
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

? 2002 Society for Design and Process Science

1

USING METAOBJECT PROTOCOL TO IMPLEMENT TAILORING;
POSSIBILITIES AND PROBLEMS

Olle Lindeberg, Jeanette Eriksson, Yvonne Dittrich
Blekinge Institute of Technology

Department of Software Engineering and Computer Science
P.O. Box 520, S-37225 Ronneby, Sweden

Fax: +46 457 27125
Phone: +46 457 385000

olle.lindeberg@bth.se, dst98jer@student.bth.se, yvonne.dittrich@bth.se

ABSTRACT

In this article we describe a prototype and how it was
used to test if it is possible to use Java reflection API as a
means of implementing tailoring. The tailoring
capabilities of the prototype make the system configurable
during runtime. The system that the prototype was
modeled on is an application used by a telecommunication
operator as a support system. In such a fast changing area
software systems must also change. It is possible to
anticipate the type and structure of some of the changing
requirements and for them the prototype implements
tailoring. Using the metaobject protocol idea, the modest
reflection capabilities offered by Java together with a
standard Java compiler and the normal Java runtime
support are adequate to implement tailoring.

INTRODUCTION

This article is based on an experiment in using the
Java reflection API (Sun Java 2, 2001) as a means of
implementing a tailorable system. The background and
idea behind the experiment was a research project in
which we and two industrial partners collaborated. The
goal of the project was to investigate a means of
developing flexible, adaptable and modifiable software
systems. The system that the prototype was modeled on is
an application used by one of the research partners that is
a telecommunication operator. It was possible to
anticipate the type and structure of some of the changing
requirements and for them tailoring (Henderson and
Kyng, 1991) is a possible way to make the system
modifiable. To read more about the project see ‘Designing
for changing work and business practices’ (Dittrich and
Lindeberg, 2002). The other partner had developed a
meta-model database system. During the research project
we developed several prototypes to test how to make a

tailorable system using this database. At the same time a
normal system development was carried out at the
company. The resulting system has only limited tailoring
capabilities. The need to make the software adaptable was
instead satisfied by making the software easy to modify.
This was achieved by making the software in components,
which with only a little programming effort can be
assembled in new configurations.

There were several reasons why the meta-modeling
database tested in the prototypes were not used in the
system. Here we will take up only one of these: the system
seemed to become too complicated when tailoring was
added to all other requirements. This is an example of a
general problem; when you add tailoring capabilities to a
system this often makes the system more complicated: not
only do you have to construct the tailoring interface but
the basic program may also become more complicated. To
avoid this we constructed the prototype using ideas based
on the metaobject protocol (MOP) approach (Kiczales,
1992). The prototype described here is a combination of
the MOP approach and the components used in the system
development mentioned earlier. This combination results
in the meta-programming approach; this prototype is less
complex than those implemented earlier on in the project

 We start by giving a sketch of what a metaobject
protocol is, and more particularly, what it is in Java. We
then give a description of the software architecture of the
complete system. The prototype implements only part of
the system. Following the software architecture are the
design and implementation of the prototype. Finally, some
conclusions from the prototype are drawn.

THE METAOBJECT PROTOCOL

The metaobject protocol approach originates from the
CLOS programming language in which it is possible to

2

change program behavior by interacting with the runtime
system through a metaobject protocol (Kiczales et al.,
1991).

The metaobject protocol is based on the idea that one
can and must open up programming languages so that the
developer is able to adjust the language implementation to
fit his or her needs. This idea has subsequently been
generalized to systems other than compilers and
programming language. In the article “Towards a New
Model of Abstraction in the Engineering of Software”
(Kiczales, 1992) it is argued that the metaobject protocol
concept can be used as a general principle for abstraction
in computer science. The idea is that any system that is
constructed as a service to be used of client application (as
for example an operation system or a database server)
should have two interfaces; a base-level interface and a
meta-level interface (Kiczales, 1992). The base-level
interface gives access to the functionality of the
underlying system and through the meta-level interface it
is possible to alter special aspects of the underlying
implementation of the system so that it suits the needs of
the client application. The meta-level interface is called
the metaobject protocol (MOP). Simply put, a MOP is a
set of rules by which to manipulate and communicate with
metaobjects.

A MOP shall consequently:
• Provide extended control over the behavior of the

system.
• Have a clear division between the base-level and

meta-level interface.

TAILORING AND META MODELING

We have adopted a different approach towards the
metaobject protocol. The idea of the metaobject protocol
approach has inspired us to transfer the concept to end-
user tailorable software. In most systems the end -user has
no access to the implementation of the program; in our
approach the end-user is given the opportunity to alter or
tailor the software should the need arise. Our aim is to
give the user the opportunity to add components to the
program in a controlled way which does not require any
programming. To do this we use a dual-interface: a
traditional base-level program and a meta-level program
that provides tailoring for the base-level program.

The distinction between a computational base level
and a tailoring meta level is a useful one in a tailorable
system. In the same way as in a metaobject protocol, the
base-level implements what the system normally does. At
the meta level you can change what the base level does.
The two levels are also often separated in the user
interface with a separate tailoring interface. The same
separation may exist in the internal design.

 Perhaps the obvious way to do this is to let the base-
level program be controlled by meta-data which stores the
choices the user has made when tailoring. If the tailoring

possibilities affect a large part of the program, the base-
level program may become littered with tests for the value
of the meta-data. If the tailoring is complicated the result
may be that the base-level program looks more like an
interpreter of the meta-data than a straightforward
program. We call this method of implementing tailoring
the meta-data approach.

The alternative way to implement a tailorable system,
the meta-programming approach , is closely linked to the
metaobject protocol approach. With the meta-
programming approach the base-level program is a normal
program which performs the normal computation only.
When the system is tailored by the meta-level this is
implemented by changing the base-level program. To be
able to do this we must be able to change (or at least add
to) the program during execution. In Java this is possible
since new class libraries may be loaded and linked during
runtime. Another question is, “where is the meta-level
description of the current configuration of the system
stored?” In the meta-data approach the meta-level can
inspect the meta-data to see how the program is
configured;it is the meta-data that will be changed during
tailoring. In the meta-programming approach the base-
level does not need any meta-data. The radical solution is
to take away the meta-data from the meta-level too. This
means that it is the base-level program itself that is the
meta description of the current configuration. This is the
method we have chosen in the prototype.

We have used Java to implement the meta-
programming approach. When tailoring changes the
program this is implemented by compiling new class
libraries (this is done by the compiler in JDK). The new
class libraries are loaded and linked in during runtime. For
inspection of the program we have used the - rather weak
- reflection abilities in Java reflection API.

REFLECTION IN JAVA

Tailoring will change the program; the latter does not
know in advance what the changes will look like. To
discover what a new class contains, we need reflection
capabilities. In a computational system reflection is the
capability of an object to, for example, “reason about and
act upon itself” (Maes, 1987).

There are two types of reflection: introspection and
intercession (Rivard, 1996). The purpose of introspection
is to acquire information about the program itself and to
use that information within the program. Intercession goes
further. It allows the program to alter its own behavior.
Different programming languages have different
reflection capabilities. Languages such as Lisp or
Smalltalk have both introspection and intercession, while
Java is basically introspective only. Java's meta-model is
shown in Figure 1. In Java, every class has a meta
description which is represented by an object; an instance
of the class “Class.” This object is a metaobject. While

3

ordinary objects describe the world, metaobjects describe
the ordinary objects. In other words, the metaobject is an
object that contains information about the ordinary object
(base object) (Golm, 1997). The metaobject may control
the execution of the base object (Zimmerman, 1996). The
metaobjects together with the ordinary objects are part of
a meta-model.

The reflection API in Java provides information about
modifiers, methods, instance variables, constructors and
the super classes of a particular class. It allows you to
create an instance of a class although you do not know the
name of the class until runtime. It is also possible to
invoke a method on an object without knowing the name
of the method during coding.

Accordingly, it is java.lang.reflect which makes it
possible to inspect the content of the class (Sun Java 2,
2001). However, in Java 1.3, the Dynamic Proxy API was
introduced making it possible to alter the behavior of an
object in runtime. We have not used the proxy concept but
instead alter the program by adding new classes using the
compiler in JDK.

THE SYSTEM ARCHITECTURE

The prototype was produced to test the use of MOP in
implementing tailoring. The prototype is a partial
implementation of a system that will be described in this
section. It is necessary to have some understanding of the
whole system to understand the design of the prototype.
The system is used for computing certain payments1; these
payments are triggered by certain events. The receiver of
money and how much should be paid are decided by what
contract(s) are valid fo r the event.

The system architecture is described in Figure 2. The
system can be regarded as two loosely connected parts:
the transaction handler and the contract handler. The
transaction handler application manages the actual
payments and also produces reports while its database
stores data about the triggering events, payments and
historical data about past payments. (1)2 The data
describing the triggering events is periodically imported
from another system. (2) To compute the payments, the
transaction handler calls a stored procedure in the contract
handler’s database. (3) The event is matched with the
contracts; several hits may occur. Some of the contracts
cancel others; others are paid out in parallel. We call the
process of deciding which contracts to pay ‘prioritization’.
(4) The result is returned to the transaction handler.
(5) The actual payments are made by sending a file to the
administrative system.

1 To protect the business interests of our industrial partner
we can only give an abstract description of the system: it
is our opinion that this will affect the conclusions we
draw.
2 The numbers refer to figure 2.

An important complication in the data model is the
categorization of the values on which some of the
conditions are based. The categorization is dependent on
other systems, making interaction with the latter essential
both when the transaction handler matches events with
contracts and when a user wants to use categories in a
contract.

The contract handler administrates contracts, or rather
formal descriptions of contracts, in a relational database.
The interface enables the user to enter new contracts and
search for old ones. When entering new contracts, the
input is checked to ensure the integrity of the data. The
main parts of the contracts are:

• Identification of the contract and version control.
• Some flags controlling who receives the money.
• Conditions determining if the contract is valid for

an event or not.
• A payment table deciding the amount to be paid.

The first two parts are common to all contracts; it is the
conditions and the payment table that differ.

In order to make the system adaptable to future
changes a conceptual model that facilitates a meta-model
description of the system is needed. The purpose of the
system is to compute payments according to the stored
contracts. Each event that triggers a payment has a set of
parameters. Today there are only two kinds of events,
though several other types of events are under
consideration for the future. In the contracts a condition is
meaningful only if the transaction handler can evaluate it
when payment is due. This leads to the concept of event
types: a payment is triggered by an event, and all contracts
belong to a particular event type. Each event type has a set
of attributes associated with it that limits what conditions
a contract belonging to it can have. In the existing system
there are a number of contract types that are used for
different purposes. From the system’s point of view these
contract types differ in two significant ways: which
conditions you can add to the contract and how the
contracts influence each other (if several contracts match
the same event one may inhibit the others, or all may be
paid out).

In the case study already during the design
discussions we constructed a conceptual model with four
levels of abstraction (see Figure 3). The actual data that is
stored describes the contracts the payments are based on.
The contracts are of several contract types which form the
base level of the abstraction hierarchy. Some contract
types has nearly the same parameters but are used for
different purpose in the use of the system; this gives the
next level, contract_groups. At the top level of the
abstraction hierarchy are the event_types where we group
together contract and payments related to the particular
event which triggers them.

In an object-oriented implementation the actual
contracts would be objects belonging to the concrete

4

classes in the bottom line. The remainder of the classes
would be abstract.

THE PROTOTYPE

The reason for producing the prototype construction
was to investigate the feasibility of using Java's meta-
programming possibilities to construct a tailorable system.
This can be seen as an example of an explorative
prototype (Floyd, 1984). We wanted to gain an
understanding of the complexities related to this approach.
The prototype does not implement the whole system but
only the contract handler application. Functionality is
reduced, especially the parameters using categorization of
values are simplified to simple values, the primary reason
for this being that it allowed us to build a prototype
without any communication to other systems; in this way
development of the prototype was greatly simplified.

The prototype is divided into two levels, the meta-
level and the base-level. Two catalogues, one storing
contract type and the other parameter classes implement
the connection between the two levels. In the meta-level
of the prototype, the new contract types are created and
stored in the contract type catalogue. In the base-level the
same classes are used as part of the program. The
parameter class catalogue is used by the meta-level to
know which parameters exist and by the base-level as part
of the program.

Inheritance, together with the meta representation and
the inner structure of the contract types, is essential to the
prototype. A simplified model, similar to the conceptual
model described in the section about the system
architecture – but leaving out the group level – is the basis
for the prototype implementation. It resulted in the class
hierarchy presented in Figure 4. The events are super
classes to the contract types. In the conceptual model an
Event has a set of parameters and the contract type is
made up of a subset of these parameters. This is not
possible in Java; instead there is a specification that
defines the set of parameters for the contract types in the
Event classes. Some parameters are compulsory for all
contract types belonging to an Event; they are put in the
Event so that by inheritance they are present in all the
contracts, e.g. all contracts must have a contract id.

One problem is that the contracts should be stored for
a long time; all contracts ever entered into the system are
kept to preserve its history and ensure that old payments
are traceable. This is a problem when a change is made in
a contract type as the system must still be able to store and
display old contracts according to the old type. For this
reason, all contract types from the beginning are defined
as both an abstract class (e.g. ContractAB) and a concrete
subclass (ContractAB_1). When a minor change is made
to a contract type this may then be done by making a new
concrete class, as ContractAB_2 in Figure 4.

The base-level of the prototype
A contract is essentially a collection of parameters. In

the system in use some of the parameters are very
complex and some even collect values from other
systems. This makes it natural to represent every
parameter by an object. Most of the methods in the
contracts are implemented using delegation to the
parameters. For the contracts’ three main methods -
checking, storing and displaying themselves - there are
corresponding methods in the parameter classes. This is a
vertical design where one class takes care of one type of
parameter through the whole program instead of the more
normal three-layer architecture (interface, logic and
storing). This design makes it very easy to add new
parameter classes to the system.

When the end-user wants to create a new contract, i.e.
create an object from a contract type, all of the concrete
classes are fetched from the contract type catalogue, their
names are presented and the end-user chooses which
contract type to create a contract from. Then a contract is
created which has parameter objects without values. The
object displays itself by delegating to the parameters. The
same principle is used for storing and checking errors.
When the user has put values in all slots and wants to
store the contract, the error check is delegated to every
parameter object. The parameter object checks that the
value has the right format and is within the given limits.
When a value is incorrect, the slot is marked and the user
has to put in a new value. Not until all values are correct,
are the values set in the empty contract. The primary
problem with the delegation principle is that it is
inadequate where parameters are in some way dependent
on each other. It is possible for a parameter to access
another parameter within the same contract by using a
parent reference that all parameters have.

Following is a summary of how to create a new
contract:

• The prototype collects the contract types from the
contract type catalogue.

• The end-user selects a contract type to make a
contract from.

• An empty contract is created from the contract
type, the display method of the object is called
and the parameters display themselves to the
user.

• The user puts in values for the parameters.
• The prototype checks the values; when these are

correct they are set in the empty contract. A
contract is created.

• The contract is stored in a similar way.

The meta-level of the prototype
The contract types are created in the meta part of the

program. When a user wants to create a new contract type
all existing contract types are displayed. This is done by
collecting all the class files from the contract type
catalogue in which they are stored . The end-user chooses

5

what contract type he wants to have as super class for the
new contract type. To make it easier for the user to make a
decision as to what contract type is the most suitable, the
parameters and the methods of the contract type are also
displayed. Java reflection API provides the necessary
methods for this.

The next step is to collect all possible parameters for
the new contract type. To find the set of all possible
parameters the program collect all classes in the catalog
dedicated for parameter classes. All parameters may not
be used for all Events. This is achieved by putting a filter
in the class describing the Event. For example, if a
parameter 'xyz' is not valid for Event type B a method that
acts as a filter is placed in the abstract class EventB
(Figure 4).

Thereafter all possible parameters for this Event type
are shown to the end-user for him to select from. The
parameters that are inherited are automatically selected
and cannot be deselected. To find which parameters are
already present in the selected contract type the program
looks into the class of the contract type and its super
classes with help from java.lang.reflect.

The meta-level of the program is constructed as a
meta-model which is implemented as classes. The contract
types correspond to objects of the class Metaobject. Our
metaobject is in a way the same thing as the classobject in
Java. We constructed our own version because a
classobject cannot exist without a corresponding class.
This means that it is not possible to create a new class
from a classobject; as a result we could not use the
classobject alone for our purposes. Another factor is that it
is important to be able to handle the metamethods in a
special way. The relationship between Java's meta-model
and our extended meta-model is shown in Figure 6.

In the our extended meta-model a metaobject is an
ordinary Java object, but it contains a description of a
contract type and thus corresponds to a specific contract
type. The MetaobjectClass is the class of metaobjects. The
MetaobjectClass is a description of a general class. When
the MetaobjectClass is instantiated the fields acquire
values. The fields are references to metamethod objects,
metafield objects and metaconstructor objects, e.g. the
MetaobjectClass has a field of the Metafield type (the
metamethods and the metaconstructors are excluded to
simplify the example). The MetafieldClass has the field’s
name and type. When the MetaobjectClass is instantiated
a metabject and a metafield object are created and the
fields in Metafield acquire their values. The metaobject
has a reference to the metafield object and the latter has a
reference to a parameter. If the contract type is to have a
parameter named aCustomer, the metaobject has a
metafield object with an instance variable name with
value “aCustomer” and an instance variable type with the
value of"Customer". (Figure 5).

When the user has made his or her choices as to
which parameters the contract type is to contain, the class

ContractHandlerMOP creates the metaobject according to
the input values. From the metaobject the source code for
the new class is generated. The java source code is then
compiled and a class file is produced. The file is stored in
the contract type catalogue.

The ContractHandlerMOP is a class that handles the
metaobject. All access to the metaobject goes via the
ContractHandlerMOP. The class also restricts what can be
done to the metaobject. This can be used to implement
business logic controlling what contract types can be
created.

Following is a summary of how to create a new
contract type:

• The prototype collects the contract types from the
contract type catalogue and displays the names of
the contract types and their parameters and
methods to the end-user.

• The end-user selects a contract type on which the
new one is to be built.

• The contract type is inspected and the parameters
of the contract type are displayed. All the
parameter classes are collected from the
parameter catalogue and filtered by the Event
type; the result is displayed for the user.

• The user chooses the parameters for the new
contract type.

• The program constructs a corresponding
metaobject with its metafield, metamethod and
metaconstructor objects.

• The metaobject is translated into Java source
code.

• The Java source code is compiled and the
resulting class file is stored in the contract type
catalogue.

• The contract type can be used by the base-level
of the prototype.

DISCUSSION

During the project three prototypes were implemented
along with the system that is in operation today. The last
prototype is the one that is described in this article. The
other two prototypes were for the contract handler (with
essentially the some functionality as in the prototype
described) and for the "compute payment" function
respectively. These two prototypes were constructed with
the help of the meta-model database that was the starting
point of the project. They are examples of the meta-data
approach mentioned in the section "tailoring and meta
modeling" above, for a description of these prototypes see
(Lindeberg and Diestelkamp, 2001). There are parallels
between using a meta-model database and the MOP
prototype. In the meta-level of the program the meta DB
structure and the object structure of the program are
inspected respectively. The difference comes in the base-
level part: the meta DB prototypes were both complicated

6

and slow since it had to inspect the database to establish
the structure of a contract type; it also had to inspect the
database to see how a parameter looked.

When we compare the earlier prototypes with the one
described in this article we are convinced that the latter is
less complex (it has taken less time to develop it). The
interesting question is why this is the case and it is
important to see if we can draw any general conclusions
from this.

One of the reasons why meta-programming was so
convenient in the example described here is that it is not
the functionality of the program which is changed by the
tailoring interface but the model of the data in the
program. The base-level program has the same
functionality in spite of the alterations. If the tailoring had
aimed at extending functionality, for instance, with the aid
of macro capabilities, the task would have been
complicated in the meta-programming approach. An
interesting question is if there is a complementary
principle here: when tailoring changes functionality use
meta-data approach and when tailoring changes the data
model use the meta-programming approach. Our results
seem to point in this direction.

Another advantage of the MOP prototype is the loose
coupling between the meta and the base part of the
program and between the contract types, the parameters
and the base-level. This makes the base-level part simpler.
By separating the meta- from the base-level we were able
to use standard software, which means that at least the
base-level is maintainable without any special competence
in MOP.

Jet another advantage of the MOP approach is the
opportunity it presents to handle unanticipated changes by
hand-coding objects. There is always a limit to how far we
can get with tailoring since the latter only takes care of
anticipated types of changes and there will always be
changes in the requirements which cannot be anticipated.
In the MOP prototype, hand-coding contracts or new
parameter classes can handle some such changes. This
goes beyond normal tailoring activity and is part of the
maintenance of the system. The advantage of the MOP
approach described here is that it is easy to mix hand-
coded and automatically constructed objects.

A new contract type can be coded by hand and put in
the contract type catalogue. It will be used in the same
way as contract types constructed within the program.
Such a hand-coded contract type can be modified later by
regular tailoring.

One example of this could be a contract type where
two parameters depend on each other; if one parameter
has a value the other must also have one. We can
implement such an example by first using tailoring to let
the system constru ct the contract type without any check
between the parameters. Then a programmer can modify
the code by adding the constraint between the parameters
to the checking method in the contract type. Should we

subsequently wish to make a small modification in the
contract type, by adding a parameter, for example, this can
be done using the normal tailoring interface.

In the same way it is possible to add new parameter
objects by simply placing the compiled parameter class in
the parameter catalogue. The parameter class is then ready
to be used in the usual way by the program; no other code
in the system needs to be changed but the new parameter
class must obviously be hand -coded by a programmer.
The new hand-coded contract type or parameter class
must follow the pattern for how a contract type or a
parameter class has to be structured. We believe this
possibility of mixing hand-coded and automatically
generated objects is a general advantage of the meta-
programming approach.

One of the reasons that tailoring was not implemented
in the real system development that was part of our
research project was that the automatically generated user
interfaces would not have been of an acceptable quality.
This is a problem that occurs whenever tailoring is used to
generate user interfaces. The meta-programming approach
enables the user to alleviate the problem by making hand-
coded interfaces for the contract types that are in the
system right from the beginning so that they have good
user interfaces. When new contract types are subsequently
added by tailoring, less user-friendly interfaces will result;
this may be acceptable, and in our case study it would
have been an option since the alternative is to handle
payments by hand.

CONCLUDING REMARKS

It has been interesting to try out the possibilities in
Java for carrying out meta-programming. Our overall
conclusion is that the metaobject possibilities available in
Java are a convenient way for implementing tailoring in
special-purpose applications.

A question we have only touched on in this paper is if
it is worth the trouble to make an application tailorable as
opposed to being merely “easy to change”. The answer to
this question lies in the future: what types of requirement
changes will arise? Would the prototype have been able to
handle them? After all, the efforts to make software
adaptable only pay off if they are used.

ACKNOWLEDGEMENTS

We thank all involved at Europolitan Vodafone AB
and Diedata AB for a very interesting and rewarding
project. The project was funded to 50% by the industrial
partners (Europolitan Vodafon AB and DieData) and to
50% by KKS (The Knowledge Foundation).

7

REFERENCES

Dittrich, Yvonne & Lindeberg, Olle. 2002: Designing
for changing work and business practices. To be published
in: Nandish Patel (Ed.) Ev olutionary and Adaptive
Information Systems. USA, IDEA group publishing, to be
published 2002.

Floyd, Christiane 1984: “A Systematic Look at
Prototyping”, in Approaches to Prototyping, Budde, R.,
Kuhlenkamp, K., Mathiassen, L., Zuellighoven H., eds.,
Springer-Verlag, Berlin, Heidelberg, New York, Tokio,
(1984)

Golm, Michael. 1997: “Design and Implementation of
a Meta Architecture for Java”, Diplomarbeit, der
Friedrich-Alexander-Universität, Erlangen-Nürnberg

Henderson, Austin & Kyng, Morten. 1991: “There ’s
No Place Like Home: Continuing Design in Use”, in
Design at Work, GreenBaum, J & Kyng, M., eds.,
Lawrence Erlbaum, Hillsdale, NJ.

Kiczales , et.al. 1991: “The Art of the MetaObject
Protocol”, MIT Press , England.

Kiczales , Gregor 1992: “Towards a New Model of
Abstraction in the Engineering of Software ”, in
Proceedings of International Workshop on New Models
for Software Architecture (IMSA): Reflection and Meta-
Level Architecture , Tama City, Tokyo, November 1992.

 Kiczales et.al. 1993: “MetaObject Protocols, Why
We Want Them and What Else They Can Do”, in Object
Oriented Programming: The CLOS Perspective, Paepcke,
A., Massachusetts Institute of Technology, Cambridge.

Lindeberg, Olle & Diestelkamp, Wolfgang 2001:
“How Much Adaptability do you Need? Evaluating Meta-
modeling Techniques for Adaptable Special-purpose
Systems ”, in Proceedings of the Fifth Conference on
Software Engineering and Applications, Anaheim, USA,
2001.

Maes, Pattie. 1987: “Computational Reflection”,
Technical Report 87_2, Laboratory for Artificial
Intelligence, Vrieje Univeriteit, Brussels, Belgium.

Rivard, Frederic.1996: “Smalltalk: a reflective
language”, REFLECTION´96, San Francisco.

Zimmerman, Chris. 1996: “Reflections on Adaptable
Real-Time Metalevel Architecture”, in Journal of
Parallel and Distributed Computing 36, 81-89, 1996.

UNPRINTED SOURCES

Sun "JavaTM 2 Platform, Standard Edition, v 1.3, API
Specification" <http://java.sun.com/j2se/1.3/docs/api> 7
May 2001

FIGURES

Figure 1 A part of the Java meta-model

Figure 2 The system architecture

Method

Class

Object

Classobject
one

Class Meta-
class

Meta-
object

Method-
object

Person

Thomas

Emma

Java meta-model

Instance of

Reference

Correspond to

Users

Compute
payment

Transaction
handler

Contract
handler

Events

Other
systems

Payments

4

3

2

1
5

8

Figure 3 Type Hierarchy

Figure 4 Inheritance hierarchy for the contract types

Figure 5 An example

Figure 6 Meta representation

Metaobject
bject

Meta-
method

Meta-
class

Metaobject

compiling

Method

Class

Object

Classobject
bject

Class Meta-
class

Meta-
object

Method-
object

ContractType

aContract

bContract

Java meta-model Extended meta-model

MetamethodClassMetaobjectClass

Instance of

Reference

Correspond to

ContractBA ContractAB ContractAA

 = abstract class

= concrete class

ContractABA

Event

ContractAB_2
ContractABA_1

ContractAB_1

EventA EventB

Metaobject
f=Metafield
c
m

Class ContractType
Customer aCustomer;

MetafieldClass
name
type

MetaobjectClass
Metafield f;;
Metaconstructor c;
Metamethod m;

Metafield
name=aCustomer
type= Customer

Transformed to java source
code and then compiled.

Instance of

Instance of

Reference

Reference

ContractTypeBAA ContractTypeAAB ContractTypeAAA

Event

EventA EventB

ContractGroupBA ContractGroupAB ContractGroupAA

ContractTypeABA

