
Andrzej Wąsowski.Software Programmable DSP Platform Analysis.

Exercise Set 6

4 May 2005

I find most value in, and thus I recommend, exercises 6.1, 6.2, 6.4, and 6.6. Exercise 6.7 is
likely to be useful in the long run.

Exercise 6.1The following program (based on Program 17.3 in [Appel]) exhibits opportunities
for constant propagation optimization. Compile it withcl6x , optimization levels-O0 and
-O1 . Check whether you can see (relevant) differences in the generated assembly code.

int f (void) {
int a = 5;
int c = 1;
while (c <= a)

c = c + c;
return c;

}

Then insert an assignmentc=0 just before thereturn statement. Try to compile with
various optimizations levels. Iscl6x able to discover that the whole function could now
be rewritten to justreturn 0 ? How aboutgcc ? What is the sequence of analyses and
optimizations that would have to be applied to achieve this?

Exercise 6.2(project task proposal) Take some of your own C code with loops, identify basic
expressions, list them and classify each of them whether they can be hoisted or not (the criteria
are on p. 418 in [Appel]). Then check the assembly code generated by the compiler, to see
what is actually hoisted by it, at various optimization levels.

In cl6x hoisting is most likely turned on at optimization level-O2 . Remember that oc-
casionally the compiler may also hoist expressions that are not present explicitly in the source
code (like address computations).

Exercise 6.3∗ (moderately theoretical) Solve exercise17.1p. 408 in [Appel].

Exercise 6.4Solve exercise18.1p. 431 in [Appel].

Exercise 6.5∗ Solve18.8p. 432 in [Appel].

Exercise 6.6Study the section onTurning while loops into repeat-until loops on pp. 418–
419 (also Fig. 18.7) in [Appel]. Then go back to exercise 4.2 from episode 4. Can you now
explain why the scheme of translation for while loops, studied in 4.2, may be occurring in
the compiler? According to section 18.2, what reason is motivating this rendering, other than
counting simple instructions, as we discussed two weeks ago?

Exercise 6.7(project task proposal) This exercises is a continuation of exercise 6.2. Identify
the speed critical loop in your project and think how would you optimize it using the tech-
niques presented in the lecture. Ask questions like: what code should be hoisted out? what

1



are the subexpressions that should be reused? what are the opportunities for copy and constant
propagation? dead-code elimination? Can loop unrolling help? etc.

Then see whether the code generated by compiler meets your expectations. If the com-
piler is lacking in certain respects1, then apply the most essential optimizations one by one on
the source code level. It is often sufficient to indicate just one optimization (for example an
essential copy/constant propagation) to help the compiler discover possibilities of other.

If you want to extend this task to cover the loop unrolling too, then you may find it useful
to study section 2.4.3.4 p. 2-49 in [SPRU198G], TheTMS320C6000 Programmer’s Guide.

1It has been formally proven that a perfect compiler will never exist. See Appel, p. 383,No magic bullet.

2


