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ABSTRACT 

In this article we describe a prototype and how it was 
used to test if it is possible to use Java reflection API as a 
means of implementing tailoring. The tailoring 
capabilities of the prototype make the system configurable 
during runtime. The system that the prototype was 
modeled on is an application used by a telecommunication 
operator as a support system. In such a fast changing area 
software systems must also change. It is possible to 
anticipate the type and structure of some of the changing 
requirements and for them the prototype implements 
tailoring. Using the metaobject protocol idea, the modest 
reflection capabilities offered by Java together with a 
standard Java compiler and the normal Java runtime 
support are adequate to implement tailoring.  

INTRODUCTION 

This article is based on an experiment in using the 
Java reflection API (Sun Java 2, 2001) as a means of 
implementing a tailorable system. The background and 
idea behind the experiment was a research project in 
which we and two industrial partners collaborated. The 
goal of the project was to investigate a means of 
developing flexible, adaptable and modifiable software 
systems. The system that the prototype was modeled on is 
an application used by one of the research partners that is 
a telecommunication operator. It was possible to 
anticipate the type and structure of some of the changing 
requirements and for them tailoring (Henderson and 
Kyng, 1991) is a possible way to make the system 
modifiable. To read more about the project see ‘Designing 
for changing work and business practices’ (Dittrich and 
Lindeberg, 2002). The other partner had developed a 
meta-model database system. During the research project 
we developed several prototypes to test how to make a 

tailorable system using this database. At the same time a 
normal system development was carried out at the 
company. The resulting system has only limited tailoring 
capabilities. The need to make the software adaptable was 
instead satisfied by making the software easy to modify. 
This was achieved by making the software in components, 
which with only a little programming effort can be 
assembled in new configurations. 

There were several reasons why the meta-modeling 
database tested in the prototypes were not used in the 
system. Here we will take up only one of these: the system 
seemed to become too complicated when tailoring was 
added to all other requirements. This is an example of a 
general problem; when you add tailoring capabilities to a 
system this often makes the system more complicated: not 
only do you have to construct the tailoring interface but 
the basic program may also become more complicated. To 
avoid this we constructed the prototype using ideas based 
on the metaobject protocol (MOP) approach (Kiczales, 
1992). The prototype described here is a combination of 
the MOP approach and the components used in the system 
development mentioned earlier. This combination results 
in the meta-programming approach; this prototype is less 
complex than those implemented earlier on in the project  

 We start by giving a sketch of what a metaobject 
protocol is, and more particularly, what it is in Java. We 
then give a description of the software architecture of the 
complete system. The prototype implements only part of 
the system. Following the software architecture are the 
design and implementation of the prototype. Finally, some 
conclusions from the prototype are drawn. 

THE METAOBJECT PROTOCOL  

The metaobject protocol approach originates from the 
CLOS programming language in which it is possible to 
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change program behavior by interacting with the runtime 
system through a metaobject protocol (Kiczales et al., 
1991).  

The metaobject protocol is based on the idea that one 
can and must open up programming languages so that the 
developer is able to adjust the language implementation to 
fit his or her needs. This idea has subsequently been 
generalized to systems other than compilers and 
programming language. In the article “Towards a New 
Model of Abstraction in the Engineering of Software” 
(Kiczales, 1992) it is argued that the metaobject protocol 
concept can be used as a general principle for abstraction 
in computer science. The idea is that any system that is 
constructed as a service to be used of client application (as 
for example an operation system or a database server) 
should have two interfaces; a base-level interface and a 
meta-level interface (Kiczales, 1992). The base-level 
interface gives access to the functionality of the 
underlying system and through the meta-level interface it 
is possible to alter special aspects of the underlying 
implementation of the system so that it suits the needs of 
the client application. The meta-level interface is called  
the metaobject protocol (MOP). Simply put, a MOP is a 
set of rules by which to manipulate and communicate with 
metaobjects. 

A MOP shall consequently: 
• Provide extended control over the behavior of the 

system. 
• Have a clear division between the base-level and 

meta-level interface. 

TAILORING AND META MODELING 

We have adopted a different approach towards the 
metaobject protocol. The idea of the metaobject protocol 
approach has inspired us to transfer the concept to end-
user tailorable software. In most systems the end -user has 
no access to the implementation of the program; in our 
approach the end-user is given the opportunity to alter or 
tailor the software should the need arise. Our aim is to 
give the user the opportunity to add components to the 
program in a controlled way which does not require any 
programming. To do this we use a dual-interface: a 
traditional base-level program and a meta-level program 
that provides tailoring for the base-level program. 

The distinction between a computational base level 
and a tailoring meta level is a useful one in a tailorable 
system. In the same way as in a metaobject protocol, the 
base-level implements what the system normally does. At 
the meta level you can change what the base level does. 
The two levels are also often separated in the user 
interface with a separate tailoring interface. The same 
separation may exist in the internal design. 

 Perhaps the obvious way to do this is to let the base-
level program be controlled by meta-data which stores the 
choices the user has made when tailoring. If the tailoring 

possibilities affect a large part of the program, the base-
level program may become littered with tests for the value 
of the meta-data. If the tailoring is complicated the result 
may be that the base-level program looks more like an 
interpreter of the meta-data than a straightforward 
program. We call this method of implementing tailoring 
the meta-data approach. 

The alternative way to implement a tailorable system, 
the meta-programming approach , is closely linked to the 
metaobject protocol approach. With the meta-
programming approach the base-level program is a normal 
program which performs the normal computation only. 
When the system is tailored by the meta-level this is 
implemented by changing the base-level program. To be 
able to do this we must be able to change (or at least add 
to) the program during execution. In Java this is possible 
since new class libraries may be loaded and linked during 
runtime. Another question is, “where is the meta-level 
description of the current configuration of the system 
stored?” In the meta-data approach the meta-level can 
inspect the meta-data to see how the program is 
configured;it is the meta-data that will be changed during 
tailoring. In the meta-programming approach the base-
level does not need any meta-data. The radical solution is 
to take away the meta-data from the meta-level too. This 
means that it is the base-level program itself that is the 
meta description of the current configuration. This is the 
method we have chosen in the prototype.  

We have used Java to implement the meta- 
programming approach. When tailoring changes the 
program this is implemented by compiling new class 
libraries (this is done by the compiler in JDK). The new 
class libraries are loaded and linked in during runtime. For 
inspection of the program we have used the - rather weak 
- reflection abilities in Java reflection API. 

REFLECTION IN JAVA 

Tailoring will change the program; the latter does not  
know in advance what  the changes will look like. To 
discover what a new class contains, we need reflection 
capabilities. In a computational system reflection is the 
capability of an object to, for example, “reason about and 
act upon itself” (Maes, 1987).  

There are two types of reflection: introspection and 
intercession (Rivard, 1996). The purpose of introspection 
is to acquire information about the program itself and to 
use that information within the program. Intercession goes 
further. It allows the program to alter its own behavior. 
Different programming languages have different 
reflection capabilities. Languages such as Lisp or 
Smalltalk have both introspection and intercession, while 
Java is basically introspective only. Java's meta-model is 
shown in Figure 1. In Java, every class has a meta 
description which is represented by an object; an instance 
of the class “Class.” This object is a metaobject. While 
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ordinary objects describe the world, metaobjects describe 
the ordinary objects. In other words, the metaobject is an 
object that contains information about the ordinary object 
(base object) (Golm, 1997). The metaobject may control 
the execution of the base object (Zimmerman, 1996). The 
metaobjects together with the ordinary objects are part of 
a meta-model.  

The reflection API in Java provides information about 
modifiers, methods, instance variables, constructors and 
the super classes of a particular class. It allows you to 
create an instance of a class although you do not know the 
name of the class until runtime. It is also possible to 
invoke a method on an object without knowing the name 
of the method during coding.  

Accordingly, it is java.lang.reflect which makes it 
possible to inspect the content of the class (Sun Java 2, 
2001). However, in Java 1.3, the Dynamic Proxy API was 
introduced making it possible to alter the behavior of an 
object in runtime. We have not used the proxy concept but 
instead alter the program by adding new classes using the 
compiler in JDK. 

THE SYSTEM ARCHITECTURE 

The prototype was produced to test the use of MOP in 
implementing tailoring. The prototype is a partial 
implementation of a system that will be described in this 
section. It is necessary to have some understanding of the 
whole system to understand the design of the prototype. 
The system is used for computing certain payments1; these 
payments are triggered by certain events. The receiver of 
money and how much should be paid are decided by what 
contract(s) are valid fo r the event.  

The system architecture is described in Figure 2. The 
system can be regarded as two loosely connected parts: 
the transaction handler and the contract handler. The 
transaction handler application manages the actual 
payments and also produces reports while its database 
stores data about the triggering events, payments and 
historical data about past payments. (1)2 The data 
describing the triggering events is periodically imported 
from another system. (2) To compute the payments, the 
transaction handler calls a stored procedure in the contract 
handler’s database. (3) The event is matched with the 
contracts; several hits may occur. Some of the contracts 
cancel others; others are paid out in parallel. We call the 
process of deciding which contracts to pay ‘prioritization’. 
(4) The result is returned to the transaction handler. 
(5) The actual payments are made by sending a file to the 
administrative system. 

                                                                 
1 To protect the business interests of our industrial partner 
we can only give an abstract description of the system: it 
is our opinion that  this will affect the conclusions we 
draw. 
2 The numbers refer to figure 2. 

An important complication in the data model is the 
categorization of the values on which some of the 
conditions are based. The categorization is dependent on 
other systems, making interaction with the latter essential 
both when the transaction handler matches events with 
contracts and when a user wants to use categories in a 
contract. 

The contract handler administrates contracts, or rather 
formal descriptions of contracts, in a relational database. 
The interface enables the user to enter new contracts and 
search for old ones. When entering new contracts, the 
input is checked to ensure the integrity of the data. The 
main parts of the contracts are: 

• Identification of the contract and version control. 
• Some flags controlling who receives the money. 
• Conditions determining if the contract is valid for 

an event or not. 
• A payment table deciding the amount to be paid. 

 
The first two parts are common to all contracts; it is the 
conditions and the payment table that differ. 

In order to make the system adaptable to future 
changes a conceptual model that facilitates a meta-model 
description of the system is needed. The purpose of the 
system is to compute payments according to the stored 
contracts. Each event that triggers a payment has a set of 
parameters. Today there are only two kinds of events, 
though several other types of events are under 
consideration for the future. In the contracts a condition is 
meaningful only if the transaction handler can evaluate it 
when payment is due. This leads to the concept of event 
types: a payment is triggered by an event, and all contracts 
belong to a particular event type. Each event type has a set 
of attributes associated with it that limits what conditions 
a contract belonging to it can have. In the existing system 
there are a number of contract types that are used for 
different purposes. From the system’s point of view these 
contract types differ in two significant ways: which 
conditions you can add to the contract and how the 
contracts influence each other (if several contracts match 
the same event one may inhibit the others, or all may be 
paid out). 

In the case study already during the design 
discussions we constructed a conceptual model with four 
levels of abstraction (see Figure 3). The actual data that is 
stored describes the contracts the payments are based on. 
The contracts are of several contract types  which form the 
base level of the abstraction hierarchy. Some contract 
types has nearly the same parameters but are used for 
different purpose in the use of the system; this gives the 
next level, contract_groups. At the top level of the 
abstraction hierarchy are the event_types where we group 
together contract and payments related to the particular 
event which triggers them.  

In an object-oriented implementation the actual 
contracts would be objects belonging to the concrete 
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classes in the bottom line. The remainder of the classes 
would be abstract. 

THE PROTOTYPE 

The reason for producing the prototype construction 
was to investigate the feasibility of using Java's meta-
programming possibilities to construct a tailorable system. 
This can be seen as an example of an explorative 
prototype (Floyd, 1984). We wanted to gain an 
understanding of the complexities related to this approach. 
The prototype does not implement the whole system but 
only the contract handler application. Functionality is 
reduced, especially the parameters using categorization of 
values are simplified to simple values, the primary reason 
for this being that it allowed us to build a prototype 
without any communication to other systems; in this way 
development of the prototype was greatly simplified. 

The prototype is divided into two levels, the meta-
level and the base-level. Two catalogues, one storing 
contract type and the other parameter classes implement 
the connection between the two levels. In the meta-level 
of the prototype, the new contract types are created and 
stored in the contract type catalogue. In the base-level the 
same classes are used as part of the program. The 
parameter class catalogue is used by the meta-level to 
know which parameters exist and by the base-level as part 
of the program. 

Inheritance, together with the meta representation and 
the inner structure of the contract types, is essential to the 
prototype. A simplified model, similar to the conceptual 
model described in the section about the system 
architecture – but leaving out the group level – is the basis 
for the prototype implementation. It resulted in the class 
hierarchy presented in Figure 4. The events are super 
classes to the contract types. In the conceptual model an 
Event has a set of parameters and the contract type is 
made up of a subset of these parameters. This is not 
possible in Java; instead there is a specification that 
defines the set of parameters for the contract types in the 
Event classes. Some parameters are compulsory for all 
contract types belonging to an Event; they are put in the 
Event so that by inheritance they are present in all the 
contracts, e.g. all contracts must have a contract id. 

One problem is that the contracts should be stored for 
a long time; all contracts ever entered into the system are 
kept to preserve its history and ensure that old payments 
are traceable. This is a problem when a change is made in 
a contract type as the system must still be able to store and 
display old contracts according to the old type. For this 
reason, all contract types from the beginning are defined 
as both an abstract class (e.g. ContractAB) and a concrete 
subclass (ContractAB_1). When a minor change is made 
to a contract type this may then be done by making a new 
concrete class, as ContractAB_2 in Figure 4.  

The base-level of the prototype 
A contract is essentially a collection of parameters. In 

the system in use some of the parameters are very 
complex and some even collect values from other 
systems. This makes it  natural to represent every 
parameter by an object. Most of the methods in the 
contracts are implemented using delegation to the 
parameters. For the contracts’ three main methods - 
checking, storing and displaying themselves - there are 
corresponding methods in the parameter classes. This is a 
vertical design where one class takes care of one type of 
parameter through the whole program instead of the more 
normal three-layer architecture (interface, logic and 
storing). This design makes it very easy to add new 
parameter classes to the system.  

When the end-user wants to create a new contract, i.e. 
create an object from a contract type, all of the concrete 
classes are fetched from the contract type catalogue, their 
names are presented and the end-user chooses which 
contract type to create a contract from. Then a contract is 
created which has parameter objects without values. The 
object displays itself by delegating to the parameters. The 
same principle is used for storing and checking errors. 
When the user has put values in all slots and wants to 
store the contract, the error check is delegated to every 
parameter object. The parameter object checks that the 
value has the right format and is within the given limits. 
When a value is incorrect, the slot is marked and the user 
has to put in a new value. Not until all values are correct, 
are the values set in the empty contract. The primary 
problem with the delegation principle is that it is 
inadequate where  parameters are in some way dependent 
on each other. It is possible for a parameter to access 
another parameter within the same contract by using a 
parent reference that all parameters have.  

Following is a summary of how to create a new 
contract: 

• The prototype collects the contract types from the 
contract type catalogue. 

• The end-user selects a contract type to make a 
contract from. 

• An empty contract is created from the contract 
type, the display method of the object is called 
and the parameters display themselves to the 
user. 

• The user puts in values for the parameters. 
• The prototype checks the values; when these are 

correct they are set in the empty contract. A 
contract is created. 

• The contract is stored in a similar way. 

The meta-level of the prototype 
The contract types are created in the meta part of the 

program. When a user wants to create a new contract type 
all existing contract types are displayed. This is done by 
collecting all the class files from the contract type 
catalogue in which they are stored . The end-user chooses 
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what contract type he wants to have as super class for the 
new contract type. To make it easier for the user to make a 
decision as to what contract type is the most suitable, the 
parameters and the methods of the contract type are also 
displayed. Java reflection API provides the necessary 
methods for this.  

The next step is to collect all possible parameters for 
the new contract type. To find the set of all possible 
parameters the program collect all classes in the catalog 
dedicated for parameter classes. All parameters may not 
be used for all Events. This is achieved by putting a filter 
in the class describing the Event. For example, if a 
parameter 'xyz' is not valid for Event type B a method that 
acts as a filter is placed in the abstract class EventB 
(Figure 4). 

Thereafter all possible parameters for this Event type 
are shown to the end-user for him to select from. The 
parameters that are inherited are automatically selected 
and cannot be deselected. To find which parameters are 
already present in the selected contract type the program 
looks into the class of the contract type and its super 
classes with help from java.lang.reflect.  

The meta-level of the program is constructed as a 
meta-model which is implemented as classes. The contract 
types correspond to objects of the class Metaobject. Our 
metaobject is in a way the same thing as the classobject in 
Java. We constructed our own version because a 
classobject cannot exist without a corresponding class. 
This means that it is not possible to create a new class 
from a classobject; as a result we could not use the 
classobject alone for our purposes. Another factor is that it 
is important to be able to handle the metamethods in a 
special way. The relationship between Java's meta-model 
and our extended meta-model is shown in Figure 6. 

In the our extended meta-model a metaobject is an 
ordinary Java object, but it contains a description of a 
contract type and thus corresponds to a specific contract 
type. The MetaobjectClass is the class of metaobjects. The 
MetaobjectClass is a description of a general class. When 
the MetaobjectClass is instantiated the fields acquire 
values. The fields are references to metamethod objects, 
metafield objects and metaconstructor objects, e.g. the 
MetaobjectClass has a field of the Metafield type (the 
metamethods and the metaconstructors are excluded to 
simplify the example). The MetafieldClass has the field’s 
name  and type. When the MetaobjectClass is instantiated 
a metabject and a metafield object are created and the 
fields in Metafield acquire their values. The metaobject 
has a reference to the metafield object and the latter has a 
reference to a parameter. If the contract type is to have a 
parameter named aCustomer, the metaobject has a 
metafield object with an instance variable name with 
value “aCustomer” and an instance variable type with the 
value of"Customer". (Figure 5).  

When the user has made his or her choices as to 
which parameters the contract type is to contain, the class 

ContractHandlerMOP creates the metaobject according to 
the input values. From the metaobject the source code for 
the new class is generated. The java source code is then 
compiled and a class file is produced. The file is stored in 
the contract type catalogue.  

The ContractHandlerMOP is a class that handles the 
metaobject. All access to the metaobject goes via the 
ContractHandlerMOP. The class also restricts what can be 
done to the metaobject. This can be used to implement 
business logic controlling what contract types can be 
created. 

Following is a summary of how to create a new 
contract type: 

• The prototype collects the contract types from the 
contract type catalogue and displays the names of 
the contract types and their parameters and 
methods to the end-user. 

• The end-user selects a contract type on which the 
new one is to be built. 

• The contract type is inspected and the parameters 
of the contract type are displayed. All the 
parameter classes are collected from the 
parameter catalogue and filtered by the Event 
type; the result is displayed for the user.  

• The user chooses the parameters for the new 
contract type. 

• The program constructs a corresponding 
metaobject with its metafield, metamethod and 
metaconstructor objects. 

• The metaobject is translated into Java source 
code. 

• The Java source code is compiled and the 
resulting class file is stored in the contract type 
catalogue. 

• The contract type can be used by the base-level 
of the prototype. 

DISCUSSION 

During the project three prototypes were implemented 
along with the system that is in operation today. The last 
prototype is the one that is described in this article. The 
other two prototypes were for the contract handler (with 
essentially the some functionality as in the prototype 
described) and for the "compute payment" function 
respectively. These two prototypes were constructed with 
the help of the meta-model database that was the starting 
point of the project. They are examples of the meta-data 
approach mentioned in the section "tailoring and meta 
modeling" above, for a description of these prototypes see 
(Lindeberg and Diestelkamp, 2001). There are parallels 
between using a meta-model database and the MOP 
prototype. In the meta-level of the program the meta DB 
structure and the object structure of the program are 
inspected respectively. The difference comes in the base-
level part: the meta DB prototypes were both complicated 
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and slow since it had to inspect the database to establish  
the structure of a contract type; it also had to inspect the 
database to see how a parameter looked. 

When we compare the earlier prototypes with the one 
described in this article we are convinced that the latter is 
less complex (it has taken less time to develop it). The 
interesting question is why this is the case and it is 
important to see if we can draw any general conclusions 
from this. 

One of the reasons why meta-programming was so 
convenient in the example described here is that it is not 
the functionality of the program which is changed by the 
tailoring interface but the model of the data in the 
program. The base-level program has the same 
functionality in spite of the alterations. If the tailoring had 
aimed at extending functionality, for instance, with the aid 
of macro capabilities, the task would have been 
complicated in the meta-programming approach. An 
interesting question is if there is a complementary 
principle here: when tailoring changes functionality use 
meta-data approach and when tailoring changes the data 
model use the meta-programming approach. Our results 
seem to point in this direction. 

Another advantage of the MOP prototype is the loose 
coupling between the meta and the base part of the 
program and between the contract types, the parameters 
and the base-level. This makes the base-level part simpler. 
By separating the meta- from the base-level we were able 
to use standard software, which means that at least the 
base-level is maintainable without any special competence 
in MOP. 

Jet another advantage of the MOP approach is the 
opportunity it presents to handle unanticipated changes by 
hand-coding objects. There is always a limit to how far we 
can get with tailoring since the latter only takes care of 
anticipated types of changes and there will always be 
changes in the requirements which cannot be anticipated. 
In the MOP prototype, hand-coding contracts or new 
parameter classes can handle some such changes. This 
goes beyond normal tailoring activity and is part of the 
maintenance of the system. The advantage of the MOP 
approach described here is that it is easy to mix hand-
coded and automatically constructed objects.  

A new contract type can be coded by hand and put in 
the contract type catalogue. It will be used in the same 
way as contract types constructed within the program. 
Such a hand-coded contract type can be modified later by 
regular tailoring. 

One example of this could be a contract type where 
two parameters depend on each other; if one parameter 
has a value the other must also have one. We can 
implement such an example by first using tailoring to let 
the system constru ct the contract type without any check 
between the parameters. Then a programmer can modify 
the code by adding the constraint between the parameters 
to the checking method in the contract type. Should we 

subsequently wish to make a small modification in the  
contract type, by adding a parameter, for example, this can 
be done using the normal tailoring interface.  

In the same way it is possible to add new parameter 
objects by simply placing the compiled parameter class in 
the parameter catalogue. The parameter class is then ready 
to be used in the usual way by the program; no other code 
in the system needs to be changed but the new parameter 
class must obviously be hand -coded by a programmer. 
The new hand-coded contract type or parameter class 
must follow the pattern for how a contract type or a 
parameter class has to be structured. We believe this 
possibility of mixing hand-coded and automatically 
generated objects is a general advantage of the meta-
programming approach.  

One of the reasons that tailoring was not implemented 
in the real system development that was part of our 
research project was that the automatically generated user 
interfaces would not have been of an acceptable quality. 
This is a problem that occurs whenever tailoring is used to 
generate user interfaces. The meta-programming approach 
enables the user to alleviate the problem by making hand-
coded interfaces for the contract types that are in the 
system right from the beginning so that they have good 
user interfaces. When new contract types are subsequently 
added by tailoring, less user-friendly interfaces will result; 
this may be acceptable, and in our case study it would 
have been an option since the alternative is to handle 
payments by hand. 

CONCLUDING REMARKS 

It has been interesting to try out the possibilities in 
Java for carrying out meta-programming. Our overall 
conclusion is that the metaobject possibilities available in 
Java are a convenient way for implementing tailoring in 
special-purpose applications.  

A question we have only touched on in this paper is if 
it is worth the trouble to make an application tailorable as 
opposed to being merely “easy to change”. The answer to 
this question lies in the future: what types of requirement 
changes will arise? Would the prototype have been able to 
handle them? After all, the efforts to make software 
adaptable only pay off if they are used.  
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Figure 1 A part of the Java meta-model 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The system architecture  
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Figure 3 Type Hierarchy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Inheritance hierarchy for the contract types 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 An example

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 Meta representation 
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