I mproving Multiprocessor Performance of a L arge Telecommunication System
by Replacing I nterpretation with Compilation

Valdemar Mejstad, Karl-Johan Tangby and Lars Lundberg
Department of Software Engingeering and Computer Science
Blekinge Institute of Technology, SE-371 25 Ronneby, Sweden
E-mail: Lars.Lundberg@bth.se

Abstract

In this report we consider different techniques for
increasing the multiprocessor performance of an
interpreted processing language in a large real-time
telecommunication system, called Billing Gateway. We
have implemented a prototype in which we first translate
the language into C++ code, and then compile it using a
C++ compiler. In our prototype we experienced a more
than fourfold increase in throughput, compared to the
original system, when running on an SMP with eight
CPUs. The prototype also showed better scalability than
the original system, due to less use of dynamic memory.

1 Introduction

The exact usage of a software system cannot always be
foreseen when it is delivered. Therefore, the system
usually contains several waysto customizeit for the user's
needs. In some cases a scripting language might be
needed. For example, Microsoft Word [12] contains a
language that can be used to create macros to customize a
document or form. The tasks performed by this language
are usually rather simple and not especially processing
intense. Run-time interpretation is usually enough to
satisfy performance needs.

Currently, the need for customization after delivery is
increasing in many performance demanding real-time
systems, e.g. systems in the telecommunication domain.
For such systems, the performance reduction caused by
run-time interpretation may cause serious problems.

We have studied a large commercial multi-threaded
telecommunication system, called the Billing Gateway
(BGw). It uses an interpreted language called the DataUnit
Processing language (DUP) to process billing data in a
telecommunication network. Previous studies have shown
that DUP, and in particular the excessive dynamic memory
management caused by the interpretation of DUP, causes
serious performance problems on multiprocessors [8].
With new services being introduced in the mobile

networks, such as GPRS and 3G [2], there is a risk that
DUP will be a serious performance bottleneck.

In this report we investigate how the performance and
scalability of the DUP-language could be improved by
using compilation instead of run-time interpretation. Our
investigation is based on an evaluation of a prototype that
uses compilation instead of interpretation.

We start by giving a description of the Billing Gateway
and its processing language in Section 2. That section also
discusses the current performance problems. Section 3
discusses possible solutions and the solution we selected.
In Section 4 we talk about our prototype implementation,
and in Section 5 we evauate our prototype. Finaly,
Section 6 contains our conclusions.

2 TheBilling Gateway

2.1 Overview

The Ericsson Billing Gateway (BGw) is a mediation
device that connects networks elements (NEs) in
telecommunications networks with post processing
systems (PPSs) (see Figure 1). High throughput is very
important in the BGw.

I \‘v‘-m |
Ll
I \‘v‘-m |
Ll
I = U‘- i
Wi

Telecommunication
Switching Centers

©

> Fraud
User Interface Detection

Figure 1. A billing configuration.

* Conldpridcs [l

(oo™
o
el]
=S8

Rabarh

5P

=} ~aaEaEEaaar
& e

¢ o =

&j H (Y] —_—k

i

¥ o-n el

Lonbgurshcn
- [P -
B e
m
#
r 8
¥ Bomree R AL L L]

Figure 2. A billing configuration.

All information about calls in a hetwork are handled in
call data records (CDRs). The CDRs are generated by
NEs, such as telecom switches, and can contain
information about call duration, originating telephone
number, terminating telephone number, etc. The CDRs are
sent to post processing systems in order to perform, for
example, billing and fraud detection.

One reason for using BGw is the flexibility it
introduces. The BGw can handle several different
protocols and data formats. It can perform filtering,
formatting and other processing of the call data. The data
flow in the BGw is configured using a graphical user
interface (see Figure 2), icons are used to represent
external systems, and the processing of the call data is
accomplished using an internal processing language called
DUP that we will examine further in this paper.

Call data is usually coded with Basic Encoding Rules
according to a specification in Abstract Syntax Notation
One (ASN.1/BER) [9]. When the data arrives to the BGw
it is first decoded into a format that can be processed
internally. All dataisre-encoded beforeit is sent to PPSs.

In Figure 2 files are retrieved from two Mobile
Switching Centers (MSCs) of two different versions.
CDRs from MSC 2 are formatted to conform to the newer
version, and all CDRs are checked to see if the cals are
billable. Billable CDRs are sent to the billing system and
others are saved for statistical purposes. For more
information about the BGw architecture see [10].

2.2 Components

There are four components that use the DUP language:
filter-, formatter-, matching- and rating nodes. A

component in this case is represented in the GUI by an
icon. Each node contains one DUP-script that is executed
for every CDR passing through the BGw.

2.2.1Filter

A filter node is used to filter out CDRs (e.g. IsBillable?
in Figure 2). A filter node can, for example, filter out all
roaming calls (acall madein anet other than the home net,
e.g. when travelling in another country). The typical filter
is rather simple and contains no more than around 10 lines
of DUP code.

2.2.2 Formatter

Sometimes it is necessary to convert a CDR from one
format to another before sending it on to post processing
systems (e.g. ver 7 -> ver 8in Figure 2). The size, in lines
of code, differs very much from one formatter to another.
Initssimplest form it might only change a couple of fields,
whereas large formatters can contain several thousand
lines of code.

2.2.3 Matching

CDR matching makes it possible to combine a number
of CDRs into one CDR. It is possible to collect data
produced in different network elements or at different
points in time and combine them into one CDR. Matching
nodes usually contain a lot of code. From a couple of
hundred lines up to several thousand lines of code.

2.2.4 Rating

Rating makes it possible to put price tags or tariffs on
CDRs. It can be divided into charging analysis and price
setting. The main purpose of charging analysisisto define

which tariff classthat should be used for aCDR. The tariff
class can depend on subscriber type, traffic activity, and so
on. The price is then calculated based on the given tariff
class, call duration and time for start of charge.

2.3 The Billing Gateway processing language

All data that will be processed in the BGw must be
defined in ASN.1. The BGw builds up internal object
structures of the data called DataUnits. One of the Billing
Gateway'’s strengths lies in the fact that the user can use
the DUP language to operate on those internal structures.
That gives the BGw flexibility to suit a wide range of
applications without the need for re-compilation, since the
functionality can be changed on-site by the customer.

The DUP language is amixture of C and ASN.1. Itisa
functional languages that borrows its structure from C,
while the way of using variables comes from ASN.1.

2.3.1 Functions

A function is declared as follows:

<return type> <function name> (<argunment |ist>)
{<function body>}

The <return type> is one of the ASN.1 types
supported by the BGw (see Section 2.3.2). The
<argument |ist>isalist of arguments. Each argument

is declared as follows:
<argument name> <argunent type>

The <argunent type> is an ASN.1 data type. All
return values and arguments are passed as reference.

An example of DUP code can be seen below:

CONST | NTEGER add(a CONST | NTEGER)
{ declare result |NTEGER;

result ::= 10;

result += a;

return result;}

2.3.2 Variables and data types

Local variables can be declared at the beginning of a
scope. A scopeisenclosedby a‘{‘ anda‘}’. A variableis
declared with the keyword decl ar e.

decl are <vari abl e name> <vari abl e type>

The variable type can be any of the standard ASN.1
types that DUP supports. The following types are
supported.

BOCLEAN

I NTEGER

OCTET STRI NG
NULL
ENUMERATED
SEQUENCE
SEQUENCE OF <type>
SET

SET OF <type>
10 CHO CE

11 1 A5String

12 GraphicString
13 TBCD STRI NG

O©CoOoO~NOOUPA~WNEPRE

2.3.3 Assignments and comparisons

The following syntax is used for assignments:
e Assign: <l val ue> ::= <rval ue>
e Addassign: <l val ue> += <rval ue>
e Subassign: <l val ue> -= <rval ue>
e Orassign: <l val ue> | = <rval ue>
The <l val ue> can be any expression returning a non
constant data type (ex. a variable or a function returning a
variable). The <r val ue> can be any expression returning
aconstant or non constant data type.
The following syntax is used for comparison:
e Equd: <l val ue> == <rval ue>
e Notequd: <l val ue> ! = <rval ue>
e Lessthan: <l val ue> < <rval ue>
e Greater than: <l val ue> > <rval ue>
e Lessthanor equal: <l val ue> <= <rval ue>
e Greater than or equal: <l val ue> >= <rval ue>

The <l val ue> and <rval ue> can be any expression
returning a constant or non constant data type.

2.3.4 Control structures

DUP contains if-, switch-, for- and while-
statements. All of these statements work in the same way
as their C++ counterparts, except for the switch
statement. In DUP the switch statement can use the ASN.1
CHO CE-data type. The condition statements can be any
expression returning a BOOLEAN.

2.3.5 Jump statements

There are three different jump statements in DUP:
return, break and cont i nue. All these statements work
asin C++. Goto and labels are not supported in DUP.

2.3.6 IN statement

DUP has a built in operator for checking if the value of
avariable is equa to one value of a set of values.
<expression> |IN [<constant |ist>]

The <expressi on> can be any type of expression
returning a constant or non constant data type. The
<const ant list> is a comma separated list of
constants.

2.3.7 Built in functions

DUP also contains a set of built in functions that can be
used to perform on DataUnits. These functions are
implemented in C++ to increase performance. Examples
of built in functions are ni d(), which is used to extract
parts of astring, and different functions for handling dates.

2.4 Interpretation of DUP

The entire DUP implementation is accessed through
three interface classes (see Figure 3): DUPBuilder,

DUPRouter, and DUPFormatter. A fourth class called
DUProcessing is used by these classes to interpret and
execute a DUP-script.

2.4.1 DUPBuilder

The DUPBuUIilder uses a PCCTS [15] generated parser
to build a syntax tree [1] of the DUP-script. This means
that a tree structure of C++ objects is created that
represents the DUP source code. The DUPBuUilder returns
a DUProcessing object, which is the root node in the
syntax tree.

2.4.2 DUProcessing

In order to execute a DUP-script, the syntax tree created
by the DUPBuUIilder is traversed in a recursive-descendent
manner. As each node in the syntax tree is traversed, code
that is associated with that node is executed. When the
entire syntax tree has been traversed the execution of the
DUP-script is compl ete.

The syntax tree istraversed by using the () -operator on
aDUProcessing object, which in turn uses the () -operator
on each of its directly underlying node-objects. This
results in a large number of function calls, which is one
reason why the interpretation of DUP-scriptsis slow.

Parameters to a DUP-script are stored in a
DUPDWVect or that represents a stack. This object is then
passed to the () -operator. This stack is passed to every
node in the syntax tree as the tree is being traversed. It is
used to pass arguments and return values between function
calls during the execution of the DUP-script.

2.4.3 DUPRouter and DUPFor matter

The DUPRouter is the DUP interface towards filter
components in the BGw. The DUPFormatter is likewise
the DUP interface towards formatter-, matching-, and
rating components. This means that filter-, formatter-,
matching-, and rating components have DUP-scripts,
which are represented internally by either DUPRouter or
DUPFormatter objects.

Both classes receive the parameters to the DUP-script
as DataUnits and store them on a stack that is passed to the
() -operator of their DUProcessing object, which executes
the DUP-script.

2.5 Performance problems

Slow processing is not the only problem in the BGw.
An earlier paper on the performance of the BGw [8] has
identified sever multiprocessor scaling problems. Being a
multi-threaded application, one expects that performance
would improve when adding CPUs. This was, however,
not the case.

At the time for the investigation [8], BGw 3 was the
latest release. The version had some new features and the
most significant one was the DUP language. It was
concluded in [8] that DUP was the main reason for the
poor scaling and the reason is its heavy use of dynamic

memory, and thereby the shared heap. This results in
threads being locked on mutexes as multiple threads tries
to allocate/deallocate dynamic memory simultaneously.

The solution at that time was to introduce a product
called SmartHeap [13] that handles the heap more
efficiently. Although that resulted in improved
performance, the root of the problem still remains. The
design of DUP has not changed since BGw 3 which means
that dynamic memory is still heavily used. It would be
desirable to reduce the dynamic memory allocations since
this could increase multiprocessor scalability.

3 Possible solutions

Since DUP is an interpreted language, we looked at
how the performance of other interpreted languages has
been improved. Romer, et a [17], showed that the
performance of an interpreted language is primarily a
function of the interpreter itself and relatively independent
of the application being interpreted. This implies that in
order to improve the performance of DUP we should focus
on the interpreter. One solution for doing so is to use
specialized hardware to support specific language
environments. However, the paper [17] states that there is
significant potential for improvement through software
means. One technique incorporated by many of the
discussed interpretersis some form of compilation.

One of the most popular interpreted languages that has
used compilation to gain performance is Java. Java is not
interpreted in the same form as DUP. Instead, Java is
“compiled” to an intermediate language, called byte-code,
that is then interpreted by a Java Virtual Machine. Much
has been written about the performance problems of Java
and Sun has in different ways tried to improve it. In
version 1.1 of the Java Development Kit a just-in-time
compiler (JIT) was introduced. It performed byte-code to
machine code compilation on the fly when running a Java
program. Later, in version 1.3.1 of the Java 2 Platform
Standard Edition, Java HotSpot [21] was introduced. It
uses adaptive optimization to boost performance more
than the JIT could do. Similar to a JI'T, Java HotSpot uses
byte-code to machine-code compilation. If compiling to
machine-code is the best way to improve performance,
why not compile the complete language? Java cannot do
that because of its platform independence. However, we
are not constrained by this in the BGw and we can make
DUP a compiled language.

Our suggestion is to compile the processing language
when the BGw is still running, and then load the code
dynamically at run-time. We believe that this will increase
throughput and multiprocessor scalability.

3.1 Executing compiled scripts
Before investigating different compilation techniques

we will look at how we can execute the compiled scripts
from the BGw. There are several ways to add new

DUPBuilder

build(char* theCode) : DUProcessing*
build(istream& theCode) : DUProcessing*

builds

DUPFormatter

DUProcessing

+ operator(int theCallNr, DataUnit& theTarget, const DataUnit&theSource) 1
+ verify(const RWCString& theTargetType, const RWCString& theSourceType) —-—<>
+clone()
+copy()
1
DUPRouter 1 <>

+ operator(const DataUnit& theDataUnit)
+ verify(const RWCString& theType)
+clone()

+copy()

Figure 3. DUP interface classes.

executable code in a running program. The easiest way is
to compile all DUP-code into executables and then run
them from the BGw. The problem with this approach is
that it would require a f or k() [18], which is a system
call. This means that the processor has to switch to kernel
mode [22], which takes time. This solution would be very
time consuming in the BGw sincef or k() would be called
oncefor every CDR in every component. Thiswould result
in thousands of calls to fork() every second, which
would reduce performance.

We wanted to dynamically load executable code into
the running BGw. Today the BGw uses shared libraries in
some places to accomplish this, but there are many other
solutions [14]. Piculell and Myrén [14] concludes that
Dynamic C++ classes is the best way to dynamically load
new code into the BGw. However, Dynamic C++ [7]
classes are built upon shared libraries and the extra
features that it provides introduces some overhead
compared to using pure shared libraries. Since DUP is not
an object oriented language we do not need the extra
features of Dynamic C++ classes and we came to the
conclusion that shared libraries was the best choice.

3.2 Compiling the code

With compiling we mean trandating the DUP source
into machine language for the target machine. In this
section we evaluate different techniques for doing this.

3.2.1 Making a complete compiler

One solution is to create a compiler for the DUP
language from scratch. We would then do the complete
tranglation from DUP to machine code.

By creating a new compiler we have complete control
over compilation and linking. We can also design the
compiler to fit the rather smal DUP language, and by
doing so we would get a small and fast compiler. The
structure of DUP is simple. Therefore, it is straightforward
to construct a compiler for the language.

A problem if doing a compiler of our own, is that we
will have to implement the dynamic loading of code
ourselves. In order to integrate easily with the rest of the
BGw we would preferably use standard shared libraries as
discussed earlier. Implementing this seems unnecessary
sinceit has already been done by others.

Another problem is connected to the fact that the BGw
supports two platforms. Sun Solaris and HP/UX. This
means that we have to produce two compilers, one that
produces code for Sun hardware and one that can support
HP. Two implementations means two code-bases to
maintain.

We believe that the biggest technical problem isthe fact
that the DUP code operates on DataUnits, which are C++
objects. Making our compiled code able to interact with
C++ objects would probably be difficult. The built in DUP
functions with which lots of interaction are done, are also
written in C++. We can only speculate about the
complexity of this last problem, but the other problems
alone are enough to consider aternative solutions.

3.2.2 Producing middle code

To overcome the problems of creating shared libraries
ourselves and multiple platforms, another solution is to
produce middle code for an existing back-end. The GNU
C++ Compiler [5] is modularly built so that the same back
end can be used with different front-ends.

This approach solves the problem with supporting two
platforms, since the compiler exists for both Solaris and
HP/UX.

The problem with shared libraries can also be solved
with this approach. With the GNU compiler it is possible
to create UNIX shared libraries that can be loaded and
unloaded at run-time.

We think that this approach is better than the previous
one but it still has drawbacks. Producing middle code is an
easier task than producing machine code since we only
have to learn one target language, instead of two. However,
we dtill have to learn the structure of the middle code.
Although machine language might be more complex than
middle code, the most work when implementing a
compiler is the front-end [1]; middle code has a structure
similar to assembler and the trandation from middle code
to machine code is rather straightforward. This means that
we would still be implementing the hardest part of the
compiler.

3.2.3 Trandating DUP to C++

An alternative to using proprietary middle-code is to
use C as an intermediate language. This approach is today
used in for example Eiffel [11]. Ertl and Maierhofer [3]
have done a study in which they make a compiler for the
Forth language by first translating the Fort source into C.
Theinitial reason for doing so was that they wanted to take
advantage of the optimization facilities in modern C
compilers. In their paper they show that their solution is
several times faster than interpreting Forth code, and that it
is even faster than BigForth, which is a native Forth
compiler. We believe that we could use this approach for
achieving similar results for DUP.

Using a intermediate language solves the problems
discussed above. Because we interact with DataUnits,
which are C++ objects, we choose to translate the DUP-
scripts into C++ instead of C. This simplifies the
interaction with the DataUnit. Calls to the DataUnit-
objects are inserted at appropriate places directly when
doing the code trandation. A drawback is that we have to
include header files for the DataUnit and some other BGw-
classes when doing the compilation. This means that
certain header files must be shipped together with the
BGw.

Using the C++ compiler means that we loose control
over the time it takes to compile. The trandation we do
from DUP to C++ code is fast. However, a complete C++
compiler is a big application and it will take some time to
complete the compilation process. Since C++ is more
complex than DUP, a C++ compiler contains a lot of
functions that are unnecessary when compiling DUP.

Right now it is not a big problem if it takes a few minutes
to activate a new configuration. However, in the near future
requirements of availability will rise to a point where it
may not be possible to stop the system to do any kind of
maintenance.

3.3 Selected solution

After looking at our possible solutions we have come to
the conclusion that the best way is to trandate the DUP
code to C++. The control and flexibility that is given by
creating a complete compiler for DUP is outweighed by
the technical problems it imposes. By using C++ as an
intermediate language we also benefit from the advanced
optimization facilities of a C++ compiler.

4 Prototype implementation

As described earlier, the entire DUP implementation is
a separate package accessed only through a couple of
interface classes. We decided to rewrite these interface
classesin order to test our approach.

The solution we selected resulted in four major steps:
1. Trandating DUP source code to C++ code.

2. Compiling and linking the trandated C++ code to a
shared library.

3. Loading the shared library into the running BGw.
4. Executing the compiled DUP-script.

4.1 Trandation process

The trandation was by far the most time-consuming
and complex step. The BGw uses PCCTS [15] to describe
the grammar of the DUP language and generate a parser
for it. A source to source trandation using PCCTS can be
done in at least two ways. The first approach is to add
actions to a PCCTS grammar that generate a complete
trandlation on the fly. The second approach is to add
actions to a PCCTS grammar that build an intermediate
abstract syntax tree of the input. This abstract syntax tree
can then be traversed as many times as needed in order to
perform a correct source-to-source tranglation.

The ability of the first approach to translate between
two languages is limited. It is best suited when the two
languages are similar. However, since DUP is very similar
to C++, we decided to implement the source-to-source
translator using the first approach.

4.1.1 Trandation optimizations

DUP-scripts are executed over and over again and it is
therefore very rewarding to optimize the C++ code. When
doing optimizations we studied several configurations to
see what was most frequently used. We saw that all
components, especially formatters and matching points,
relied very much on DataUnit access. Thus, we chose to

focus most of our optimizations efforts on speeding up
DataUnit access and, when possible, avoiding it.

Creating a DataUnit is very expensive since it involves
creation of alot of internal objects and thus also allocation
of dynamic memory. The first optimization that we did
was to avoid generating C++ code that created DataUnit
objects for local variables every time the DUP-script was
executed.

Further, all constantsin a DUP-script are trandated into
DataUnitsin C++ code. Here we saw another possibility to
optimize. By creating global static DataUnits for each
constant we could avoid generating code that created
DataUnits for the constants each time the DUP-script was
executed.

Accessing data fields that are located deeper in the
hierarchy of a DataUnit involves a lot of string matching
operations, which is not very performance effective. A
DUName can be used to speed up the access to fieldsin a
DataUnit. It works like a pointer directly to the wanted
field. We generated globa static DUNames in the C++
code to speed up the DatalUnit accesses.

4.1.2 DataUnit operations

As previously stated, all operations that can be done on
a DataUnit from the DUP language can be done from C++
using the existing classes in the BGw. To find out exactly
how operations on a DataUnit should be done from C++
we analyzed how this was done in the existing BGw code
when interpreting a DUP-script.

The DataUnit class overloads almost al C++ operators,
but the operators only work between two DataUnit objects.
This turned out to be a problem when trandating logical
expressions in the DUP language to C++ since we needed
to be able to compare a DataUnit object to an integer that
represented a boolean value in the C++ code.

To overcome this problem we added functionality to the
DataUnit class to compare DataUnit objects with integers
using the comparison operators ==, ! =, <, >, <=, and >=.
We aso overloaded the operators &&, | | , and ! between
two DataUnit objects and between DataUnit objects and
integers.

4.1.3 Using existing language features

The built in DUP functions, that were mentioned in
Section 2, were originally compiled into shared libraries
and loaded at start-up by the BGw. We wanted to use these
functions directly from the generated C++ code to avoid
the extra overhead of loading and using shared librariesin
the generated C++ code.

The built in functions were implemented as static
methods in three separate C++ classes. This made it easy
for usto call them directly from the generated C++ code.

A DUPDUVector object, which represents the stack in
the interpreted version, was originally passed as the only
parameter to these static methods and the actua
parameters to the DUP function were stored on this stack.
In the DUP language, parameters to the built-in DUP

functions are passed as separate arguments, and we wanted
to do the same thing in C++. We therefore changed the
interfaces of the static methods to take as their parameters
the DataUnit objects that were earlier stored on the stack.

The translation process smply replaces a call to a built
in DUP functions with a call to the corresponding static
method of one these three C++ classes.

4.2 Compiling and linking the C++ code

The PCCTS generated translator outputs C++ code to a
file that is ready for compilation and linking. The
DUPCompiler then invokes an external C++ compiler
through asyst en() call to compile and link the translated
C++ code to a shared library. We used Sun Compiler 4.2,
which is a part of Sun WorkShop Pro [20].

4.3 Loading the shared library

The shared library that was created by the compiler is
loaded into memory with dl open(), which is a member
of a family of routines that gives direct access to the
dynamic linking facilities provided by the standard C
library. The dl open() routine returns a handle to the
loaded library. This handle is returned by the conpi | e()
method in DUPCompiler.

4.4 Integrating with the Billing Gateway

In order to integrate our solution with the BGw we
needed to change the implementation of the four classes
that makes up the interface to the existing DUP
implementation (see Figure 3). We kept the interfaces of
the DUPBUIilder, DUPFormatter, and DUPRouter towards
the rest of the BGw as they were, only changing their
internal behaviors. The interface of DUProcessing was
dlightly modified, but since it is only used from the
DUPFormatter and DUPRouter there were no problems
with this.

4.4.1 DUPBuilder

The bui | d() method in DUPBuilder was changed to
use the DUPCompiler to compile and load a DUP-script.
The handle returned by compi | e() in DUPCompiler is
passed to the constructed DUProcessing object, which is
the C++ interface to the compiled DUP-script.

4.4.2 DUProcessing

This is were the compiled DUP-script is actualy
executed. The DUP-scripts of the formatter-, matching-,
and rating components have start functions with identical
interfaces, while the filter component’s DUP-script have a
different interface. This means that we only had to define
two types of start function pointers:

Dat aUnit (*nyRouter StartFunction)(DataUnit&);
DataUnit (*nyFormatter Start Function) (DataUnit&,
DataUnit&, DataUnitg&);

These function pointers are initialized by using
dl syn() with the loaded library’s handle and the symbol
name of the actual start function. The initialization is done
by the constructor of the DUProcessing class.

On a higher lever, a compiled DUP-script isinvoked by
using the () -operator on its DUProcessing object. This
operator originaly took a DUPDUVector object as its
parameter. On this stack the actual parameters to the DUP-
script’s start function were stored as DUType objects.
DUType objects are used internally in a DataUnit to store
its data.

Since we had to pass DataUnit objects rather than their
internal DUType objects to the start function we changed
the interface of the () -operator. Its parameter is a linked
list of DataUnit objects containing the parameters to the
start function.

The start function is invoked by calling the function
pointer returned by the call to dl syn() . In the case of a

filter component it looks like this:

Dat aUnit *theDataUnit = theParams.renovelLast();
(*nmyRout er Start Function) (*theDataUnit);

In this example theParans is the linked list of
DataUnit objects passed to the ()-operator and
t heDat aUni t is the parameter to the DUP-script’s start
function.

4.4.3 DUPFormatter and DUPRouter

As described in Section 2.4, the DUPFormatter is used
by formatter-, matching-, and rating components to
execute their DUP-scripts. The DUPRouter is used by the
filter component to do the same thing. The () -operator of
these classes receive the parameters that should be passed
to the DUP-script as DataUnit objects.

We had to change very little in these two classes. A
linked list containing the parameters to the DUP-script is
created and passed to the () -operator of the DUProcessing
object that is associated with the actual DUPFormatter or
DUPRouter.

5 Evaluation of solution

Since the BGw is a performance critical application, it
is important to evaluate the performance increase that we
accomplished with our changes.

One difference between how DUP is executed when
interpreted and when compiled is the number of function
callsthat are made. As described in Section 2.4, the syntax
tree that is created when interpreting a DUP script is
executed by making function calls to each node
recursively. All these function cals are avoided when
compiling a DUP script and we believe that this is the
primary reason for increased performance.

Another difference is the use of dynamic memory. In
our solution we have removed al dynamic memory
alocations and deallocations that were previously done
during processing. We have accomplished this by using
static DataUnits and DUNames. By doing this we hoped to

address the scalability problem identified by Haggander
[8].

When doing the eval uation we wanted to test the overall
performance impact that our changes had on the system.
Because of this we have measured throughput of data on
an existing BGw configuration. For our tests we used a
large test configuration that uses up al available
processing resources. This configuration has been used by
Ericsson to conduct performance tests. The configuration
has ten equal processing flows with seven processing
nodes each, which means a total of 70 processing nodes.
The configuration reads data from disk and uses filters and
formatters to process the data before it is finaly written
back to disk. Each flow processed about 55 Mb of data
which means that the whole configuration processed
approximately 550 Mb of data.

All tests were done on a Sun Enterprise 10000 [19] with
eight CPUs. We ran our test configurationon 1, 2, 4 and 8
CPUs, respectively. The configuration is processing
intense enough to keep all processors under full load
during the whole test, even when running on eight CPUs.
We measured how long the test took to complete and then
calculated the throughput. For commercial reasons, Figure
4 does not show absolute throughput figures.

A Throughput

Compiled version

Interpreted version

N

— T T T T T T T ™

Number of processors
Figure 4. Throughput

The throughput performance is shown in Figure 4. As
can be seen from the figure we managed to double the
throughput already on one processor, but the most
interesting results occur when we add processors. While
the speedup of the current version of BGw starts to
degrade considerably aready with four processors, our
prototype shows a nearly linear speedup curve up to eight
processors. This means that with eight processors we
manage to increase throughput with more than a factor of
four, compared to the interpreted version.

Earlier reports [6][8] have connected the scalability
problems of the BGw to the high number of spins on
mutexes. A high spin-lock figure means that there are
currently many threads waiting to lock a mutex, and are
thus not executing. With multiple threads running on
multiple CPUs this can lead to poor use of the hardware
since the thread holding the mutex can prevent other

threads from running. To be able to scale well it was
important for us to make sure that this figure was as low as
possible. The mutex spin results are presented in Table 1.

Table 1: Mutex spins

S?;gisnggcztneg)% Interpreted Compiled
1CPU 0 0
2 CPUs 15-20 0-2
4 CPUs 280-400 5-13
8 CPUs 2000-3500 10-15

As can be seen from Table 1, BGw had 2000-3500
mutex spins per CPU every second when running on eight
processors. With our changes we manages to lower the
number of mutex spinsto virtually zero. We contribute the
better scalability of our prototype to this reduction of
mutex spins. The table aso indicates that we have
succeeded with our goal to reduce dynamic memory
managemen.

6 Conclusions

Flexibility and performance are often hard to combine.
Today there are many applications that use an interpreted
processing language to increase flexibility. This processing
language can become a severe performance bottleneck. We
have looked at this problem in a large and performance
demanding telecommunication product called Billing
Gateway. The product uses an interpreted processing
language to process data in telecommunication networks.

After evaluating several solutions we decided to
compile the language by first trandating it to C++ and then
using an off-the-shelf C++ compiler to produce executable
code in the form of shared libraries. The trandation,
compilation and loading of libraries are performed on the
fly when activating a configuration in the Billing Gateway.

We experienced an increase in throughput performance
that exceeded a factor of four when running a large
configuration on an eight CPU SMP [16]. We aso
experienced almost linear scalability when running the
same configuration on 1, 2, 4 and 8 processors. Thisis an
improvement over the current version of the BGw and we
contribute the better scalability to the fact that we reduced
dynamic memory management and thereby reduced the
number of threads waiting on mutexes.

This case study shows that modern compilation and
run-time linking techniques makes it possible to combine
high flexibility, using alanguage like DUP, with high real-
time performance. We expect that this approach will be
useful for a number of large and complex read-time
applications that needs to be customized by the user.

References

(1]
(2
(3]

(4

(9]
6]

(7

(8]

(9
(10]

(11]
(12]

(13]

(14]

(19]

(16]

(17]

(18]
(19]
(20]
(21]

[22]

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers:
Principles, Techniques and Tools, Addison Wesley, 1986.
Ericsson, Technologies, http://wwuw.ericsson.com/technol-
ogy/technologies_az.shtml

M. Anton Ertl, Martin Maierhofer, Translating Forth to
Efficient C, Proceedings of EuroForth ‘95 Conference,
1995.

Robert A. Gingell, Meng Lee, Xuong T. Dang, Mary S.
Weeks. Shared Librariesin SUnOS, Sun Microsystems,
Inc., 1987

GNU, GNU C++ Compiler, http://gcc.gnu.org/

Henrik Hermansson and Mattias Johansson. Evolving into a
distributed component architecture, in Proceedings of the

| EEE Seventh Asia-Pacific Software Engineering Confer-
ence, December, 2000, Singapore, pp. 188-195.

Gisli Hjdmtysson and Raobert Gray, Dynamic C++ classes
- A lightweight mechanism to update code in a running pro-
gram, Proceedings of the USENIX Annual Technical Con-
ference, pages 65-76, June, 1998.

Daniel Haggander and Lars Lundberg. Optimizing Dynamic
Memory Management in a Multi threaded application Exe-
cuting on a Multiprocessor, in Proceedings of International
Conference on Parallel Processing, August, 1998, pp. 262-
269.

ITU-T. X.209, Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1), 1993.

Lars Lundberg and Daniel Haggander, Multiprocessor Per-
formance Evaluation of Billing Gateway Systems for Tele-
communication Applications, in Proceedings of ISCA, the
9th International Conference on Computer Applicationsin
Industry and Engineering, Orlando, USA, December 1996
Bertrand Meyer, Eiffel: The Language, Prentice Hall, 1992.
Microsoft, Microsoft Word, http://www.microsoft.com/
office/word/

MicroQuill, Smart heap for SMP, http://www.micro-
quill.com/

Henrik Myrén and Johan Piculell. Run-Time Upgradable
Software, in Proceedings of the Seventh |EEE Real-Time
Technology and Applications Symposium, May, 2001, Tai-
wan, pp. 226-235.

Terence John Parr, Language Trandation Using PCCTS
and C++ - A Reference Guide. Automata Publishing Com-
pany, 1993.

Gregory F. Pfister, In search of Clusters (Second Edition),
Prentice-Hall, 1998.

Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, et
al, The Sructure and Performance of Interpreters, ASPLOS
VI, 1996.

W. Richard Stevens, Advanced Programming in the UNIX
Environment, Addison Wesley, 1992.

Sun, Sun Enterprise 10000, http://www.sun.com/servers/
highend/10000/

Sun, Sun Forte C++ (formerly WorkShop), http:/
www.sun.com/forte/cplusplus/

Sun, The Java HotSpot Mirtual Machine, Technical White
Paper, http://java.sun.com/docs/white/index.html

Andrew S. Tanenbaum, Modern Operating Systems, Pren-
tice Hall, 2001.

