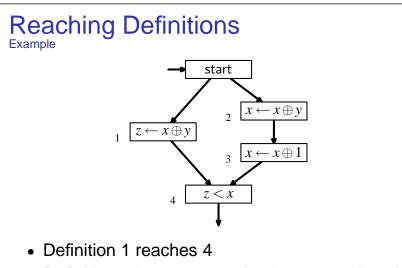
#### Software Programmable DSP Platform Analysis Episode 6, Wednesday 4 May 2005, Ingredients Datafbw Analysis Reaching Definitions Constant Propagation, Copy Propagation Available Expressions, Reaching Expressions Common Subexpression Elimination Dead Code Elimination Dead Code Elimination Use Cop Optimizations What is a loop? Loop Dominators. Loop Invariants and Hoisting Induction Variables. Strength Reduction Loop Unrolling



• Definition 2 does **not** reach 4, because all paths from 2 to 4 path through 3 that kills 2.

Andrzej Wąsowski Episode 6: Dataflow Analysis

### **Reaching Definitions**

- An unambigous definition *d* of *t* is an assignment *t* ← *a*⊕ *b* or *t* ← *M*[*a*].
- A definition *d* reaches a statement *u* if there is a path of control edges leading from *d* to *u* that does not pass through any other definitions of *t*.

#### Reaching Definitions: gen/kill sets

Defs(t): set of all definitions of temporary t.

| statement s                           | gen[s]         | kill[s]           |
|---------------------------------------|----------------|-------------------|
| $d: t \leftarrow b \oplus c$          | { <i>d</i> }   | $defs(t) - \{d\}$ |
| $d: t \leftarrow M[b]$                | { <b>d</b> }   | $defs(t) - \{d\}$ |
| $M[a] \leftarrow b$                   | {}             | {}                |
| if $a R b$ goto $L_1$ else goto $L_2$ | $\{\tilde{\}}$ | {}                |
| goto L                                | {}             | {}                |
| L:                                    | $\{\tilde{\}}$ | {}                |
| $f(a_1,\ldots,a_n)$                   | $\{\tilde{\}}$ | {}                |
| $d: t \leftarrow f(a_1, \dots a_n)$   | { <b>d</b> }   | $defs(t) - \{d\}$ |
|                                       | - /            |                   |

Andrzej Wąsowski Episode 6: Dataflow Analysis

Andrzej Wąsowski Episode 6: Dataflow Analysis

#### **Calculating Reaching Definitions**

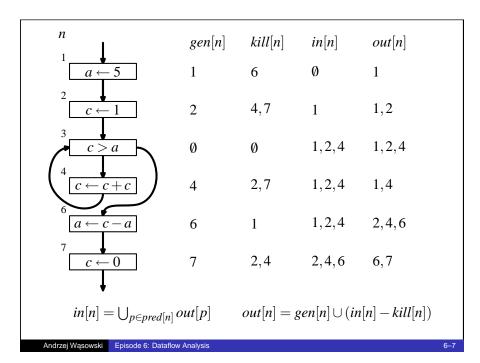
Initialize *in*[n] and *out*[n] to be empty sets.

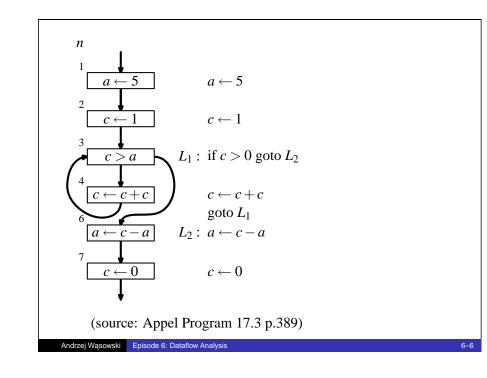
Apply following equations until a fixpoint is reached:

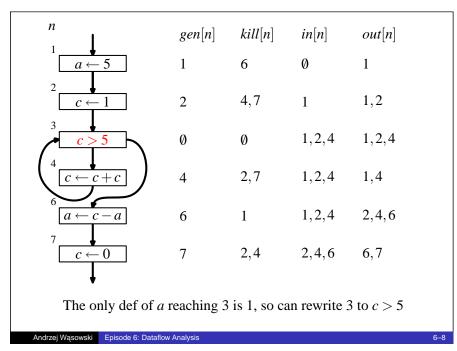
$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
$$out[n] = gen[n] \cup (in[n] - kill[n])$$

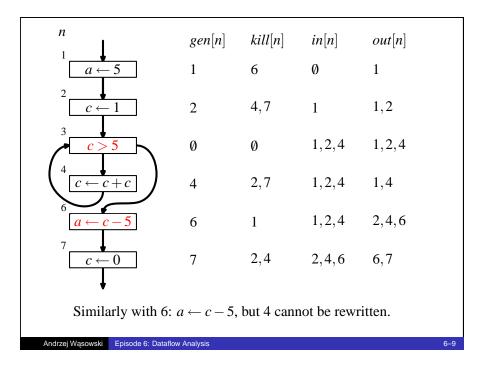
Gen and kill sets are defined on previous slide.

Andrzej Wąsowski Episode 6: Dataflow Analysis









### **Copy Propagation**

- Copy propagation is like constant propagation, but instead of constant *c* a variable is used.
- Let  $d: t \leftarrow z$  be a statement.
- Let  $n: y \leftarrow t \oplus x$  be a statement using t.
- If *d* is the only definition of *t* reaching *n* and there is no definition of *z* on **any** path from *d* to *n* then we can rewrite: *n* : *y* ← *z* ⊕ *x*.
- This may remove *t* entirely from the program.
- Mind the "any" requirement: this includes paths that cross *n* more than once (for example loops), so the redefinition after *n* can also prevent copy propagation.

# Constant Propagation

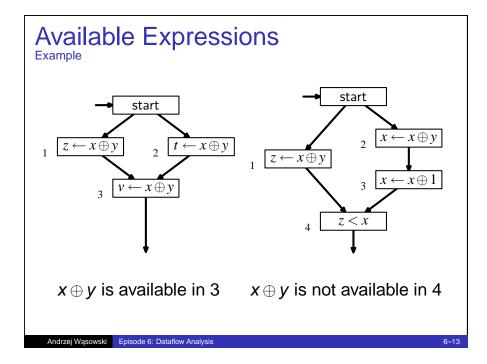
- Let *d* be a statement: *t* ← *c*, where *c* is constant.
- Let *n* be another statement such as  $y \leftarrow t \oplus x$ .
- If *d* is the only definition of *t* reaching *n*,
- It is safe to rewrite n as  $y \leftarrow c \oplus x$ .

#### Available Expressions

Andrzej Wąsowski Episode 6: Dataflow Analysis

An expression  $x \oplus y$  is available at a node *n* in the fbw graph if:

- on every path from the entry node to n, x ⊕ y is computed at least once,
- and there are no definitions of *x* or *y* since the most recent occurrence of *x* ⊕ *y* on that path.



#### **Reaching Expressions**

Reaching expressions, are much like reaching definitions. Expression  $t \leftarrow x \oplus y$  in node *s* reaches a node *n* if:

- there is a path from s to n that
- does not go through any assignment to x or y,

• or through any other computation of  $x \oplus y$ . Reaching expressions are characterized by their own *gen*, *kill* and *in*, *out* equations as for previous fbw analyses. They are computed very much like previous examples.

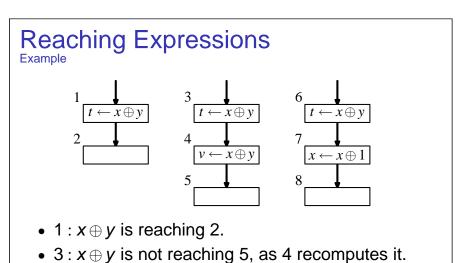
### **Computing Available Expressions**

| statement s                           | gen[s]                     | kill[s]                   |
|---------------------------------------|----------------------------|---------------------------|
| $d: t \leftarrow b \oplus c$          | $\{b \oplus c\} - kill[s]$ | all containing t          |
| $d: t \leftarrow M[b]$                | $\{M[b] - kill[s]\}$       | all containing t          |
| $M[a] \leftarrow b$                   | {}                         | all <i>M</i> [ <i>x</i> ] |
| if $a R b$ goto $L_1$ else goto $L_2$ | {}                         | {}                        |

 $in[n] = \bigcap_{p \in pred[n]} out[p] \quad \text{if } n \text{ is not entry}$  $out[n] = gen[n] \cup (in[n] - kill[n])$ 

Initialize *in*[entry] to empty set, initialize all other sets to contain all expressions of the program. Iterate until (the greatest) fixpoint is reached.

Andrzej Wąsowski Episode 6: Dataflow Analysis



- But 4 is reaching 5.
- 6 :  $x \oplus y$  is not reaching 8, as 7 kills x.

6–14

#### **Common Subexpression Elimination**

If expression  $x \oplus y$  is **available** at  $s : t \leftarrow x \oplus y$  then the computation of  $x \oplus y$  within *s* can be eliminated:

- Compute expressions  $x \oplus y$  reaching *s*.
- Introduce a new (fresh) temporary w.
- For each such reaching node *n* : *v* ← *x* ⊕ *y* rewrite *n* to be:

 $n: w \leftarrow x \oplus y$  $n': v \leftarrow w$ 

6 - 17

• Modify s to use w:  $s: t \leftarrow w$ 

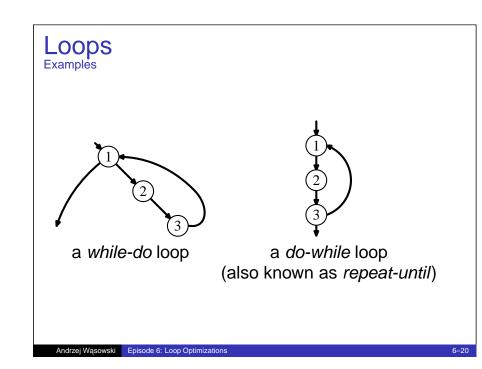
#### **Dead Code Elimination**

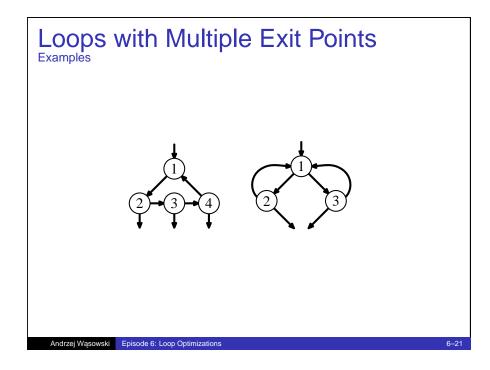
Andrzej Wąsowski Episode 6: Dataflow Analysis

If  $s : a \leftarrow b \oplus c$  (or  $s : a \leftarrow M[x]$ ) and a is **not** live-out of *s* then the instruction can be eliminated.

|                                                    | x = a + b + c;<br>y = a + b + d;<br>return y; |                     |                                              |
|----------------------------------------------------|-----------------------------------------------|---------------------|----------------------------------------------|
| compiles to                                        | <i>live-in</i> [s]                            | <i>live-out</i> [s] | DCE                                          |
| $x \leftarrow a + b$                               | a,b                                           | a,b,c,x             | $x \leftarrow a + b$                         |
| $egin{array}{llllllllllllllllllllllllllllllllllll$ | a, b, c, x<br>a, b                            | a,b<br>d,y          | $y \leftarrow a + b$                         |
| $y \leftarrow a + b$<br>$y \leftarrow y + d$       | a,b<br>d,y                                    | u,y<br>y            | $y \leftarrow a + b$<br>$y \leftarrow y + d$ |
| Andrzej Wasowski Episor                            | le 6. Dataflow Analysis                       | 5                   |                                              |

Common Subexpression Elimination<br/>Examplex = a + b + c;<br/>y = a + b + d; $\underline{x = a + b + c;}$ <br/>y = a + b + d; $\underline{compiles to}$ CSEcopy prop.reg. alloc. $x \leftarrow a + b$ <br/> $x \leftarrow x + c$  $w \leftarrow a + b$ <br/> $x \leftarrow w + c$  $y \leftarrow a + b$ <br/> $x \leftarrow y + c$  $x \leftarrow a + b$ <br/> $x \leftarrow x + c$  $w \leftarrow a + b$ <br/> $x \leftarrow w + c$  $y \leftarrow a + b$ <br/> $x \leftarrow y + d$  $y \leftarrow a + b$ <br/> $y \leftarrow y + d$  $y \leftarrow w + c$ <br/> $y \leftarrow y + d$  $y \leftarrow y + d$  $y \leftarrow y + d$  $y \leftarrow w$ <br/> $y \leftarrow y + d$  $y \leftarrow w + d$ 



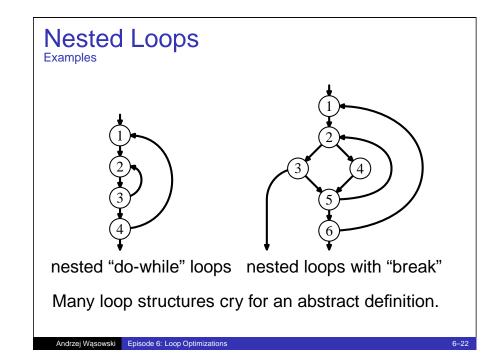


#### Loops Precisely Defined

A set of nodes S constitutes a loop if:

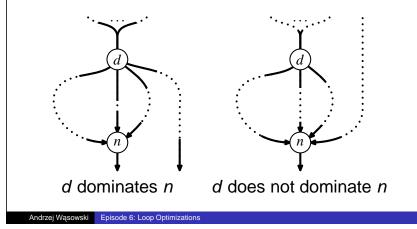
- S contains a header node h such that
- from any node in S there is a path leading to *h*.
- There are not any edges from nodes outside *S* to nodes in *S* other than *h*.

All loops on previous slides are loops according to this definition.



#### Loop Dominator

Node *d* dominates node *n* if every path of directed edges from  $s_0$  to *n* must go through *d*. Every node dominates itself.



Andrzej Wąsowski Episode 6: Loop Optimizations

#### **Computing Dominators**

Dominators are computed by iterating the following equations over the nodes of the fbw graph:

$$D[s_0] = \{s_0\}$$
$$D[n] = \{n\} \cup (\bigcap_{p \in pred[n]} D[p]) \text{ for } n \neq s_0$$

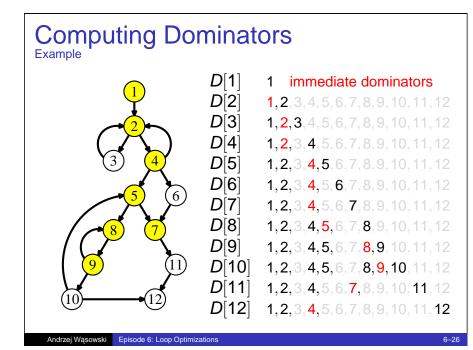
Initially each D[n] should contain all nodes of the graph (except  $D[n_0]$ ).

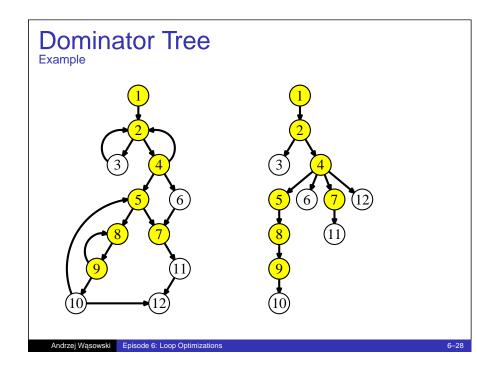
Andrzej Wąsowski Episode 6: Loop Optimizations

#### **Dominator Tree**

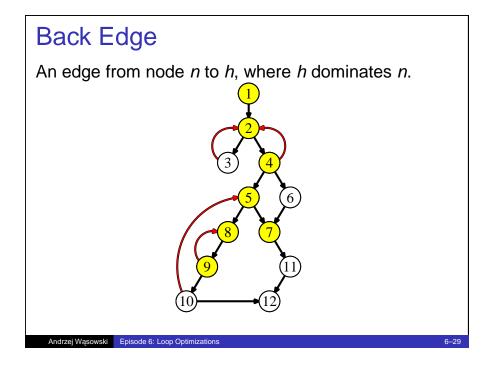
Every node *n* has at most one *immediate dominator idom*[*n*] such that:

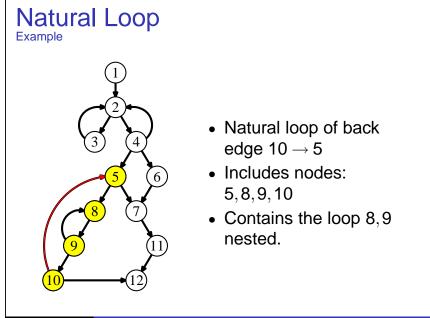
- *idom*(*n*) is not the same node as *n*.
- *idom*(*n*) dominates *n*.
- *idom*(*n*) does not dominate any other dominator of *n*.





6–25





#### Loop Definition Revisitted

- The natural loop of a back-edge n → h is the set of nodes x, such that h dominates x and there is a path from x to n not containing h.
- Node *h* is the header of the loop.

Episode 6: Loop Optimizations

• This definition allows automatic detection of loops.

#### Loop Invariant

Andrzei Wasowski

The definition  $d : t \leftarrow a_1 \oplus a_2$  is a loop invariant within loop *L* if  $d \in L$  and for each operand  $a_i$ :

- *a<sub>i</sub>* is constant,
- or all the definitions of *a<sub>i</sub>* reaching *d* are outside the loop,
- or only one definition of *a<sub>i</sub>* reaches *d* and that definition is loop invariant.

Loop invariant computations can sometimes be moved out (*hoisted*) out of the loop, speeding up the execution.

6–31

Andrzej Wąsowski Episode 6: Loop Optimizations

| Can We Hoist $t - L_0: t \leftarrow 0$<br>$L_1: i \leftarrow i + 1$<br>$t \leftarrow a \oplus b$<br>$M[i] \leftarrow t$<br>if $i < N$ goto $L_1$<br>$L_2: x \leftarrow t$ | <ul> <li>→ a ⊕ b?</li> <li>t ← a ⊕ b is loop invariant.</li> <li>Moving it before the loop would not change the behaviour of our program.</li> <li>It would make the program faster.</li> <li>So the answer is: YES!</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Andrzej Wąsowski Episode 6: Loop Optimizations                                                                                                                            | 6-33                                                                                                                                                                                                                            |

| Can We Hoist $t \rightarrow a \oplus b$ ?                                                                                                                                   |                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $L_0: t \leftarrow 0$ $L_1: \text{if } i \ge N \text{ goto } L_2$ $i \leftarrow i+1$ $t \leftarrow a \oplus b$ $M[i] \leftarrow t$ $\text{goto } L_1$ $L_2: x \leftarrow t$ | <ul> <li>The original program does not always execute t ← a ⊕ b.</li> <li>Hoisting would execute it unconditionally always at least once.</li> <li>Leading to a wrong value of x if no loop iterations are executed.</li> <li>So the answer is: NO!</li> </ul> |  |
| Minimum trip count pragma might help though                                                                                                                                 |                                                                                                                                                                                                                                                                |  |

Andrzej Wąsowski Episode 6: Loop Optimizations

```
6–35
```

#### Hoisted.

 $L_0: t \leftarrow 0$  $t \leftarrow a \oplus b$  $L_1: i \leftarrow i + 1$  $M[i] \leftarrow t$ if i < N goto  $L_1$  $L_2: \mathbf{x} \leftarrow t$ 

Andrzej Wąsowski Episode 6: Loop Optimizations

- $t \leftarrow a \oplus b$  is loop invariant.
- Moving it before the loop would not change the behaviour of our program.
- It would make the program faster.
- So the answer is: YES!

Can We Hoist  $t \rightarrow a \oplus b$ ?

 $L_0: t \leftarrow 0$  $L_1: i \leftarrow i + 1$  $t \leftarrow a \oplus b$  $M[i] \leftarrow t$ *t* ← 0  $M[j] \leftarrow t$ if i < N goto  $L_1$  $L_2$  :

- The original program has more than one def of t.
- Hoisting would change the interleaving of the assignments.
- So the answer is: NO!

6–34

#### Can We Hoist $t \rightarrow a \oplus b$ ?

 $L_0: t \leftarrow 0$   $L_1: M[j] \leftarrow t$   $i \leftarrow i+1$   $t \leftarrow a \oplus b$   $M[i] \leftarrow t$ if i < N goto  $L_1$  $L_2: x \leftarrow t$ 

Andrzej Wąsowski Episode 6: Loop Optimizations

- *t* is used before the loop invariant definition.
- So the answer is: NO!

#### **Basic Induction Variable** $s \leftarrow 0$ $i \leftarrow 0$ The variable *i* is a basic $L_1$ : if $i \ge n$ goto $L_2$ induction variable in a loop L $j \leftarrow i \cdot 4$ with header node *h* if the $k \leftarrow j + a$ only definitions of *i* within L $x \leftarrow M[k]$ are of the form $i \leftarrow i + c$ or $i \leftarrow i - c$ , where c is loop $s \leftarrow s + x$ invariant. *i*+1

goto  $L_1$ 

L<sub>2</sub> :

ndrzej Wąsowski Episode 6: Loop Optimizations

Loop invariant computation  $d: t \leftarrow a \oplus b$  can be hoisted if:

- *d* dominates all loop exits at which *t* is live-out.
- There is only one def of *t* in the loop.
- *t* is not live-out of the loop preheader.

#### **Derived Induction Variable**

Episode 6: Loop Optimizations

Episode 6: Loop Optimizations

 $\begin{array}{c} s \leftarrow 0 \\ i \leftarrow 0 \\ L_1 : \text{if } i \ge n \text{ goto } L_2 \\ j \leftarrow i \cdot 4 \\ k \leftarrow j + a \\ x \leftarrow M[k] \\ s \leftarrow s + x \\ i \leftarrow i + 1 \\ \text{ goto } L_1 \\ L_2 : \end{array}$ 

ndrzej Wasowski

Andrzej Wąsowski

*k* is a derived induction variable if *L* contains only one definition of *k*,  $k \leftarrow j \cdot c$ or  $k \leftarrow j + d$ , where *j* is an induction variable and *c*, *d* are invariant.

If j is an induction variable derived from i then the only def of j that reaches k is the one in the loop, and there is no def of i between the def of j and the def of k.

6-37

#### **Strength Reduction**

- On many machines multiplication is more expensive than addition (including C67xx).
- a definition of derived variable like *j* ← *i* · *c* can be replaced with addition.

#### Loop Unrolling

Andrzej Wąsowski Episode 6: Loop Optimizations

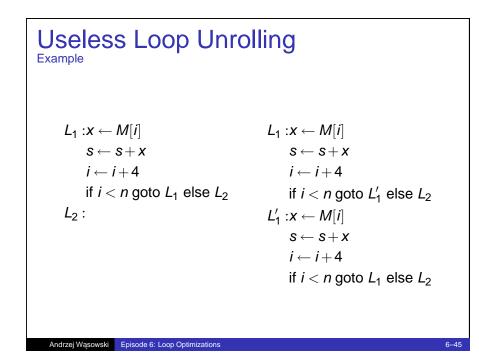
Some loops have such a small body that most of the time is psent incrementing the loop counter variable and testing the loop-exit condition.

We can make these loops more efficient by unrolling them, putting two or more copies of the loop body in a row.

```
s \leftarrow 0
          s \leftarrow 0
                                            i \leftarrow 0
          i ← 0
                                           i' \leftarrow 0 \quad k' \leftarrow a
     L_1 : if i \ge n goto L_2
                                       L_1 : if i \ge n goto L_2
         j \leftarrow i \cdot 4
                                           k \leftarrow j + a
                                            k \leftarrow k'
          x \leftarrow M[k]
                                            x \leftarrow M[k]
          s \leftarrow s + x
                                            s \leftarrow s + x
          i \leftarrow i + 1
                                            i \leftarrow i+1 i' \leftarrow i'+4 k' \leftarrow k'+4
          goto L_1
                                            goto L_1
     L_2 :
                                       L_2 :
Dead code elimination will remove j \leftarrow j'.
Elimination of useless variables (Appel p.424)
eliminates j' \leftarrow j' + 4 too.
   Andrzej Wąsowski Episode 6: Loop Optimizations
                                                                                            6-42
```

Let loop *L* have header *h* and back edges  $s : s_i \rightarrow h$ . We unroll *L* as follows:

- Copy the nodes to make a loop L' with header h' and back edges  $s'_i \rightarrow h'$ .
- Change all the back edges in *L* from  $s_i \rightarrow h$  to  $s_i \rightarrow h'$ .
- Change all the back edges in L' from  $s'_i \rightarrow h'$  to  $s'_i \rightarrow h$ .



#### Some Optimizations of cl6x

- -O0 register allocation, loop rotation, dead code elimination, keyword driven inlining
- -O1 copy/constant propagation, useless variable elimination, common subexpression elimination
- -O2 software pipelining, loop optimizations, global common subexpression elimination, global useless variable elimination, strength reduction with arrays and pointers, loop unrolling,
- -O3 unsued function elimination, automatic inlining, (limited) partial evaluation,

We have now covered most of these optimizations!

## Useful Loop Unrolling

Use information about induction vars to combine increments. This works for even number of iterations:

