Software Programmable DSP
Platform Analysis

Episode 6, Wednesday 4 May 2005, Ingredients

Dataflow Analysis
Reaching Definitions
Constant Propagation, Copy Propagation
Available Expressions, Reaching Expressions
Common Subexpression Elimination
Dead Code Elimination

Loop Optimizations
What is a loop? Loop Dominators.
Loop Invariants and Hoisting
Induction Variables. Strength Reduction
Loop Unrolling

Andrzej Wasowski | Episode 6: Ingredients

Reaching Definitions

Example

¢ Definition 1 reaches 4

o Definition 2 does not reach 4, because all paths
from 2 to 4 path through 3 that kills 2.

Andrzej Wasowski | Episode 6: Dataflow Analysis

Reaching Definitions

o An unambigous definition d of t is an
assignmentt «—a@dbort «— MJal.
o A definition d reaches a statement u if there is a

path of control edges leading from d to u that
does not pass through any other definitions of t.

Andrzej Wasowski | Episode 6: Dataflow Analysis

Reaching Definitions: gen/kill sets

Defs(t): set of all definitions of temporary t.

statement s gen[s] Kkill[s]
d:t—baoc {d} defs(t) —{d}
d:t— M[b] {d} defs(t)—{d}
M[a) b 00

ifa R b goto L, else gotoL, {} {}

goto L {} {}

L: {} {}
f(ar,....an) {} {}
d:t—f(ag,...an) {d} defs(t)—{d}

Andrzej Wasowski | Episode 6: Dataflow Analysis

Calculating Reaching Definitions

Initialize in[n] and out[n] to be empty sets.

Apply following equations until a fixpoint is reached:

innj= (] out[p]

pepred|n]
out[n] =gen[n] U (in[n] — Kill[n])

Gen and kill sets are defined on previous slide.

Andrzej Wasowski | Episode 6: Dataflow Analysis

gen[n] kill[n] in[n] out[n]
1 6 0 1

2 4.7 1 1,2

0 0 1,24 1,24
4 2,7 1,24 1.4

6 1 1,24 2,46
7 2,4 2,46 6,7

in[n] = Upepred[n] out[p] out[n] = gen[n] U (in[n] — kill[n])

Andrzej Wasowski | Episode 6: Dataflow Analysis

:ifc>0gotoLy
c~—cCc+¢cC
goto L,

.a«—cCc—a

c+—0

(source: Appel Program 17.3 p.389)

Andrzej Wasowski | Episode 6: Dataflow Analysis

gen[n] kill[n] in[n] out[n|
1 6 0 1

2 47 1 1,2

0 0 1,24 124
4 2,7 1,24 14

6 1 1,2,4 2,46
7 2,4 2,46 6,7

The only def of areaching 3is1, socanrewrite3toc>5

Andrzej Wasowski | Episode 6: Dataflow Analysis

genn] kill[n in[n] out[n] Constant Propagation
1 6 0 1
2 4,7 1 1,2
0 0 124 124 e Letd be a statement: t — c,
where c is constant.
4 2,7 1,2,4 1,4 e Let n be another statement suchasy «—t®x.
e If d is the only definition of t reaching n,
6 1 1,2,4 246 . _
e Itis safe torewrite nasy < c®x.
7 2,4 2,46 6,7
Similarly with 6: a < c— 5, but 4 cannot be rewritten.

Andrzej Wasowski | Episode 6: Dataflow Analysis 6-9 Andrzej Wasowski | Episode 6: Dataflow Analysis

Copy Propagation Available Expressions

o Copy propagation is like constant propagation,
but instead of constant ¢ a variable is used.

e Letd :t < z be a statement. An expression x @Y is available at a node n in the

e Letn:y «— tdx be a statement using t. flow graph if:

o If d is the only definition of t reaching n and on every path from the entry node to n, X &y is
there is no definition of z on any path from d to computed at least once,

n then we can rewrite: n:y <z ©X. « and there are no definitions of x or y since the
« This may remove t entirely from the program. most recent occurrence of x &Yy on that path.
e Mind the “any” requirement: this includes paths
that cross n more than once (for example
loops), so the redefinition after n can also
prevent copy propagation.

Andrzej Wasowski | Episode 6: Dataflow Analysis 6-11 Andrzej Wasowski | Episode 6: Dataflow Analysis

Avalilable Expressions

Example

Z— XpYy) t — Xy
1

1

, Vx|

X @y is availablein3 x @Yy is not available in 4

Andrzej Wasowski | Episode 6: Dataflow Analysis

6-13

Computing Available Expressions

statement s gen|s] kill[s]
d:t—bac {b@®c} —Kkill[s] all containing t
d:t— M[b] {M[b] —Kkill[s]} all containing t
Mla] — b {} all M[x]
ifaRbgotolL,; elsegotolL, {} {}

in[n] = ﬂ out[p] if nis notentry

pepred|n]
out[n] = gen|[n] U (in[n] — kill[n])

Initialize in[entry] to empty set, initialize all other
sets to contain all expressions of the program.
Iterate until (the greatest) fixpoint is reached.

Andrzej Wasowski | Episode 6: Dataflow Analysis 6-14

Reaching Expressions

Reaching expressions, are much like reaching
definitions. Expressiont < X @y in node s reaches
a node n if:

e there is a path from s to n that

e does not go through any assignmentto x ory,

e or through any other computation of X dy.
Reaching expressions are characterized by their
own gen, kill and in, out equations as for previous
flow analyses. They are computed very much like
previous examples.

Andrzej Wasowski | Episode 6: Dataflow Analysis 6-15

Reaching Expressions

Example

1 3 6
El@ T—xoy] [T—xoy]

i —

1:x @y is reaching 2.

3:X @Yy is not reaching 5, as 4 recomputes it.
But 4 is reaching 5.

6 : X @Yy is not reaching 8, as 7 Kills x.

Andrzej Wasowski | Episode 6: Dataflow Analysis

Common Subexpression Elimination Common Subexpression Elimination

Example
If expression x @y is available at s:t « x @y then
the computation of x ®y within s can be eliminated: X =a+b + c;
o Compute expressions x @y reaching s. y =a+b+d
e Introduce a new (fresh) temporary w.
e For each such reachingnoden:v «—x®y compilesto CSE copy prop. reg. alloc.

rewrite n to be:
X<«—a+b w«<—a+b w<—a+b y<a+b

NIW XDy X—X+C X—Ww X—W+C X+<y-+C¢C
n:ve—w y«—a+b X<x+c y—w+d y<—y-+d
y—y+d y<—w
e Modifystousew: s:t«—w y —y+d

Andrzej Wasowski | Episode 6: Dataflow Analysis

Andrzej Wasowski | Episode 6: Dataflow Analysis

Dead Code Elimination Loops
Ifs:a«—b@c (ors:a« M[x])and ais not live-out Fxamples
of s then the instruction can be eliminated.
X =a+b + c;
y =a + b + d;
return vy;
compilesto live-in[s] live-out[s] DCE
X —a+b a,b a,b,c,x X alb a while-do loop a do-while loop _
X «— X +C a,b,c,x ab (also known as repeat-until)
y«—a+b a,b d,y y«—a-+b
y—y+d dy y y <y+d

Andrzej Wasowski | Episode 6: Loop Optimizations

Andrzej Wasowski | Episode 6: Dataflow Analysis

Loops with Multiple Exit Points

Examples

646050

Andrzej Wasowski | Episode 6: Loop Optimizations

Loops Precisely Defined

A set of nodes S constitutes a loop if:
e S contains a header node h such that
o from any node in S there is a path leading to h.

e There are not any edges from nodes outside S
to nodes in S other than h.

All loops on previous slides are loops according to
this definition.

Nested Loops

Examples

D

D (2)

o "?B
(8)

nested “do-while” loops nested loops with “break”

Many loop structures cry for an abstract definition.

Andrzej Wasowski | Episode 6: Loop Optimizations

Andrzej Wasowski | Episode 6: Loop Optimizations

Loop Dominator

Node d dominates node n if every path of directed
edges from sg to n must go through d. Every node
dominates itself.

d dominates n d does not dominate n

Andrzej Wasowski | Episode 6: Loop Optimizations

Computing Dominators Computing Dominators

Example

1 immediate dominators

Dominators are computed by iterating the following 1,2
equations over the nodes of the flow graph: 1,2,3
1,2, 4
D[So] = {So} 1,2, 4,5
Dlnj={n}u(() DIp])forn+#so 1,2,5.4,5.6
pepred|n] 1,2, 4, 7
1,2, 4,5, 8

1,2, 4,5 809

1,2, 4,5 89,10

1,2, 4, 7, 11
1,2, 4, 12

Initially each D[n] should contain all nodes of the
graph (except D[ng)).

Andrzej Wasowski | Episode 6: Loop Optimizations

Andrzej Wasowski | Episode 6: Loop Optimizations

Dominator Tree Dominator Tree

Example

Every node n has at most one immediate dominator
idom[n] such that:

e idom(n) is not the same node as n. (4)
e idom(n) dominates n. (6) ()12
e idom(n) does not dominate any other dominator

of n. @)

Andrzej Wasowski | Episode 6: Loop Optimizations Andrzej Wasowski | Episode 6: Loop Optimizations

Back Edge

An edge from node n to h, where h dominates n.

Andrzej Wasowski | Episode 6: Loop Optimizations

Natural Loop

Example

o Natural loop of back
edge 10 —» 5

e Includes nodes:
5,8,9,10

e Contains the loop 8,9
nested.

Andrzej Wasowski | Episode 6: Loop Optimizations

Loop Definition Revisitted

e The natural loop of a back-edge n — h is the set
of nodes x, such that h dominates x and there
Is a path from x to n not containing h.

e Node h is the header of the loop.

¢ This definition allows automatic detection of
loops.

Andrzej Wasowski | Episode 6: Loop Optimizations

Loop Invariant

The definition d : t «— a; © ay is a loop invariant
within loop L if d € L and for each operand a;:
e 3; IS constant,
« or all the definitions of a; reaching d are outside
the loop,

e or only one definition of a; reaches d and that
definition is loop invariant.

Loop invariant computations can sometimes be
moved out (hoisted) out of the loop, speeding up the
execution.

Andrzej Wasowski | Episode 6: Loop Optimizations

Can We Hoistt — a®b?

t—adbisloop
invariant.

LO t—0 . .
Ly itl e Moving it before the
loop would not change
t—aob the behaviour of our
MIi] —t program.
ifi <N goto L o It would make the
Lo X «t program faster.

e So the answer is; YES!

Andrzej Wasowski | Episode 6: Loop Optimizations

Can We Hoistt — a®b?

e The original program
Lg:t O does not always
executet — adb.

L, :ifi >N goto L 4
1M =Ng 2 « Hoisting would execute

l=1+1 it unconditionally always
t—aob at least once.
MI[i] —t o Leading to a wrong
goto L, value of x if no loop

Ly X «t iterations are executed.

e So the answer is: NO!
Minimum trip count pragma might help though...

Andrzej Wasowski | Episode 6: Loop Optimizations

Hoisted.
e t—adbisloop
Lot 0 |nvar|anF.
e Moving it before the
t<—aodb
L loop would not change
Lyde—i+l the behaviour of our
MI[i] —t program.
ifi <N goto L « It would make the
Ly X «t program faster.

e So the answer is: YES!

Andrzej Wasowski | Episode 6: Loop Optimizations

Can We Hoistt —a®b?

LO t—0 L
Ly it e The original program
L has more than one def

MIi} —t « Hoisting would change
t—0 the interleaving of the
MIj] <t assignments.
if i <N goto L e So the answer is: NO!

Lo:

Andrzej Wasowski | Episode 6: Loop Optimizations

Can We Hoistt — a®b? Sufficient Conditions for Hoisting

LO t—0 . . .
. Loop invariant computation d :t «— a®b can be
Ly :M[j] ¢ « used before the | hoisted if:
le—i+1 * Lis used before the loop « d dominates all loop exits at which t is live-out.
t—aab invariant definition. _ _
. | e There is only one def of t in the loop.
MIi] —t e So the answer is: NO! _ _
o e tis not live-out of the loop preheader.
if i <N goto L,
Ly X «t

Andrzej Wasowski | Episode 6: Loop Optimizations Andrzej Wasowski | Episode 6: Loop Optimizations

Basic Induction Variable Derived Induction Variable
k is a derived induction

s—0 s—0 variable if L contains only
i—0 H able | is a bas i—0 one definition of k, k «j-c
oy e variapie | IS a basiC Y or k <_J _‘_d’ Wherej iS an

Ly '!f ! 2 h goto L, induction variable in a loop L ! '!f ! 2 ngoto L induction variable and c,d
Jei-4 with header node h if the J—1-4 are invariant.
k—j+a only definitions of i within L k—j+a i inducti iabl
X < MIK] are of the formi «—i+cor X «— MIK] J 1 an induction variable

C here ¢ is loo derived from i then the only

SeS+X :ntalria:t’ W P S SHX def of j that reaches k is the
i+1 ' i—i+1 one in the loop, and there is
goto L4 goto L4 no def of i between the def

Lo: Ly : of j and the def of k.

Andrzej Wasowski | Episode 6: Loop Optimizations

Andrzej Wasowski | Episode 6: Loop Optimizations

Strength Reduction

o On many machines multiplication is more
expensive than addition (including C67xx).

 a definition of derived variable like j <—i-c can
be replaced with addition.

Andrzej Wasowski | Episode 6: Loop Optimizations

Loop Unrolling

Some loops have such a small body that most of the
time is psent incrementing the loop counter variable
and testing the loop-exit condition.

We can make these loops more efficient by unrolling
them, putting two or more copies of the loop body in
a row.

Andrzej Wasowski | Episode 6: Loop Optimizations

s—0
_S<_O i—0
L '!f<'—>0 L JOK—a
1.!|_.ngoto 2 L, :ifi > ngoto L,
j—1-4 . y
K i)<
—i+a KK
X — M[K] -
X M[k]
S« S+X
il SeSTx o
goto Ly i—i+1lj«—j+4 k—k'+4
L, - goto L,
2 .
L, :
Dead code elimination will remove j < j’.
Elimination of useless variables (Appel p.424)
eliminates j’ < j’ 4 4 too.

Andrzej Wasowski | Episode 6: Loop Optimizations

Let loop L have header h and back edges s : sj — h.
We unroll L as follows:

« Copy the nodes to make a loop L’ with header
h’” and back edges s{ — h’.

e Change all the back edges in L from s; — h to
Sj — h'.

 Change all the back edges in L’ from s{ — h’ to
Si’ — h.

Andrzej Wasowski | Episode 6: Loop Optimizations 6-44

Useless Loop Unrolling

Example

Ly X <« MIi] Ly :x < MIi]
S+ S+X S« S+X
i—i+4 i—i+4

if i <ngoto L, else L, ifi <n goto L] else L,
Ly: L7 X« M[i]
S+ S+X
i —i+4

ifi <ngotoL; else L,

Andrzej Wasowski | Episode 6: Loop Optimizations

Some Optimizations of cl 6x

-O0 register allocation, loop rotation, dead code
elimination, keyword driven inlining

-O1 copy/constant propagation, useless variable
elimination, common subexpression elimination

-O2 software pipelining, loop optimizations, global
common subexpression elimination, global
useless variable elimination, strength reduction
with arrays and pointers, loop unrolling,

-O3 unsued function elimination, automatic inlining,
(limited) partial evaluation,

We have now covered most of these optimizations!

Andrzej Wasowski | Episode 6: Loop Optimizations

Useful Loop Unrolling

Example

Use information about induction vars to combine
increments. This works for even number of

iterations:

Ly :X < M]i] Ly
S+—S+X
i—i+4
ifi <ngoto Ly else L,

Lo :

General version in Appel p.430.

Andrzej Wasowski | Episode 6: Loop Optimizations

X «— M[i]

S+—S+X
X<—M[i—|—4]

S« S+X

i<—i+8

ifi <ngotoL; else L,

