkdjefbcm

Andrzej Wasowski | Episode 4: Register Allocation

(source: Appel, p. 237-238)

4-19

Selecting

stack: ghkdjefbcm (source: Appel, p. 237—238)

Andrzej Wasowski | Episode 4: Register Allocation

4-20

Spilling

e Colouring by simplification may fail if the
interference graph is not k-colourable.

o If all nodes left in the graph have degrees
higher than k, an arbitrary node n has to be
removed from the graph (potential spill).

e But since the algorithm cannot be really sure if
this is a real spill, we put the node on the stack
hoping that we can still colour this with just k
colours during selection.

e If selection manages to colour n then fine.

e If neighbours of n already use k: actual spill.

e N has to be stored in memory.

Andrzej Wasowski | Episode 4: Register Allocation

On Choosing Colors

e Alocal variable that is not live across the call
should be allocated to the caller save registers
(so only choose from a subsset of colours).

o Similarly a local variable that is live across
several calls should be stored in a callee save
register to avoid multiple saves.

e Register allocation for threes (side-effect free
expressions) can be done much more
efficiently, see Appel p. 257.

Andrzej Wasowski | Episode 4: Register Allocation

o We ignore the spill during the main run and
continue to find all other spills.

e Code is rewritten to fetch and store from
memory for each definition and use.

e Then liveness analysis and colouring has to be
rerun, as the interference graph has changed
(the new code uses new temporaries).

o Usually this process succeeds after one or two
iterations.

Andrzej Wasowski | Episode 4: Register Allocation

Compiler Intrinsics [cl6x specifi c!]

e Intrinsics are special functions that map directly
to inlined C67x instructions.

e They look like a function call.
¢ Name starts with an underscore.

e Instrinsics are directly compiled to special
instructions.

o Exhaustive list available in section 2.4.1 of
sprl198.(Programmer’s Guide).

Andrzej Wasowski | Episode 4: Cl6x Compiler Intrinsics

Saturated Addition in Standard C

int sadd(int a, int b) {
int r;
r =a+ b;
if (((@"b) & 0x80000000) == 0) {
if ((r-a) & 0x80000000) {
r = (a<0) ? 0x80000000: Ox7FFFFFff;
}
}
return r; }

Many, many cycles...

Andrzej Wasowski | Episode 4: Cléx Compiler Intrinsics

How is this implemented?

Most likely

e intrinsics are already recognized at the abstract
syntax level,

o and then are represented in IR by special
IR-instructions.

e this isntructions map directly to target
instructions during instruction selection,

e S0 code for function calls is not generated.

Andrzej Wasowski | Episode 4: Cléx Compiler Intrinsics

Saturated Addition Intrinsic

In CI6x you can achieve the same effect with:
r = sadd(a,b);
e translated directly to SADD instruction
[sprul89,3-108]
e Nno stack frame, entry code, exit code
o efficient execution (1 cycle)

o disadvantage: portability suffers (but C
implementations are provided for workstation
testing, profiling and compilations with other
compilers).

Andrzej Wasowski | Episode 4: Cl6x Compiler Intrinsics

