
The C5 Generic Collection Library
for C# and CLI
Version 1.1.0 of 2008-02-10

Niels Kokholm
Peter Sestoft

IT University Technical Report Series TR-2006-76

ISSN 1600–6100 January 2006

Copyright c© 2006 Niels Kokholm
Peter Sestoft

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-114-6

Copies may be obtained by contacting:
IT University of Copenhagen
Rued Langgaardsvej 7
DK-2300 Copenhagen S
Denmark
Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Preface

This book describes the C5 library of generic collection classes (or container classes)
for the C# programming language and other generics-enabled languages on version
2.0 of the CLI platform, as implemented by Microsoft .NET and Mono. The C5
library provides a wide range of classic data structures, rich functionality, the best
possible asymptotic time complexity, documented performance, and a thoroughly
tested implementation.

Goals of the C5 library The overall goal is for C5 to be a generic collection li-
brary for the C# programming language [11, 17, 27] and the Common Language In-
frastructure (CLI) [12] whose functionality, efficiency and quality meets or exceeds
what is available for similar contemporary programming platforms. The design has
been influenced by the collection libraries for Java and Smalltalk and the published
critique of these. However, it contains functionality and a regularity of design that
considerably exceeds that of the standard libraries for those languages.

Why yet another generic collection library? There are already other generic
collection libraries for C#/CLI, including the System.Collections.Generic namespace
of the CLI or .NET Framework class library (included with Microsoft Visual Studio
2005), and the PowerCollections library developed by Peter Golde [15].

The CLI collection library as implemented by Microsoft .NET Framework 2.0
provides a limited choice of data structures. In general, the CLI Framework library
has a proliferation of method variants and rather poor orthogonality. Collection
implementations such as array lists and linked lists have much the same function-
ality but do not implement a common interface. This impairs the learnability of the
library. Some of these design decisions are well-motivated by the use of the CLI
class library in contexts where nano-second efficiency is more important than rich
functionality, and the need to support also rather resource-constrained run-time
systems.

The PowerCollections library by Peter Golde augments the CLI version 2.0 col-
lection library with various data structures and algorithms. However, it accepts
the basic design of the CLI collection classes and therefore suffers from some of the
same shortcomings, and also does not provide most of the advanced functionality
(updatable list views, snapshots, directed enumeration, priority queue handles, . . .)

1

2

of C5.
Thus, in our opinion, C5 provides the most powerful, well-structured and scal-

able generic collections library available for C#/CLI. However, although the size of
the compiled C5.dll is only about 300 KB, you probably would not choose to use it
on your .NET 2.0 Compact Framework wristwatch just now.

What does the name C5 stand for? This is not entirely clear, but it may stand
for Copenhagen Comprehensive Collection Classes for C#, although the library may
be used from VB.NET, F# [30] and other CLI languages, not just C#. It has nothing
to do with a Microsoft Dynamics product that used to be called Concorde C5/Damgaard
C5/Navision C5, nor a real-time operating system called C5 (or Chorus), nor the C5
Corporation (system visualization), nor an Eclipse plug-in called C5, nor with cars
such as Citroën C5 or Corvette C5 or Clive Sinclair’s ill-fated C5 concept vehicle.
The name may be inspired by the versatile C4 plastic explosive known from e.g.
James Bond movies. All trademarks belong to their owners.

State of completion At the time of writing, library design and implementation
are complete, and extensive unit tests have been written and applied systematically.
Most of the library API documentation is in place but requires proof-reading.

The C5 implementation uses most of the features of C# 2.0: generic types and
methods, type parameter constraints, iterator blocks, anonymous methods, and nul-
lable value types. It was developed using alpha, beta and final releases of Microsoft
.NET 2.0, but uses only standard libraries and CLI features, and the library builds
and passes the units test on the Mono 1.1.15 implementation on CLI.

This book The present book is a guide to effective use of C5. It gives an overview
of the library and its design rationale, describes the entire API in detail, including
the time complexity of all operations, presents more than a hundred small usage
patterns (idioms), and several larger, complete examples. Finally it explains some
of the techniques used in the implementation.

C5 availability and license The complete C5 library implementation, including
documentation, is available in binary and source form from the IT University of
Copenhagen:

http://www.itu.dk/research/c5/

3

The library is copyrighted by the authors and distributed under a BSD-style license:

Copyright c© 2003-2008 Niels Kokholm and Peter Sestoft

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

So you can use and modify it for any purpose, including commerce, without a license
fee, but the copyright notice must remain in place, and you cannot blame us or our
employers for any consequences of using or abusing the library.

The authors Niels Kokholm holds an MSc and a PhD in mathematics and an MSc
in information technology and software development. He makes software for the
insurance industry at Edlund A/S in Copenhagen. Peter Sestoft holds an MSc and
a PhD in computer science, is a member of the Ecma C# and CLI standardization
committees, and the author of C# Precisely [27] and Java Precisely (MIT Press).
He is professor at the IT University of Copenhagen and the Royal Veterinary and
Agricultural University (KVL), Denmark.

Acknowledgements A visit to Microsoft Research, Cambridge UK, in late 2001
permitted Peter to write a first rudimentary generic collection library for C#, which
was considerably redesigned, extended and improved by Niels during 2003–2004.

We thank Microsoft Research University Relations for a grant that enabled us
to complete, improve and document the implementation in 2004–2005.

Thanks to Daniel Morton and Jon Jagger for comments on the design and imple-
mentation of C5, and to the IT University of Copenhagen and the Royal Veterinary
and Agricultural University (KVL), Denmark, for their support.

4

Notational conventions
Symbol Use Type Section
act action delegate Act<A1> 3.6.1
arr array T[]
cmp comparer SCG.IComparer<T> 2.6
cq circular queue IQueue<T> 6.1
csn comparison delegate System.Comparison<T> 2.6
eqc equality comparer SCG.IEqualityComparer<T> 2.3
f function delegate Fun<A1,R> 3.6.2
h priority queue handle IPriorityQueueHandle<T> 1.4.12
i, j offset or index into collection int
k key in dictionary K
ks sequence of keys in dictionary SCG.IEnumerable<K>
kv (key,value) pair, entry KeyValuePair<K,V>
kvs sequence of (key,value) pairs 3.5
m, n, N count, length, or size int
obj any object System.Object
p predicate delegate Fun<T, bool> 3.6.2
rnd random number generator System.Random 3.8
T, U, K, V generic type parameter
v value of key in dictionary V
w, u view IList<T> 8.1
x, y collection item
xs, ys item sequence, enumerable SCG.IEnumerable<T>

The abbreviation SCG stands for System.Collections.Generic, that is, the CLI class
library namespace for generic collection classes. Likewise, SC stands for the name-
space System.Collections of non-generic collection classes. These namespaces are
standardized as part of Ecma CLI [12].

Common example declaration header
All program fragments and code examples shown in this book are supposed to be
preceded by these declarations:

using System;
using C5;
using SCG = System.Collections.Generic;

Contents

1 Collection concepts 9
1.1 Getting started . 9
1.2 Design goals of C5 . 11
1.3 Overview of collection concepts . 12
1.4 The collection interfaces . 13
1.5 Dictionary interfaces . 19
1.6 Comparison with other collection libraries 22

2 Equality and comparison 25
2.1 Natural equality . 26
2.2 Equatable types . 27
2.3 Equality comparers . 27
2.4 Creating equality comparers . 28
2.5 Comparable types . 30
2.6 Comparers . 31
2.7 Creating comparers . 32

3 Auxiliary types 35
3.1 Enum type EventTypeEnum . 35
3.2 Enum type EnumerationDirection . 36
3.3 Enum type Speed . 36
3.4 Record struct types Rec<T1,T2>, . 37
3.5 Struct type KeyValuePair<K,V> . 37
3.6 Delegate types . 38
3.7 Exception types . 39
3.8 Pseudo-random number generators . 41
3.9 The IShowable interface . 41

4 Collection interface details 43
4.1 Interface ICollection<T> . 44
4.2 Interface ICollectionValue<T> . 49
4.3 Interface IDirectedCollectionValue<T> 52
4.4 Interface IDirectedEnumerable<T> . 54

5

6 Contents

4.5 Interface IExtensible<T> . 55
4.6 Interface IIndexed<T> . 57
4.7 Interface IIndexedSorted<T> . 61
4.8 Interface IList<T> . 66
4.9 Interface IPersistentSorted<T> . 76
4.10 Interface IPriorityQueue<T> . 80
4.11 Interface IQueue<T> . 83
4.12 Interface ISequenced<T> . 85
4.13 Interface ISorted<T> . 88
4.14 Interface IStack<T> . 94

5 Dictionary interface details 97
5.1 Interface IDictionary<K,V> . 98
5.2 Interface ISortedDictionary<K,V> . 102

6 Collection implementations 109
6.1 Circular queues . 111
6.2 Array lists . 111
6.3 Linked lists . 112
6.4 Hashed array lists . 112
6.5 Hashed linked lists . 113
6.6 Wrapped arrays . 113
6.7 Sorted arrays . 114
6.8 Tree-based sets . 115
6.9 Tree-based bags . 116
6.10 Hash sets . 116
6.11 Hash bags . 117
6.12 Interval heaps or priority queues . 118

7 Dictionary implementations 119
7.1 Hash-based dictionaries . 119
7.2 Tree-based dictionaries . 120

8 Advanced functionality 123
8.1 List views . 123
8.2 Read-only wrappers . 130
8.3 Collections of collections . 132
8.4 Generic bulk methods . 133
8.5 Snapshots of tree-based collections . 134
8.6 Sorting arrays . 134
8.7 Formatting of collections and dictionaries 135
8.8 Events: Observing changes to a collection 136
8.9 Cloning of collections . 142
8.10 Serialization . 143
8.11 Thread safety and locking . 144

Contents 7

9 Programming patterns in C5 147
9.1 Patterns for read-only access . 147
9.2 Patterns using zero-item views . 148
9.3 Patterns using one-item views . 150
9.4 Patterns using views . 152
9.5 Patterns for item search in a list . 156
9.6 Item not found in indexed collection . 157
9.7 Patterns for removing items from a list 157
9.8 Patterns for predecessor and successor items 158
9.9 Patterns for subrange iteration . 160
9.10 Patterns for indexed iteration . 163
9.11 Patterns for enumerating a tree snapshot 165
9.12 Patterns for segment reversal and swapping 165
9.13 Pattern for making a stream of item lumps 166
9.14 Patterns for arbitrary and random items 167
9.15 Patterns for set operations on collections 168
9.16 Patterns for removing duplicates . 169
9.17 Patterns for collections of collections . 170
9.18 Patterns for creating a random selection 173
9.19 Patterns for sorting . 174
9.20 Patterns using priority queue handles 177
9.21 Patterns for finding quantiles . 179
9.22 Patterns for stacks and queues . 180
9.23 Patterns for collection change events 184
9.24 Patterns for comparers . 187

10 Anti-patterns in C5 189
10.1 Efficiency anti-patterns . 189
10.2 Correctness anti-patterns . 195

11 Application examples 197
11.1 Recognizing keywords . 198
11.2 Building a concordance for a text file 199
11.3 Convex hull in the plane . 200
11.4 Finding anagram classes . 202
11.5 Finite automata . 204
11.6 Topological sort . 209
11.7 Copying a graph . 213
11.8 General graph algorithms . 215
11.9 Point location in the plane . 216
11.10 A batch job queue . 218
11.11 A functional hash-based set implementation 222
11.12 Implementing multidictionaries . 225
11.13 Common words in a text file . 231

8 Contents

12 Performance details 233
12.1 Performance of collection implementations 233
12.2 Performance of dictionary implementations 238
12.3 Performance of quicksort and merge sort 239
12.4 Performance impact of list views . 239
12.5 Performance impact of event handlers 240
12.6 Performance impact of tree snapshots 240

13 Implementation details 241
13.1 Organization of source files . 241
13.2 Implementation of quicksort for array lists 242
13.3 Implementation of merge sort for linked lists 242
13.4 Implementation of hash-based collections 243
13.5 Implementation of array lists . 244
13.6 Implementation of hashed array lists 244
13.7 Implementation of linked lists . 244
13.8 Implementation of hashed linked lists 245
13.9 Implementation of list views . 246
13.10 Implementation of tree-based collections 246
13.11 Implementation of priority queue handles 250
13.12 Implementation of events and handlers 250

14 Creating new classes 251
14.1 Implementing derived collection classes 251

Bibliography 254

Index 257

Chapter 1

Collection concepts

This section gives a simple example using the C5 generic collection library, de-
scribes the design goals of the library, and introduces some basic notions such as
item equality, hashing and comparers for item ordering. The rest of the chapter
briefly presents each collection interface in C5 and thus gives an overview of the
available collection concepts.

1.1 Getting started
Here is a small but complete example using the C5 collection library:

using System;
using C5;
using SCG = System.Collections.Generic;
namespace GettingStarted {

class GettingStarted {
public static void Main(String[] args) {
IList<String> names = new ArrayList<String>();
names.AddAll(new String[] { "Hoover", "Roosevelt",

"Truman", "Eisenhower", "Kennedy" });
// Print list:
Console.WriteLine(names);
// Print item 1 ("Roosevelt") in the list:
Console.WriteLine(names[1]);
// Create a list view comprising post-WW2 presidents:
IList<String> postWWII = names.View(2, 3);
// Print item 2 ("Kennedy") in the view:
Console.WriteLine(postWWII[2]);
// Enumerate and print the list view in reverse chronological order:
foreach (String name in postWWII.Backwards())

Console.WriteLine(name);
}

}
}

9

10 Getting started §1.1

The example illustrates a simple use of the ArrayList<T> class through the IList<T>
interface. It shows how to print the entire list; how to index into the list; how to cre-
ate a list view comprising Truman, Eisenhower and Kennedy; how to index into that
view; and how to enumerate the items in the view in reverse order. The output of
the program should look like this:

[0:Hoover, 1:Roosevelt, 2:Truman, 3:Eisenhower, 4:Kennedy]
Roosevelt
Kennedy
Kennedy
Eisenhower
Truman

To compile and run this example program, a compiled version of the library C5 must
be installed, in the form of the file C5.dll. You also need a C# 2.0 compiler, such as
Microsoft’s csc or the Mono project’s mcs.

Assume that the example program is saved to a C# source file GettingStarted.cs.
Then you can compile and run it using Microsoft’s command line compiler from a
Command Prompt like this:

csc /r:C5.dll GettingStarted.cs
GettingStarted.exe

Using the Mono project’s command line compiler, you can compile and run the ex-
ample program like this:

mcs /r:C5.dll GettingStarted.cs
mono GettingStarted.exe

Using an integrated development environment such as Microsoft Visual Studio 2005
or Visual C# Express 2005, you can create a project and then add C5.dll as a project
reference: In the Project menu, select the Add Reference item to open a dialog;
select the Browse tab; find C5.dll in the file dialog; and click OK.

§1.2 Design goals of C5 11

1.2 Design goals of C5
The overall goal is for C5 to be a generic collection library for C#/CLI whose func-
tionality, efficiency and quality meets or exceeds what is available for similar con-
temporary programming platforms, most notably Java. More precisely, our goals in
developing the C5 library are:

• To provide a collection class library for C# that is as comprehensive as those
of comparable languages, such as Java [3] and Smalltalk [14], while learning
from the critique of these [7, 13, 21].

• To be tested and documented well enough that it will be widely usable.

• To provide a full complement of well-known abstractions such as lists, sets,
bags, dictionaries, priority queues, (FIFO) queues and (LIFO) stacks.

• To provide well-known data structure implementations (array-based, linked
list-based, hash-based, tree-based).

• To fit existing C# patterns (SCG.IEnumerable<T>, the foreach statement, events).

• To provide convenient but hard-to-implement features such as multiple up-
datable list views, hash-indexed lists, persistent trees, reversible enumera-
tion, events on collection modifications, and priority queue items that can be
accessed by handle.

• To describe functionality by interfaces: “program to interface, not implemen-
tation”.

• To provide orthogonal capabilities, such as enumeration directions and sub-
ranges, to avoid a proliferation of overloaded method variants.

• To avoid needless overhead. For instance, for every operation that can throw
an exception (which is very expensive), there is an alternative that reports
failure in another way.

• To document the asymptotic run-time complexity of all implementations.

• To make the implementation available under a liberal open source license.

The C5 library separates functionality (interface hierarchy) from data structures
(class hierarchy). Interfaces should fully express the functionality of collection
classes: what can be done to the collection. For instance, the IList<T> interface
describes indexed sequences of items. Clearly, different concrete implementations
of the interface have different tradeoffs in speed and space. For instance, there
are both array list and linked list implementations of IList<T>. Whereas array
lists have constant-time indexing and linear-time insertion (at the front of the list),
linked lists have the opposite characteristics.

The design has been influenced by the collection libraries for Java and Smalltalk
and the published critique of these. However, it has functionality and a regularity of
design that considerably exceeds that of the standard libraries for those languages.

12 Overview of collection concepts §1.4

1.3 Overview of collection concepts
A collection contains zero or more items. The main collection interfaces, listed below,
are further described in section 1.4, and chapter 4 describes their methods in detail.

• An SCG.IEnumerable<T> can have its items enumerated. All collections and
dictionaries are enumerable.

• An IDirectedEnumerable<T> is an enumerable that can be reversed, giving a
“backwards” enumerable that enumerates its items in the opposite order.

• An ICollectionValue<T> is a collection value: it does not support modification,
is enumerable, knows how many items it has, and can copy them to an array.

• An IDirectedCollectionValue<T> is a collection value that can be reversed into
a “backwards” collection value.

• An IExtensible<T> is a collection to which items can be added.

• An IPriorityQueue<T> is an extensible whose least and greatest items can be
found (and removed) efficiently.

• An ICollection<T> is an extensible from which items can also be removed.

• An ISequenced<T> is a collection whose items appear in a particular sequence
(determined either by insertion order or item ordering).

• An IIndexed<T> is a sequenced collection whose items are accessible by index.

• An ISorted<T> is a sequenced collection in which items appear in increasing
order; item comparisons determine the item sequence. It can efficiently find
the predecessor or successor (in the collection) of a given item.

• An IIndexedSorted<T> is an indexed and sorted collection. It can efficiently
determine how many items are greater than or equal to a given item x.

• An IPersistentSorted<T> is a sorted collection of which one can efficiently
make a snapshot, that is, a read-only copy that will remain unaffected by up-
dates to the original collection.

• An IQueue<T> is a first-in-first-out queue that in addition supports indexing.

• An IStack<T> is a last-in-first-out stack.

• An IList<T> is an indexed and therefore sequenced collection, where item or-
der is determined by insertions and deletions. Derives from SCG.IList<T>.

All C5 collection and dictionary classes are cloneable, and both they and the excep-
tion classes are serializable to binary format; see section 8.10. They have ToString
methods to facilitate program debugging and understanding of error messages.

§1.4 The collection interfaces 13

1.4 The collection interfaces
An interface describes operations supported by a collection class. For instance, inter-
face ISequenced<T> describes collections whose items should appear in some order,
as determined by the way they were inserted or determined by a comparer that says
that one item is less than (precedes) another.

The interfaces are organized in a hierarchy, describing the relations between
them. For instance, a list collection supports indexing, and its items are sequenced,
so interface IList<T> extends IIndexed<T> and ISequenced<T>.

The functionality of a collection class is fully described by the collection inter-
faces it implements. The interface hierarchy is shown in figure 1.1, and the interface
hierarchy with implementing classes is shown in figure 6.2.

ISequenced<T>

ICollection<T>

IExtensible<T>

ICollectionValue<T>

SCG.IEnumerable<T>

IIndexed<T>

IPersistentSorted<T>

IPriorityQueue<T>

IList<T>

IQueue<T> IStack<T>

SC.IList

SCG.ICollection<T>IDirectedCollectionValue<T>

IDirectedEnumerable<T>

SCG.IList<T>

IIndexedSorted<T>

ISorted<T>

ICloneable

IShowable

Figure 1.1: The collection interface hierarchy. See figure 6.2 for the classes imple-
menting these interfaces. SGC is the System.Collections.Generic namespace.

1.4.1 Enumerables and directed enumerables
An enumerable implements interface SCG.IEnumerable<T> and is a collection of
possibly unknown size. It describes method GetEnumerator() that returns a gen-
erator of T values in the form of an SCG.IEnumerator<T> object; this generator
can also be considered a lazy stream of T values. All collection classes are enu-
merable. Their enumerators produce the collection’s items in some order, called
the collection’s enumeration order. Therefore the foreach statement of C# can be
used to iterate over a collection’s items. The interfaces SCG.IEnumerable<T> and

14 The collection interfaces §1.4

SCG.IEnumerator<T> are from the CLI (or .NET Framework) class library name-
space System.Collections.Generic, here abbreviated SCG.

A directed enumerable implements interface IDirectedEnumerable<T> and is an
enumerable with an additional method Backwards(). This method returns a new
IDirectedEnumerable<T> which when used as an enumerable will enumerate its
items in the reverse order of the given one. Sequenced collections such as lists, trees,
stacks and queues (but not hash sets and hash bags) implement IDirectedEnume-
rable<T>. Also list views and subranges of tree sets are directed enumerables and
therefore can have their items enumerated backwards.

1.4.2 Collection values and directed collection values
A collection value implements interface ICollectionValue<T> and is a collection of
known size but possibly not permitting any update or extension (hence the “value” in
the name). It extends SCG.IEnumerable<T> with the properties Count and IsEmpty
and methods CopyTo(arr, i) and ToArray() to copy the collection’s items to a given
array or a new array. Since the number of items is known, such methods can be
implemented efficiently.

Furthermore it describes a method Choose() to get an arbitrary item from the
collection, and methods Apply, Exists, All and Filter iteration, quantifier evalua-
tion and filtering in the style of functional programming languages.

All standard collection classes implement ICollectionValue<T>.
A directed collection implements interface IDirectedCollectionValue<T> and is a

collection value that also admits backwards enumeration and therefore implements
IDirectedEnumerable<T>. Note for instance that if coll is such a collection, then
coll.Backwards().Apply(act) will apply delegate act to the collection’s items in re-
verse order.

1.4.3 Extensibles
An extensible collection implements interface IExtensible<T> and is a collection
value to which items may be added. It extends ICollectionValue<T> with meth-
ods Add and AddAll to add more items to the collection. It also has a property
AllowsDuplicates that tells whether the collection allows duplicate items and be-
haves like a bag (or multiset), or disallows duplicate items and behaves like a
set. For collections that allow duplicates, the DuplicatesByCounting property says
whether the collection actually stores the duplicate items, or just keeps a count of
them; see section 1.4.14. The EqualityComparer property is the equality comparer
used by this collection to define item equality and a hash function.

1.4.4 Collections
An (unsequenced) collection implements interface ICollection<T> as well as inter-
face SCG.ICollection<T> from the CLI/.NET library [12]. A collection is extensible
and furthermore offers methods to clear the collection (remove all items); to test

§1.4 The collection interfaces 15

whether the collection contains a given item; to find, remove or update an item;
to test whether the collection contains all items from a given enumerable; and to
remove or retain all items from a given enumerable. There is also a property to
determine whether the collection is read-only.

In addition, interface ICollection<T> describes methods UnsequencedEquals and
GetUnsequencedHashCode for comparing collection objects (not the individual items),
based on non-sequenced item comparison. This allows collections to be used as items
in other collections.

The primary implementations of ICollection<T> are hash sets and hash bags
(sections 6.10 and 6.11) in which items are added, retrieved and removed by equality
and hash value. Hash sets and hash bags do not implement more specific interfaces
(lower in the hierarchy) than ICollection<T>, as can be seen from figure 6.2.

The reader may wonder whether there are any reasonable “collection” classes
that implement IExtensible<T> but not ICollection<T>? There is at least one, the
priority queue. Items can be added, so it is extensible, but the standard remove
methods (for instance) make little sense: Items are organized by comparison, but
several distinct items may compare equal (by having the same priority), so how can
one specify precisely which one to remove? Sections 1.4.12 and 6.12 explain the
capabilities of our priority queues.

1.4.5 Sequenced collections
A sequenced collection implements interface ISequenced<T> and is a collection whose
items are kept in some order. The order may be determined either by the order in
which the items were inserted, or by a comparer on the items themselves. The for-
mer is the case for array lists and linked lists, and the latter is the case for sorted
arrays, tree sets, tree bags and tree dictionaries.

Hash sets, hash bags and hash dictionaries are unsequenced and do not keep
their items in any such order.

Sequenced collections also differ from (unsequenced) collections in what notions
of equality are meaningful. Unsequenced collections should be compared only us-
ing unsequenced equality comparers; see section 2.3. Sequenced collections can be
compared by sequenced as well as unsequenced equality comparers: The sequenced
collections < 2,3 > and < 3,2 > are equal under unsequenced equality and different
under sequenced equality. Unsequenced equality comparison is efficient on all C5
collection implementations, but allocates some auxiliary data when used on collec-
tions that does not have fast item membership test.

A sequenced collection is directed (section 1.4.2): it permits enumeration of its
items in sequence order and in reverse sequence order.

1.4.6 Indexed collections
An indexed collection implements interface IIndexed<T> and is a sequenced col-
lection whose items can be accessed, updated, removed and enumerated by index,
that is, by position (0,1, . . .) within the sequenced collection. In addition is describes

16 The collection interfaces §1.4

methods for finding the least or greatest index at which a given item occurs, and
an indexer for obtaining a directed collection value representing the subsequence
in a particular index range. Primary implementations are array lists, linked lists,
sorted arrays, and ordered trees (but not hash sets and hash bags).

1.4.7 Sorted collections and indexed sorted collections
A sorted collection implements interface ISorted<T>. It keeps the items in the or-
der specified by an explicit comparer or by the items being comparable. A sorted
collection provides methods to find or delete the least and greatest items, to find
the (weak) successor or predecessor item of a given item, to obtain a directed enu-
merable corresponding to a particular item value range, and to remove all items in
a particular item value range. The primary implementations of this interface are
sorted arrays (section 6.7) and ordered trees (sections 6.8 and 6.9).

An indexed sorted collection implements interface IIndexedSorted<T> and is a
collection that is both indexed (items can be accessed and inserted by index) and
sorted (items are kept and enumerated in an order determined by a comparer).
The primary implementations of this interface are sorted arrays (section 6.7) and
ordered trees (sections 6.8 and 6.9).

1.4.8 Persistent sorted collections
A persistent sorted collection implements interface IPersistentSorted<T> and is a
sorted collection of which one can efficiently make a read-only snapshot, or a “copy”
that is not affected by updates to the original collection. It describes a method
Snapshot() that returns a sorted collection with exactly the same items as the per-
sistent sorted collection. The TreeSet<T> and TreeBag<T> collection classes are
persistent sorted collections; their Snapshot() methods take constant time, but sub-
sequent updates to the given tree take more time and space. Nevertheless, this is
usually far better than making a copy of the entire collection (tree).

1.4.9 Stacks: last in, first out
A stack implements interface IStack<T> and is a directed collection that behaves
like a stack, that is, a last-in-first-out data structure. It has methods to push an
item onto the stack top and to pop (get and remove) from the stack the most recently
pushed item; that is the item on the stack top. In addition, it has an indexer that
addresses relative to the bottom of the stack. Primary implementations include
circular queues (section 6.1), array lists (section 6.2), and linked lists (section 6.3).

1.4.10 Queues: first in, first out
A queue implements interface IQueue<T> and is a directed collection that behaves
like a queue, that is, a first-in-first-out data structure. It has methods to enqueue
an item at the end of the queue and to dequeue (get and remove) from the queue

§1.4 The collection interfaces 17

the oldest of the remaining items; that is the item at the front of the queue. In
addition, it has an indexer that addresses relative to the queue’s front. Primary
implementations include linked lists and CircularQueue<T> (section 6.1).

1.4.11 Lists and views

A list implements interfaces IList<T> as well as the generic SCG.IList<T> and the
non-generic SC.IList list interfaces from the CLI/.NET library [12]. A lists is an in-
dexed collection and in addition is a queue and a stack. It has a read-write property
FIFO that indicates whether the Add and Remove methods give queue behavior (true)
or stack behavior (false), and properties to get the first and last items. It has meth-
ods to insert or remove items first, last, at a specified index, and at a specified list
view. It has methods to reverse the items in the list, to sort them, to shuffle them
using pseudo-random permutation, and to test whether items are sorted according
to a specified order. It has a method to create a new list containing only those items
satisfying a given predicate (of type Fun<T,bool>), and methods to create a new list
by applying a delegate (of type Fun<T,V>) to all items in the given lists.

Indexed deletions from a list happen at an item in the list, whereas indexed
insertion happens at an inter-item space in the list. Hence there are n possible
deletion-points but n+1 possible insertion-points in an n-item list.

From a list one can create a view of a possibly empty contiguous segment of the
list. A list can support multiple updatable views at the same time. A view refers to
the items of the underlying list, any updates to those items are immediately visible
through the view, and any updates through a view are immediately visible on the
underlying list. A view can be slid left or right by a specified number of items, and
can be extended or shrunk. There are methods to return the first (or last) one-item
view that contains a specified item x. This is especially convenient and efficient if
the concrete collection has fast lookup, as for hash-indexed array lists and hash-
indexed linked lists, as subsequent operations can refer to that view rather than to
list indexes. A view supports all the operations of a list, so one can access, update,
remove and insert the items of a view by index, one can enumerate the items of
a view (backwards if desired), insert or remove items in the view, and so on. In
particular, a one-item view can be used to point at an individual item of a list, and
a zero-item view can be used to point between (or before or after) items in a list.
Views and their use are described in more detail in section 8.1.

The primary list implementations include array lists (section 6.2), linked lists
(section 6.3), hash-indexed versions of these (sections 6.4 and 6.5), and wrapped
arrays (section 6.6) which are array lists created from a given underlying array.

By implementing SCG.IList<T> and SC.IList, the C5 list classes can be used
together with CLI/.NET frameworks that rely on these interfaces. However, some of
the C5 methods throw different exceptions than mandated by these interfaces. This
is deemed acceptable because the CLI and .NET implementations sometimes also
throw other exceptions than stated by the SCG.IList<T> and SC.IList interfaces.

18 The collection interfaces §1.4

1.4.12 Priority queues and priority queue handles
A priority queue implements interface IPriorityQueue<T> and is an extensible col-
lection that can hold comparable items and permits efficient retrieval (and removal)
of the least item and greatest item. This is useful for implementing scheduling of
events and processes in simulation systems, and in many algorithms to find the next
object (graph node, path, configuration, and so on) to process.

A priority queue does not permit retrieval, removal or update of items by item
identity. Instead a priority queue handle of type IPriorityQueueHandle<T> can be
associated with an item when it is inserted into the priority queue, and then this
handle can be used to efficiently retrieve or remove that item, or to update it as long
as it is in the priority queue. See the example in section 11.10.

1.4.13 Sets
There is no interface describing plain sets with item type T. This is because the
methods described by ICollection<T> and its base interfaces IExtensible<T> and
ICollectionValue<T> are sufficient to implement sets, provided the AllowsDuplicates
property is false, as for HashSet<T> (section 6.10) and TreeSet<T> (section 6.8).

1.4.14 Bags or multisets
There is no interface describing just bags (multisets) with item type T. This is
because the methods described by ICollection<T> and its base interfaces IExten-
sible<T> and ICollectionValue<T> are sufficient to implement bags, provided the
AllowsDuplicates property is true. Bag implementations include HashBag<T> (sec-
tion 6.11) and TreeBag<T> (section 6.9).

When representing bags, the DuplicatesByCounting property is important. When
the property is true, as for HashBag<T> and TreeBag<T>, then the collection does
not store copies of duplicate items, but simply keep count of the number of dupli-
cates. When the property is false, then the collection stores the actual duplicates of
each item.

The former approach is necessary when there may be millions of duplicates of a
given item; it is preferable in general because it prevents the collection from keeping
objects live; and it loses no information when the items are simple types. The latter
approach is advantageous or necessary when equal items still have some form of
distinct identity.

To illustrate the difference, the shelves of a library may be considered a bag of
books since the library may have several copies of a book. The equals function or
comparer should consider the copies of a book equal as items. When duplicates are
kept by counting, there is no way to distinguish one copy of a book from another;
we only know the number of copies currently present. When duplicates are not kept
by counting, we know exactly which book objects are present, which may be useful
because each copy has its own history of who has borrowed it, and a borrower may
have written an important note in the margin in a particular copy.

§1.5 Dictionary interfaces 19

1.4.15 Summary of collection interfaces and members
Figures 1.2 and 1.3 show properties and methods for each collection interface.

1.5 Dictionary interfaces
A dictionary is a special kind of collection that associates a value with a given key,
much in the same way an array associates a value with an integer (the index), so a
dictionary is sometimes called an associative array. However, in a dictionary, keys
need not be integers but can have any type that has a hash function or a comparer.
The (small) hierarchy of dictionary interfaces is shown in figure 1.4.
The two dictionary interfaces are:

• An IDictionary<K,V> is a dictionary with keys of type K and values of type V,
where no particular enumeration order can be assumed.

• ISortedDictionary<K,V> is a dictionary with keys of type K and values of type
V, where the keys are ordered by a comparer, so that enumeration happens in
the order determined by the key comparer.

1.5.1 IDictionary<K,V>
A dictionary implements interface IDictionary<K,V> where K is the type of keys in
the dictionary and V is the type of values (or data items) associated with the keys.
A dictionary may be thought of as a collection of (key,value) pairs, but there can be
only one value associated with a given key.

A dictionary supports addition of a new (key,value) pair, retrieval of the value as-
sociated with a given key, update of the value associated with a given key, removal of
the (key,value) pair for a given key, and some efficient and convenient combinations
of these operations.

A dictionary permits enumeration of all its (key,value) pairs, where a (key,value)
pair is represented by type KeyValuePair<K,V>, described in section 3.5. A dic-
tionary also permits separate enumeration of its keys and values, by means of
read-only properties Keys and Values of type ICollectionValue<K> and ICollection-
Value<V> respectively.

A dictionary may be hash-based if there is an appropriate hash function and
equality predicate for the key type, or sorted (section 1.5.2) if there is an appropri-
ate comparer. The primary implementation of hash-based dictionaries is HashDic-
tionary<K,V>; see section 7.1.

1.5.2 ISortedDictionary<K,V>
A sorted dictionary implements interface ISortedDictionary<K,V> where K is the
type of keys in the dictionary and V is the type of values (or data items) associated
with the keys. A sorted dictionary needs an appropriate comparer for the key type

20 Dictionary interfaces §1.5

Name Kind SC
G

.I
E

nu
m

er
ab

le
<T

>

ID
ir

ec
te

dE
nu

m
er

ab
le

<T
>

IC
ol

le
ct

io
nV

al
ue

<T
>

ID
ir

ec
te

dC
ol

le
ct

io
nV

al
ue

<T
>

IE
xt

en
si

bl
e<

T
>

IC
ol

le
ct

io
n<

T
>

IS
eq

ue
nc

ed
<T

>

II
nd

ex
ed

<T
>

IS
or

te
d<

T
>

II
nd

ex
ed

So
rt

ed
<T

>

IQ
ue

ue
<T

>

IS
ta

ck
<T

>

IL
is

t<
T

>

IP
er

si
st

en
tS

or
te

d<
T

>

IP
ri

or
it

yQ
ue

ue
<T

>

GetEnumerator m + + + + + + + + + + + + + + +
Backwards m - + - + - - + + + + + + + + -
Direction p - + - + - - + + + + + + + + -
ActiveEvents p - - + + + + + + + + + + + + +
All m - - + + + + + + + + + + + + +
Apply m - - + + + + + + + + + + + + +
Choose m - - + + + + + + + + + + + + +
CopyTo m - - + + + + + + + + + + + + +
Count p r - - + + + + + + + + + + + + +
CountSpeed p r - - + + + + + + + + + + + + +
Exists m - - + + + + + + + + + + + + +
Filter m - - + + + + + + + + + + + + +
Find m - - + + + + + + + + + + + + +
IsEmpty p r - - + + + + + + + + + + + + +
ListenableEvents p - - + + + + + + + + + + + + +
ToArray m - - + + + + + + + + + + + + +
FindLast m - - - + - - + + + + + + + + -
Add m - - - - + + + + + + - - + + +
AddAll m - - - - + + + + + + - - + + +
AllowsDuplicates p r - - - - + + + + + + - - + + +
Clone m - - - - + + + + + + - - + + +
DuplicatesByCounting p r - - - - + + + + + + - - + + +
EqualityComparer p r - - - - + + + + + + - - + + +
IsReadOnly p r - - - - + + + + + + - - + + +
Clear m - - - - - + + + + + - - + + -
Contains m - - - - - + + + + + - - + + -
ContainsAll m - - - - - + + + + + - - + + -
ContainsCount m - - - - - + + + + + - - + + -
ContainsSpeed p r - - - - - + + + + + - - + + -
Find m - - - - - + + + + + - - + + -
FindOrAdd m - - - - - + + + + + - - + + -
GetUnsequencedHashCode m - - - - - + + + + + - - + + -
ItemMultiplicities m - - - - - + + + + + - - + + -
Remove m - - - - - + + + + + - - + + -
RemoveAll m - - - - - + + + + + - - + + -
RemoveAllCopies m - - - - - + + + + + - - + + -
RetainAll m - - - - - + + + + + - - + + -
UniqueItems m - - - - - + + + + + - - + + -
UnsequencedEquals m - - - - - + + + + + - - + + -
Update m - - - - - + + + + + - - + + -
UpdateOrAdd m - - - - - + + + + + - - + + -
GetSequencedHashCode m - - - - - - + + + + - - + + -
SequencedEquals m - - - - - - + + + + - - + + -
FindIndex m - - - - - - - + - + - - + + -
FindLastIndex m - - - - - - - + - + - - + + -
IndexingSpeed p r - - - - - - - + - + - - + + -
IndexOf m - - - - - - - + - + - - + + -
LastIndexOf m - - - - - - - + - + - - + + -
RemoveAt m - - - - - - - + - + - - + + -
RemoveInterval m - - - - - - - + - + - - + + -
this[i] i r - - - - - - - + - + - - + + -
this[i,n] i r - - - - - - - + - + - - + + -
Dequeue m - - - - - - - - - - + - - - -
Enqueue m - - - - - - - - - - + - - - -
this[i] i r - - - - - - - - - - + - - - -
Pop m - - - - - - - - - - - + - - -
Push m - - - - - - - - - - - + - - -
this[i] i r - - - - - - - - - - - + - - -

Figure 1.2: Properties (p), methods (m) and indexers (i) in collection interfaces.
For properties and indexers, r=read-only and rw=read-write. Part 1: The inter-
faces SCG.IEnumerable<T>, IDirectedEnumerable<T>, ICollectionValue<T>, IDi-
rectedCollectionValue<T>, IExtensible<T>, ICollection<T>, ISequenced<T>, IIn-
dexed<T>, IQueue<T> and IStack<T>.

§1.5 Dictionary interfaces 21

Name Kind SC
G

.I
E

nu
m

er
ab

le
<T

>

ID
ir

ec
te

dE
nu

m
er

ab
le

<T
>

IC
ol

le
ct

io
nV

al
ue

<T
>

ID
ir

ec
te

dC
ol

le
ct

io
nV

al
ue

<T
>

IE
xt

en
si

bl
e<

T
>

IC
ol

le
ct

io
n<

T
>

IS
eq

ue
nc

ed
<T

>

II
nd

ex
ed

<T
>

IS
or

te
d<

T
>

II
nd

ex
ed

So
rt

ed
<T

>

IQ
ue

ue
<T

>

IS
ta

ck
<T

>

IL
is

t<
T

>

IP
er

si
st

en
tS

or
te

d<
T

>

IP
ri

or
it

yQ
ue

ue
<T

>

FIFO p rw - - - - - - - - - - - - + - -
First p r - - - - - - - - - - - - + - -
FindAll m - - - - - - - - - - - - + - -
Insert m - - - - - - - - - - - - + - -
InsertAll m - - - - - - - - - - - - + - -
InsertFirst m - - - - - - - - - - - - + - -
InsertLast m - - - - - - - - - - - - + - -
IsFixedSize p r - - - - - - - - - - - - + - -
IsSorted m - - - - - - - - - - - - + - -
IsValid p r - - - - - - - - - - - - + - -
Last p r - - - - - - - - - - - - + - -
LastViewOf m - - - - - - - - - - - - + - -
Map m - - - - - - - - - - - - + - -
Offset p r - - - - - - - - - - - - + - -
Remove m - - - - - - - - - - - - + - -
RemoveFirst m - - - - - - - - - - - - + - -
RemoveLast m - - - - - - - - - - - - + - -
Reverse m - - - - - - - - - - - - + - -
Shuffle m - - - - - - - - - - - - + - -
Slide m - - - - - - - - - - - - + - -
Sort m - - - - - - - - - - - - + - -
this[i] i rw - - - - - - - - - - - - + - -
TrySlide m - - - - - - - - - - - - + - -
Underlying p r - - - - - - - - - - - - + - -
View m - - - - - - - - - - - - + - -
ViewOf m - - - - - - - - - - - - + - -
AddSorted m - - - - - - - - + + - - - + -
Comparer p r - - - - - - - - + + - - - + -
Cut m - - - - - - - - + + - - - + -
DeleteMax m - - - - - - - - + + - - - + -
DeleteMin m - - - - - - - - + + - - - + -
FindMax m - - - - - - - - + + - - - + -
FindMin m - - - - - - - - + + - - - + -
Predecessor m - - - - - - - - + + - - - + -
RangeAll m - - - - - - - - + + - - - + -
RangeFrom m - - - - - - - - + + - - - + -
RangeFromTo m - - - - - - - - + + - - - + -
RangeTo m - - - - - - - - + + - - - + -
RemoveRangeFrom m - - - - - - - - + + - - - + -
RemoveRangeFromTo m - - - - - - - - + + - - - + -
RemoveRangeTo m - - - - - - - - + + - - - + -
Successor m - - - - - - - - + + - - - + -
TryPredecessor m - - - - - - - - + + - - - + -
TrySuccessor m - - - - - - - - + + - - - + -
TryWeakPredecessor m - - - - - - - - + + - - - + -
TryWeakSuccessor m - - - - - - - - + + - - - + -
WeakPredecessor m - - - - - - - - + + - - - + -
WeakSuccessor m - - - - - - - - + + - - - + -
CountFrom m - - - - - - - - - + - - - - -
CountFromTo m - - - - - - - - - + - - - - -
CountTo m - - - - - - - - - + - - - - -
FindAll m - - - - - - - - - + - - - - -
Map m - - - - - - - - - + - - - - -
RangeFrom m - - - - - - - - - + - - - - -
RangeFromTo m - - - - - - - - - + - - - - -
RangeTo m - - - - - - - - - + - - - - -
Snapshot m - - - - - - - - - - - - - + -
Add m - - - - - - - - - - - - - - +
Comparer p r - - - - - - - - - - - - - - +
Delete m - - - - - - - - - - - - - - +
DeleteMax m - - - - - - - - - - - - - - +
DeleteMin m - - - - - - - - - - - - - - +
Find m - - - - - - - - - - - - - - +
FindMax m - - - - - - - - - - - - - - +
FindMin m - - - - - - - - - - - - - - +
Replace m - - - - - - - - - - - - - - +
this[h] i rw - - - - - - - - - - - - - - +

Figure 1.3: Collection properties (p), methods (m) and indexers (i), part 2: IList<T>,
ISorted<T>, IIndexedSorted<T>, IPersistentSorted<T>, and IPriorityQueue<T>.

22 Comparison with other collection libraries §1.6

IDictionary<K,V>

ISortedDictionary<K,V>

ICollectionValue<KeyValuePair<K,V>>

SCG.IEnumerable<KeyValuePair<K,V>>

Figure 1.4: The dictionary interface hierarchy.

K. This comparer may be explicitly given when the dictionary is created or it may
be the key type’s natural comparer.

A sorted dictionary supports all the operations of a dictionary (section 1.5.1 and
in addition permits finding the (key,value) pair whose key is the predecessor or suc-
cessor of a given key. Enumeration of the (key,value) pairs or of the keys or the
values in a sorted dictionary is done in the order determined by the comparer.

The primary implementation of sorted dictionaries is TreeDictionary<K,V>; see
section 7.2.

1.6 Comparison with other collection libraries
Figure 1.6 compares C5 and other collection libraries.

§1.6
C

om
parison

w
ith

other
collection

libraries
23

C5 .NET SCG PowerCollections Java java.util Smalltalk
Collection implementations

Array list ArrayList List (SCG.List) ArrayList OrderedCollection
Linked list LinkedList (LinkedList) (SCG.LinkedList) LinkedList LinkedList
Hash-indexed array list HashedArrayList (none) (none) (none) (none)
Hash-indexed linked list HashedLinkedList (none) (none) (LinkedHashSet) (none)
Fast-index linked list (none) (none) BigList (none) (none)
Hash set HashSet (Dictionary) Set HashSet Set
Hash bag HashBag (Dictionary) Bag (HashMap to ints) Bag
Order-based set TreeSet (SortedDictionary) OrderedSet TreeSet SortedCollection
Order-based bag TreeBag (SortedDictionary) OrderedBag (TreeMap to ints) SortedCollection
Stack ArrayList Stack (SCG.Stack) Stack OrderedCollection
Queue CircularQueue Queue Dequeue Queue OrderedCollection
Priority queue IntervalHeap (none) (none) PriorityQueue (none)

Dictionary implementations
Hash-based dictionary HashDictionary Dictionary (SCG.Dictionary) HashMap Dictionary
Same, multivalued (dictionary of sets) (none) MultiDictionary (HashMap of sets) (dictionary of sets)
Ordered tree dictionary TreeDictionary SortedDictionary OrderedDictionary TreeMap (none)
Same, multivalued (dictionary of sets) (none) OrderedMultiDictionary (TreeMap of sets) (none)
Ordered array dictionary (none) SortedList (none) (none) (none)

Other features
Range queries Yes No Yes Yes No
Mutable list views Yes No No No No
Priority queue handles Yes No No No No
Collection snapshots Yes No No No No
Listenable events Yes No No No No
Collection formatting Yes No No No No

Figure 1.5: A summary comparison of C5 and other collection libraries: The generic collection classes of the .NET
Framework Library [12, 22], Peter Golde’s PowerCollections library [15], the Java collection library [3], and the
Smalltalk 80 collection library [14].

24 Comparison with other collection libraries §1.6

Chapter 2

Equality and comparison

Any collection that supports search for a given item, for instance via the Contains
method, must be able to determine whether two items are equal. Similarly, a dictio-
nary must be able to determine whether two keys are equal.

Every collection class in the C5 library implements this equality test in one of
two ways: either the class has an item equality comparer, or it has an item comparer,
also called an item ordering.

• An item equality comparer is an object of type SCG.IEqualityComparer<T>,
which uses an equality predicate bool Equals(T, T) to determine whether two
items are equal and a hash function int GetHashCode(T) to quickly determine
when they are definitely not equal. Thus a hash function is basically an ap-
proximation to the equality predicate that can be computed quickly.

• An item comparer is an object of type SCG.IComparer<T>, which uses an or-
dering relation int Compare(T, T) to determine whether one item is less than,
equal to, or greater than another.

Collections such as LinkedList<T>, HashSet<T>, HashedLinkedList<T> and so on
that use an item equality comparer are said to be hash-based. Collections such as
TreeSet<T> that use an item comparer are said to be comparison-based. Figure 2.1
show which of C5’s collection classes and dictionary classes use an equality com-
parer and which use a comparer.

A collection’s item equality comparer or item comparer is fixed when the collec-
tion instance is created. Either it is given explicitly as an argument to the construc-
tor that creates the collection instance, or it is manufactured automatically by the
C5 library. In the latter case, the interfaces implemented by the item type T de-
termine what item equality comparer or item comparer is created for the collection;
see sections 2.4 and 2.7.

Similarly, every dictionary either uses a key equality comparer or a key comparer
to determine when two keys are equal. Either it is given explicitly as an argument

25

26 Natural equality §2.1

Class Equality comparer Comparer
CircularQueue<T> − −
ArrayList<T> + −
LinkedList<T> + −
HashedArrayList<T> + −
HashedLinkedList<T> + −
WrappedArray<T> + −
SortedArray<T> (+) +
TreeSet<T> (+) +
TreeBag<T> (+) +
HashSet<T> + −
HashBag<T> + −
IntervalHeap<T> − +

HashDictionary<K,V> + −
TreeDictionary<K,V> (+) +

Figure 2.1: Collection classes that need equality comparers or comparers. Some col-
lections, marked (+), take an optional equality comparer to determine item equality
and hashing when using the entire collection as an item in an “outer” collection.

to the constructor that creates the dictionary instance, or it is manufactured auto-
matically by the C5 library. In the latter case, the interfaces implemented by the
key type K determine what key equality comparer or key comparer is created for
the dictionary; see sections 2.4 and 2.7.

2.1 Natural equality
In C#, all types inherit from class Object, and therefore every item type has the
following two methods which define the type’s natural equality:

• bool Equals(Object y) compares the item to some other object.

• int GetHashCode() finds the item’s hash code.

For primitive value types such as int, natural equality is based on the values. For
user-defined struct types, default natural equality compares two struct values field
by field. For type String, natural equality compares the contents of the strings. For
other reference types, default natural equality compares the object references.

Note that when the argument has value type, a call to bool Equals(Object)
causes boxing of the argument, which is slow. Also, default natural equality for
struct types uses reflection, which is slow.

§2.3 Equatable types 27

2.2 Equatable types
Interface IEquatable<T> from CLI namespace System describes a single method:

• bool Equals(T x) returns true if this item equals item x.

This is different from the Equals method inherited from Object, whose argument
type is Object, not T. Implementations of System.IEquatable<T> must satisfy:

• The equality function is
reflexive so x.Equals(x) is true;
symmetric so x.Equals(y) implies y.Equals(x); and
transitive so x.Equals(y) and y.Equals(z) implies x.Equals(z).

• The type’s hash function GetHashCode(), possibly inherited from Object, is an
approximation of equality:
If x.Equals(y) then x.GetHashCode()==y.GetHashCode().

• The equality function and the hash function must be total: they must never
throw exceptions, not even on a null reference argument. Throwing an excep-
tion in these methods may corrupt the internal state of the collection.

Note that it is difficult to satisfy these requirements both for a class and for its
derived classes. See Bloch [6, chapter 3] for a discussion.

Many built-in types in C#, such as long, do implement IEquatable<long>, and
hence support equality comparison with themselves.

2.3 Equality comparers
Interface IEqualityComparer<T> from CLI namespace System.Collections.Generic
describes two methods:

• bool Equals(T x, T y) returns true if item x equals item y, and must be de-
fined for all x and y, even null references.

• int GetHashCode(T x) returns the hash code for x, and must be defined for
all x, even null references.

Implementations of SCG.IEqualityComparer<T> must satisfy:

• The equality function is
reflexive so Equals(x,x) is true;
symmetric so Equals(x,y) implies Equals(y,x); and
transitive so Equals(x,y) and Equals(y,z) implies Equals(x,z).

• The hash function must be an approximation of equality:
If Equals(x,y) then GetHashCode(x)==GetHashCode(y).

28 Creating equality comparers §2.4

• The equality function and the hash function must be total: they must never
throw exceptions, not even on a null reference argument. Throwing an excep-
tion in these methods may corrupt the internal state of the collection.

The equality and hash functions should be unaffected by modifications to items,
so these functions should depend only on immutable (read-only) fields of items. If
an item is modified in a way that affects its equality or hashcode while stored in
a collection, then the collection will not work and may fail in arbitrary ways; see
anti-pattern 132.

2.4 Creating equality comparers
The static class C5.EqualityComparer<T> is a factory class, used to produce a de-
fault equality comparer for a given type T. The class has one static property:

• static EqualityComparer<T>.Default of type SCG.IEqualityComparer<T> is
the default equality comparer for type T; see figure 2.2. For a given type T,
every evaluation of EqualityComparer<T>.Default will return the same object.

When creating a hash-based collection such as a hash set, hash bag or hash dictio-
nary, one may give an explicit equality comparer of type SCG.IEqualityComparer<T>
that will be used when hashing items and when comparing them for equality. If one
does not give such an equality comparer explicitly, then a standard one returned by
EqualityComparer<T>.Default will be used by the collection, as shown in figure 2.2.
This standard equality comparer is created once for each type T, so multiple calls to
the EqualityComparer<T>.Default property for a given T will return the same object.

Item type T Value of EqualityComparer<T>.Default
char CharEqualityComparer
sbyte SByteEqualityComparer
byte ByteEqualityComparer
short ShortEqualityComparer
ushort UShortEqualityComparer
int IntEqualityComparer
uint UIntEqualityComparer
float FloatEqualityComparer
double DoubleEqualityComparer
decimal DecimalEqualityComparer
implements ISequenced<W> SequencedCollectionEqualityComparer<T,W>
implements ICollectionValue<W> UnsequencedCollectionEqualityComparer<T,W>
implements IEquatable<T> EquatableEqualityComparer<T>
does not implement IEquatable<T> NaturalEqualityComparer<T>

Figure 2.2: Finding the default hash function for various types. The alternatives
are tried in order from top to bottom, and the first match is used. W is any type.

§2.4 Creating equality comparers 29

When creating a hash-based collection of collections, an equality comparer for the
“outer” collection’s items (which are themselves “inner” collections) should be cre-
ated and given explicitly; see sections 8.3 and 9.17.

The equality comparer classes listed in figure 2.2 define item equality and item
hash functions that satisfy the requirements on Equals(T,T) and GetHashCode(T)
mentioned above, and behave as follows:

• For primitive item types, the equality comparer classes CharEqualityComparer,
IntEqualityComparer and so on define equality as the built-in equality for
those types, with corresponding hash functions.

• For an item type T that implements ISequenced<W>, so each outer item is a se-
quenced collection of inner items of type W, the default equality comparer is a
SequencedCollectionEqualityComparer<T,W>. This equality comparer imple-
ments interface IEqualityComparer<T> and defines the equality Equals(T,T)
of two collections by comparing their items of type W, using the Equals(W,W)
method of their equality comparers, in the order in which they appear in the
collections. Correspondingly, it defines the hash function GetHashCode(T) for
a collection using the GetHashCode(W) method of their equality comparers in a
way that depends on the order in which the items appear.

• For an item type T that implements ICollection<W>, so each outer item is
an unsequenced collection of inner items of type W, the default equality com-
parer is an UnsequencedCollectionEqualityComparer<T,W>. This equality
comparer implements interface SCG.IEqualityComparer<T> and defines the
equality Equals(T,T) of two collections by comparing their items using the
Equals(W,W) method of their equality comparers, disregarding the order in
which the items appear. Correspondingly, it defines the GetHashCode(T) hash
function of a collection using the GetHashCode(W) method of its item equality
comparer in a way that does not depend on the order in which the items ap-
pear.

• For an item type T that implements IEquatable<T>, the default equality com-
parer is an EquatableEqualityComparer<T>, which uses T’s method Equals(T)
to define equality and uses T’s GetHashCode() as hash function.

• For any other item type T, the default equality comparer is a NaturalEquali-
tyComparer<T>, which uses T’s method Equals(Object) to define equality and
uses T’s GetHashCode() method compute hash codes.

If T is a value type, these methods may have been overridden in type T or else
are the default methods inherited from System.ValueType. In the latter case,
the Equals(Object) method uses reflection to compare the fields of the value
for equality, and the GetHashCode() method similarly uses one or more fields
of the value type to compute a hash value. For efficiency and correctness it is
advisable to override Equals(Object) and GetHashCode() in a value type T.

30 Comparable types §2.5

If T is a reference type, these methods may have been overridden in type T
or a base class, or else are the default methods inherited from class Object.
The default Equals(Object) method from Object for a reference type simply
compares object references.

• A ReferenceEqualityComparer<T>, where T must be a reference type, defines
equality for reference type T as object reference equality, using class Object’s
static method ReferenceEquals(Object,Object), and defines its hash code us-
ing the original GetHashCode()method from class Object, even if GetHashCode()
has been overridden by T or one of its base classes. Class ReferenceEquality-
Comparer<T> has a single static property Default whose value is the refer-
ence equality comparer for type T.

• A KeyValuePairEqualityComparer<K,V> implements the interface IEquality-
Comparer<KeyValuePair<K,V>>, defines equality of two (key,value) pairs as
equality of their keys, and defines the hash code of the (key,value) pair as the
hash code of the key.

The Equals(Object) and GetHashCode() methods for a collection class are the stan-
dard ones inherited from class Object. In particular, coll1.Equals(coll2) tests
whether collections coll1 and coll2 are the same object reference, not whether they
contain the same items.

To test whether collections coll1 and coll2 contain the same items in some order,
use UnsequencedCollectionEqualityComparer<T,W>.Equals(coll1, coll2). Here T
is the type of the collections coll1 and coll2, and W is their item type. To test
whether sequenced collections coll1 and coll2 contain the same items in the same
order, use SequencedCollectionEqualityComparer<T,W>.Equals(coll1, coll2).

2.5 Comparable types
Interface IComparable<T> from CLI namespace System describes a single method:

• int CompareTo(T y) returns a negative number if the given value is less than
y, zero if it is equal to y, and a positive number if it is greater than y.

To describe the requirements on method CompareTo, let us define that “−” and “+”
are the opposite signs of each other and that 0 is the opposite sign of itself. Then the
CompareTo must satisfy:

• As an ordering relation it must be reflexive so that x.CompareTo(x) is zero.

• As an ordering relation it must be transitive so if x.CompareTo(y) has a given
sign, and y.CompareTo(z) have the same sign or is zero, then x.CompareTo(z)
has the same sign.

• As an ordering relation it must be anti-symmetric so x.CompareTo(y) and
y.Compare(x) must have opposite signs.

§2.7 Comparers 31

• It must be total so it must never throw an exception. Throwing an exception
in CompareTo may corrupt the internal state of a collection.

The result of CompareTo should be unaffected by modifications to items. This can
be ensured by letting the comparer depend only on immutable (read-only) fields of
items. If an item is modified in a way that affects the results of comparisons while
it is stored in a collection, then the collection will not work properly and may fail in
arbitrary ways.

Many built-in types in C#, such as long, do implement IComparable<long>, and
hence support comparison with themselves.

Interface System.IComparable is a legacy version of IComparable<T>; it de-
scribes a single method:

• int CompareTo(Object y) returns a negative number if the given value is
less than y, zero if it is equal to y, and a positive number if it is greater than y.

Use IComparable<T> whenever possible for better type safety, and to avoid the over-
head of boxing when T is a value type.

2.6 Comparers
Interface IComparer<T> from CLI namespace System.Collections.Generic describes
one method:

• int Compare(T x, T y) must return a negative number when x is less than
y, zero when they are equal, and a positive number when y is greater than x.

To describe the requirements on method Compare, let us define that “−” and “+” are
the opposite signs of each other and that 0 is the opposite sign of itself. Then the
Compare method in an implementation of SCG.IComparer<T> must satisfy:

• As an ordering relation it must be reflexive so that Compare(x,x) is zero.

• As an ordering relation it must be transitive so if Compare(x,y) has a given
sign, and Compare(y,z) have the same sign or is zero, then Compare(x,z) has
the same sign.

• As an ordering relation it must be anti-symmetric so Compare(x,y) and
Compare(y,x) must have opposite signs.

• It must be total so it must never throw an exception. Throwing an exception
in a comparer may corrupt the internal state of a collection.

A comparer should be unaffected by modifications to items. This can be ensured
by letting the comparer depend only on immutable (read-only) fields of items. If an
item is modified in a way that affects the results of comparisons while it is stored
in a collection, then the collection will not work properly and may fail in arbitrary
ways.

32 Creating comparers §2.7

2.7 Creating comparers
The static class C5.Comparer<T> is a factory. One cannot create object instances of
it, but can use it to produce a default comparer (ordering) for a given type T. The
class has one static property:

• static Comparer<T>.Default of type SCG.IComparer<T> is the default com-
parer for type T; see figure 2.3.

When creating a sorted collection of collections, a comparer for the “outer” collec-
tion’s items (which are themselves “inner” collections) must often be created explic-
itly; see section 8.3 and 9.17. Since every evaluation of Comparer<T>.Default for a
given T returns the same comparer object, reference comparison of comparers can
be used to check whether two (inner) collections have the same comparers, provided
the comparers were created by the Comparer<T> class.

Item type T Comparer<T>.Default
char CharComparer
sbyte SByteComparer
byte ByteComparer
short ShortComparer
ushort UShortComparer
int IntComparer
uint UIntComparer
float FloatComparer
double DoubleComparer
decimal DecimalComparer
implements System.IComparable<T> NaturalComparer<T>
implements System.IComparable NaturalComparerO<T>

Figure 2.3: Default comparers for various types.

The comparer classes listed in figure 2.3 define comparer methods that behave as
follows:

• For the primitive type comparers, Compare(x, y) uses the primitive compari-
son operators (<) and (>) to return a positive number if x > y, a negative num-
ber if x < y, and zero otherwise,

• A NaturalComparer<T> simply uses the Compare(T,T) method from type T,
which must implement System.IComparable<T>; otherwise NotComparable-
Exception is thrown.

• A NaturalComparerO<T> simply uses the Compare(Object,Object) method
from type T, which must implement System.IComparable; otherwise NotCom-
parableException is thrown.

§2.7 Creating comparers 33

A KeyValuePairComparer<K,V> implements SCG.IComparer<KeyValuePair<K,V>>
and defines comparison of two (key,value) pairs by comparison of their keys only.
The class has a single constructor:

• KeyValuePairComparer<K,V>(SCG.IComparer<K> cmp) creates a new (key, value)
pair comparer whose Compare(K x,K y) method just calls cmp.Compare(x,y) to
compare the keys of two (key, value) pairs.

A DelegateComparer<T> encapsulates a delegate of type System.Comparison<T>
and uses that to implement SCG.IComparer<T>. For that purpose it has a single
constructor:

• DelegateComparer<T>(System.Comparison<T> csn) creates a new comparer
whose Compare(T x,T y) method just calls the delegate csn(x,y) and returns
its result. The given delegate csn must satisfy the requirements on a comparer
mentioned above. In particular, it must never throw an exception.

This is useful for creating comparers inline, for instance when creating a sorted
collection or when sorting arrays or lists. For an example, see pattern 92.

34 Creating comparers §2.7

Chapter 3

Auxiliary types

In addition to the interfaces describing the collection concepts and dictionary con-
cepts, and the classes implementing the collections and dictionaries, there are sev-
eral auxiliary enum types, struct types, delegate types and exception types. Ad-
ditional auxiliary types that are primarily of interest to library developers are de-
scribed in chapter 14.

3.1 Enum type EventTypeEnum
The enum type EventTypeEnum is used to report which event handlers are cur-
rently associated with a collection or dictionary, and to report which events can be
listened to at all. See section 8.8.5 for events and event handlers, and see properties
ActiveEvents and ListenableEvents in ICollectionValue<T> (section 4.2). The enum
type has the following values which can be combined, like flags, using the bitwise
operator “or” (|) to form other values of type EventTypeEnum:

Enum value Corresponding events
Added ItemsAdded
All Basic | Inserted | RemovedAt
Basic Added | Changed | Cleared | Removed
Changed CollectionChanged
Cleared CollectionCleared
Inserted ItemInserted
None None
Removed ItemsRemoved
RemovedAt ItemRemovedAt

For instance, to test whether a CollectionChangedHandler is associated with col-
lection coll, evaluate (coll.ActiveEvents & EventTypeEnum.Changed) != 0. To test
for no event handler, evaluate coll.ActiveEvents == EventTypeEnum.None.

35

36 Enum type Speed §3.4

3.2 Enum type EnumerationDirection

The enum type EnumerationDirection is used to report the enumeration direction
of a directed collection or directed enumerable; for instance by property Direction
in interface IDirectedEnumerable<T> (section 4.4). The enum type has two values
which are mutually exclusive:

Enum value Meaning
Forwards The natural enumeration order
Backwards The opposite of the natural enumeration order

3.3 Enum type Speed

Enum type Speed has values Constant, Log, Linear and PotentiallyInfinite and
is used internally in the C5 library. This type and the properties ContainsSpeed
(section 4.1), CountSpeed (section 4.2) and IndexingSpeed (section 4.6) are used to
determine the most efficient way to test equality of two collections.

For instance, if one needs to determine whether collections coll1 and coll2 are
equal, and coll1.ContainsSpeed is Linear and coll2.ContainsSpeed is Constant,
then it is faster to enumerate all items x of coll1 and test whether coll2.Contains(x)
than to do the opposite. This is exploited in C5’s collection equality comparers syn-
thesized by the C5.Comparer<T> class (section 2.7).

The possible values of enum type Speed are:

• PotentiallyInfinite means that the operation may not terminate. For
instance, counting the number of items in a hypothetical lazily generated and
potentially infinite collection may not terminate. Note that all operations on
C5’s collection classes or dictionary classes do terminate.

• Linear means that the operation takes time O(n), where n is the size of the
collection. For instance, this is the case for item lookup with Contains(x) on
non-hashed lists.

• Log means that a the operation takes time O(logn), where n is the size of the
collection. For instance, this is the case for item lookup with Contains(x) on
tree sets, tree bags, and sorted arrays.

• Constant means that the operation takes time O(1), that is, constant time.
For instance, this is the case for item indexing this[i] on array lists, and is
the expected time for item lookup with Contains(x) on hash sets, hash bags,
and hashed lists.

§3.5 Record struct types Rec<T1,T2>, . . . 37

3.4 Record struct types Rec<T1,T2>, . . .
In generic function libraries it is convenient to have ways to represent records, such
as pairs, triples, and quadruples. This purpose is served by the Rec family of record
struct types, declared as shown below.

public struct Rec<T1,T2> : IEquatable<Rec<T1,T2>>, IShowable {
public readonly T1 X1;
public readonly T2 X2;
public Rec(T1 x1, T2 x2) {
this.X1 = x1; this.X2 = x2;

}
public override int GetHashCode() { ... }
public override bool Equals(Object o) { ... }
public override bool Equals(Rec<T1,T2> that) { ... }
public static bool operator==(Rec<T1,T2> r1, Rec<T1,T2> r2) { ... }
public static bool operator!=(Rec<T1,T2> r1, Rec<T1,T2> r2) { ... }
public bool Show(StringBuilder sb, ref int rest, IFormatProvider fmp) { ... }

}
public struct Rec<T1,T2,T3> : IEquatable<Rec<T1,T2,T3>>, IShowable { ... }
public struct Rec<T1,T2,T3,T4> : IEquatable<Rec<T1,T2,T3,T4>>, IShowable { ... }

Note that the fields X1, X2, . . . are public but read-only, to prevent the confusion that
results from updating a field of a copy of a struct value, rather than the original
struct value.

The Equals(Object o) method of a record type returns false when o is null or is
not a boxed instance of the record type; otherwise compares the records field by field
using their Equals methods.

The Equals(Rec<T1,T2>) method in type Rec<T1,T2> and the operators (==) and
(!=) compare the record fields using the Equals methods for the field types T1 and
T2.

3.5 Struct type KeyValuePair<K,V>
A struct of type KeyValuePair<K,V> is used represent pairs of a key of type K and
an associated value of type V. It has public fields Key and Value. It is similar to
Rec<K,V>, but the fields are called Key and Value rather than X1 and X2, and the
formatting by ToString is different. The natural comparer and equality comparer
for a KeyValuePair<K,V> compares the keys only; the values are ignored.

38 Delegate types §3.6

3.6 Delegate types
The delegate type families Act and Fun described below are used by several methods
in interface ICollectionValue<T> and elsewhere. For event handler types, which are
delegate types too, see section 8.8.

3.6.1 Action delegate types Act<A1>, Act<A1,A2>, . . .
Delegate type Act<A1> is the type of functions or methods from A1 to void, used
to perform some side-effect or action for a given collection item x. Type Act<A1> is
part of a family of such action delegate types with zero to four arguments, declared
as follows:

public delegate void Act();
public delegate void Act<A1>(A1 x1);
public delegate void Act<A1,A2>(A1 x1, A2 x2);
public delegate void Act<A1,A2,A3>(A1 x1, A2 x2, A3 x3);
public delegate void Act<A1,A2,A3,A4>(A1 x1, A2 x1, A3 x3, A4 x4);

The type Act<T> corresponds to System.Action<T> in in the CLI or .NET class li-
brary.

3.6.2 Function delegate types Fun<A1,R>, Fun<A1,A2,R>, . . .
Delegate type Fun<A1,R> is the type of functions or methods from A1 to R, used to
compute some transformation for a given collection item x. Type Fun<A1,R> is part
of a family of such function delegate types with zero to four arguments, declared as
follows:

public delegate R Fun<R>();
public delegate R Fun<A1,R>(A1 x1);
public delegate R Fun<A1,A1,R>(A1 x1, A2 x2);
public delegate R Fun<A1,A2,A3,R>(A1 x1, A2 x2, A3 x3);
public delegate R Fun<A1,A2,A3,A4,R>(A1 x1, A2 x1, A3 x3, A4 x4);

The type Fun<A1,R> is the type of functions or converters from type A1 to type R,
and corresponds to System.Converter<A1,R> in the CLI or .NET class library. The
type Fun<T,bool> is the type of predicates for values of type T and corresponds to
type System.Predicate<T> in the CLI or .NET class library.

§3.7 Exception types 39

3.7 Exception types

3.7.1 General exceptions used by C5
• A System.ArgumentException is thrown when the argument to an operation

does not satisfy its preconditions. For instance, it is thrown if the enumerable
xs passed in AddSorted(xs) does not produce items in strictly increasing order.

• A System.ArgumentOutOfRangeException is thrown by subrange (view) oper-
ations if the given index and length arguments are illegal for the collection.

• A System.IndexOutOfRangeException is thrown by indexers this[i] and in-
dexing operations such as Insert(i, x) when integer i is outside the range
of legal indexes for the operation. An indexer that does not in general take
integer arguments throws other exceptions: this[k] on a dictionary throws
NoSuchItemException when key k is not in the dictionary, and this[h] on a
priority queue throws InvalidHandleException when handle h is not associ-
ated with the priority queue.

3.7.2 Exception types particular to C5
The C5 collection library uses several exception classes to provide more specific in-
formation about operations that went wrong. All derive from System.Exception, and
the general rules for throwing them are these:

• A CollectionModifiedException is thrown if the collection underlying an enu-
merator has been modified while the enumerator is in use. The exception is
thrown at the first use of the enumerator (“fail-early”) after a modification.

• A DuplicateNotAllowedException is thrown when one attempts to add an item
x to a collection that already contains an item equal to x, and that collection
does not allow duplicates. Whether a collection allows duplicates can be deter-
mined by inspecting the collection’s AllowsDuplicates property; see section 4.5.

• A FixedSizeCollectionException is thrown when an attempt is made to extend
(for instance, by Add) or shrink (for instance, by Remove) a fixed-size list: one
for which the IsFixedSize property is true.

• An IncompatibleViewException is thrown when a list operation such as u.Insert(w,
x) or u.Span(w) is applied to a list view w (section 8.1) that has a different un-
derlying list than that of u.

• An InternalException is thrown in the unlikely event of an inconsistency in the
C5 library’s internal data structures. The library developers (kokholm@itu.dk
and sestoft@itu.dk) would very much appreciate being notified of such prob-
lems, preferably with example code that provokes the problem.

40 Exception types §3.7

• An IntervalHeap.InvalidHandleException is thrown when one attempts to use
a priority queue handle (sections 4.10 and 9.20) in an indexer or Delete or
Replace operation on a priority queue, and the handle is not currently associ-
ated with this priority queue, or when one attempts to set (re-use) an existing
handle in an Add operation and the handle is already in use.

• A NoSuchItemException is thrown when no item can be returned from an op-
eration, such as when Choose() is applied to an empty collection, or First or
Last are applied to an empty list, or Predecessor is applied to a value less than
or equal to all items in a sorted collection, or a dictionary indexer is used to
look up a key that is not in the collection.

• A NotComparableException is thrown when an attempt is made to construct a
NaturalComparer<T> or NaturalComparerO<T> (section 2.6) for a type T that
does not implement System.IComparable<T> or System.IComparable. This
typically happens when one creates a comparer-based collection without giving
an explicit comparer.

• A NotAViewException is thrown when a view operation such as Slide or TrySlide
is applied to a proper list, not a list view (sections 4.8 and 8.1). One can deter-
mine whether list is a view by evaluating list.Underlying != null.

• A ReadOnlyCollectionException is thrown if any modification is attempted on
a collection that is read-only, such as a guarded collection or a snapshot of a
tree set or tree bag. One can determine whether a collection is read-only by
inspecting its IsReadOnly property; see section 4.5.

• An UnlistenableEventException is thrown if an attempt is made to attach an
event handler to a collection that does not support that event type. Whether
a collection supports a given event type can be determined by inspecting the
collection’s ListenableEvents property; see section 4.2.

• A ViewDisposedException is thrown if an operation other than IsValid or
Dispose is called on a list view that has been invalidated. One can deter-
mine whether a view has been disposed by inspecting its IsValid property; see
section 4.8.

§3.9 Pseudo-random number generators 41

3.8 Pseudo-random number generators
A deck of 52 cards can be shuffled (permuted) in 52! ≈ 8.1 ·1067 different ways, but a
pseudo-random number generator with a 32 bit seed can generate only 232 ≈ 4 · 109

of these permutations. Proper shuffling or permutation requires very large seeds
and very long periods.

The C5 library provides a pseudo-random number generator in class C5Random
which is a subclass of System.Random. The C5Random class provides an implemen-
tation of George Marsaglia’s “complimentary multiply with carry” (CMC) pseudo-
random number generator which has an extremely long period [19, 20]. The im-
plementation in C5 accepts a seed consisting of 16 unsigned 32-bit integers, which
gives a period of 216·32 = 2512 ≈ 1.3 · 10154. Marsaglia’s paper [20] includes advice on
how to obtain multiple seed values for pseudo-random number generators such as
C5Random.

The C5Random class provides the following methods:

• int Next() returns a pseudo-random integer.

• int Next(int max) returns a pseudo-random integer in the range 0 ...max-1.
Throws ArgumentException if max < 0.

• int Next(int min, int max) returns a pseudo-random integer in the range
min ...max-1. Throws ArgumentException if max <= min.

• void NextBytes(byte[] arr) fills array a with pseudo-random bytes. Throws
NullReferenceException if arr is null.

• double NextDouble() returns a pseudo-random floating-point number greater
than or equal to 0 and less than 1.

3.9 The IShowable interface
The collection and dictionary classes implement the IShowable interface to permit
output-limited formatting of collections and dictionaries. Interface IShowable de-
rives from the System.IFormattable interface. See also section 8.7.

Methods
• bool Show(StringBuilder sb, ref int rest, IFormatProvider formatProvider)

appends a formatted version of the given collection to sb, using at most approx-
imately rest characters, and using the formatProvider if non-null to format
collection items. If the collection cannot not be formatted within rest char-
acters, then ellipses “...” are used to indicate missing pieces in the resulting
output. Subtracts the number of characters actually used from rest. Returns
true if rest > 0 on return; otherwise false.

42 The IShowable interface §3.9

Chapter 4

Collection interface details

This chapter gives a detailed description of the collection interfaces shown in fig-
ure 4.1. Since all important functionality of the collection implementation classes
is described by the interfaces, this is the main documentation of the entire library
(also available online as HTML help files).

The interfaces are presented in alphabetical order in sections 4.1 to 4.14.
The dictionary interfaces are presented separately in chapter 5.

ISequenced<T>

ICollection<T>

IExtensible<T>

ICollectionValue<T>

SCG.IEnumerable<T>

IIndexed<T>

IPersistentSorted<T>

IPriorityQueue<T>

IList<T>

IQueue<T> IStack<T>

SC.IList

SCG.ICollection<T>IDirectedCollectionValue<T>

IDirectedEnumerable<T>

SCG.IList<T>

IIndexedSorted<T>

ISorted<T>

ICloneable

IShowable

Figure 4.1: The collection interface hierarchy (same as figure 1.1). See figure 6.2 for
the classes implementing these interfaces. SGC is the System.Collections.Generic
namespace.

43

44 Interface ICollection<T> §4.1

4.1 Interface ICollection<T>
Inherits from: IExtensible<T>, System.Collections.Generic.ICollection<T>.

Implemented by: ArrayList<T> (section 6.2), HashBag<T> (section 6.11), Hash-
Set<T> (section 6.10), HashedArrayList<T> (section 6.4), HashedLinkedList<T>
(section 6.5), LinkedList<T> (section 6.3), SortedArray<T> (section 6.7), TreeBag<T>
(section 6.9), TreeSet<T> (section 6.8), and WrappedArray<T> (section 6.6).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property Speed ContainsSpeed is the guaranteed run-time of the
Contains method; see section 3.3.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool Add(T x), see page 55.

• void SCG.ICollection<T>.Add(T x) calls Add(x), see page 55, and ignores
the return value.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• bool Check(), see page 56.

• T Choose(), see page 50.

§4.1 Interface ICollection<T> 45

• void Clear() removes all items from the collection. Raises events Collection-
Cleared and CollectionChanged. Throws ReadOnlyCollectionException if the
collection is read-only.

• Object Clone(), see page 56.

• bool Contains(T x) returns true if the collection contains an item equal to x.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T returns true if the
collection contains (items equal to) all the items in xs. For collections with bag
semantics, item multiplicity is taken into account: each item x must appear in
the collection at least as many times as in xs. The method is generic so that it
can be applied to enumerables with any item type U that is a subtype of T; see
section 8.4.

• int ContainsCount(T x) returns the number of occurrences of x in the col-
lection; Contains(x) is equivalent to, but faster than, ContainsCount(x)>0.

• void CopyTo(T[] arr, int i), see page 50.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x) returns true if the collection contains an item equal to x,
and in that case binds one such item to the ref parameter x; otherwise returns
false and leaves x unmodified.

• bool FindOrAdd(ref T x) returns true if the collection contains an item equal
to x, and in that case binds one such item to the ref parameter x; otherwise re-
turns false and adds x to the collection. If the item was added, it raises events
ItemsAdded and CollectionChanged. Throws ReadOnlyCollectionException if
the collection is read-only.

• int GetUnsequencedHashCode() returns the unsequenced or order-insensi-
tive hash code of the collection. This is the sum of a transformation of the
hash codes of its items, each computed using the collection’s item equality
comparer. The collection’s hash code is cached and thus not recomputed unless
the collection has changed since the last call to this method.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities() returns a
new collection value whose items are pairs (x, n) where x is an item in the given
collection and n is the multiplicity of x in the collection: the number of times
x appears. For collections with set semantics, n=1 always, and for collections
with bag semantics, n >= 1 always.

46 Interface ICollection<T> §4.1

• bool Remove(T x) attempts to remove an item equal to x from the collection.
If the collection has bag semantics, this means reducing the multiplicity of x by
one. Returns true if the collection did contain an item equal to x, false if it did
not. If an item was removed, it raises events ItemsRemoved and Collection-
Changed. Throws ReadOnlyCollectionException if the collection is read-only.

• bool Remove(T x, out T xRemoved) attempts to remove an item equal to x
from the collection. If the collection has bag semantics, this means reducing
the multiplicity of x by one. Returns true if the collection did contain an item
equal to x and if so it binds one such item to xRemoved; returns false if it did
not. If an item was removed, it raises events ItemsRemoved and Collection-
Changed. Throws ReadOnlyCollectionException if the collection is read-only.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T attempts to remove
(items equal to) all items in xs from the collection. If the collection has bag
semantics, this means reducing the item multiplicity of x in the collection by
at most the multiplicity of x in xs. If any items were removed, then events
ItemsRemoved and CollectionChanged are raised. Throws ReadOnlyCollec-
tionException if the collection is read-only. The method is generic so that it
can be applied to enumerables with any item type U that is a subtype of T; see
section 8.4.

• void RemoveAllCopies(T x) attempts to remove all copies of items equal to
x from the collection, reducing the multiplicity of x to zero. It has no effect
if the collection does not contain an item equal to x. If any items were re-
moved, then events ItemsRemoved and CollectionChanged are raised. Throws
ReadOnlyCollectionException if the collection is read-only.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T retains every item
that is equal to some item in xs. Equivalently, removes from the collection any
item y not equal to some item from xs. If the collection has bag semantics, then
this reduces the multiplicity of each item x in the collection to the minimum
of its multiplicity in the given collection and in xs. If any items were removed,
then events ItemsRemoved and CollectionChanged are raised. Throws Read-
OnlyCollectionException if the collection is read-only. The method is generic
so that it can be applied to enumerables with any item type U that is a subtype
of T; see section 8.4.

• T[] ToArray(), see page 50.

• ICollectionValue<T> UniqueItems() returns a collection value which is the
given collection with duplicate items removed. If the given collection allows
duplicates, a new collection is created and returned; if not, the given collection
is returned. The items of the returned collection are the key components of the
collection returned by method ItemMultiplicities.

• bool UnsequencedEquals(ICollection<T> coll) returns true if this collec-
tion contains the same items as coll with the same multiplicities, but possibly

§4.1 Interface ICollection<T> 47

in a different order. More precisely, for each item in this collection there must
be one equal to it in coll with the same multiplicity, and vice versa.

• bool Update(T x) returns true if the collection contains an item equal to x,
in which case that item is replaced by x; otherwise returns false without mod-
ifying the collection. If any item was updated, and the collection has set se-
mantics or DuplicatesByCounting is false, then only one copy of x is updated;
but if the collection has bag semantics and DuplicatesByCounting is true, then
all copies of the old item are updated. If any item was updated, then events
ItemsRemoved, ItemsAdded and CollectionChanged are raised. Throws Read-
OnlyCollectionException if the collection is read-only.

• bool Update(T x, out T xOld) returns true if the collection contains an item
equal to x, in which case that item is replaced by x and the old item is bound to
xOld; otherwise returns false and binds the default value for T to xOld without
modifying the collection. The collection is updated and events raised as for
Update(T). Throws ReadOnlyCollectionException if the collection is read-only.

• bool UpdateOrAdd(T x) returns true and updates the collection if the collec-
tion contains an item equal to x; otherwise returns false and adds x to the col-
lection. In the first case (return value is true), if the collection has set seman-
tics or DuplicatesByCounting is false, then one copy of the old item is updated;
but if the collection has bag semantics and DuplicatesByCounting is true, then
all copies of the old item are updated. Also, events ItemsRemoved, ItemsAdded
and CollectionChanged are raised. In the second case (return value is false), x
is added to the collection and events ItemsAdded and CollectionChanged are
raised. Throws ReadOnlyCollectionException if the collection is read-only.

• bool UpdateOrAdd(T x, out T xOld) returns true if the collection contains
an item equal to x, in which case that item is replaced by x and the old item is
bound to xOld; otherwise returns false, adds x to the collection, and binds the
default value for T to xOld. The collection is updated and events are raised as
for UpdateOrAdd(T). Throws ReadOnlyCollectionException if the collection is
read-only.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, Clear, FindOrAdd, Remove, RemoveAll, RemoveAllCopies,
RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

48 Interface ICollection<T> §4.1

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51. Raised by Remove,
RemoveAll, RemoveAllCopies, RetainAll, Update and UpdateOrAdd.

§4.2 Interface ICollectionValue<T> 49

4.2 Interface ICollectionValue<T>
Inherits from: System.Collections.Generic.IEnumerable<T>, System.IFormattable,
and IShowable.

Implemented by: ArrayList<T> (section 6.2), HashBag<T> (section 6.11), Hash-
Dictionary<K,V> (section 7.1), HashSet<T> (section 6.10), HashedArrayList<T>
(section 6.4), HashedLinkedList<T> (section 6.5), IntervalHeap<T> (section 6.12),
LinkedList<T> (section 6.3), SortedArray<T> (section 6.7), TreeBag<T> (section 6.9),
TreeDictionary<K,V> (section 7.2), TreeSet<T> (section 6.8), and WrappedArray<T>
(section 6.6).

Properties
• Read-only property EventTypeEnum ActiveEvents is the set of events for which

there are active event handlers attached to this collection. More precisely, it
is the of bitwise “or” of the EventTypeEnum values for those events; see sec-
tion 3.1.

• Read-only property int Count is the number of items in the collection value;
this is the number of items that enumeration of the collection value would
produce.

• Read-only property Speed CountSpeed is the guaranteed run-time of the Count
property; see section 3.3.

• Read-only property bool IsEmpty is true if Count is zero, otherwise false.

• Read-only property EventTypeEnum ListenableEvents is the set of events
for which handlers can be attached to this collection, or more precisely, the bit-
wise “or” of the EventTypeEnum values; see section 3.1. For instance, to test
whether an ItemInsertedHandler can be attached, evaluate (ListenableEvents
& EventTypeEnum.Inserted) != 0. An attempt to attach an event handler on
an event that is not listenable will throw UnlistenableEventException.

Methods
• bool All(Fun<T,bool> p) applies delegate p to each item x of the collection

in enumeration order until p(x) evaluates to false or until there are no more
items. Returns false if p(x) returned false for some item; otherwise returns
true. If the delegate p modifies the given collection, then a CollectionModi-
fiedException may be thrown.

• void Apply(Act<T> act) applies delegate act to each item x of the collection
in enumeration order. If the delegate act modifies the given collection, then a
CollectionModifiedException may be thrown.

50 Interface ICollectionValue<T> §4.2

• T Choose() returns an arbitrary item from the collection, or throws NoSuch-
ItemException if the collection is empty. Multiple calls to Choose() may return
the same item or distinct items, at the collection’s whim. For collections that
also implement ICollection<T> it is guaranteed that if Choose() returns item
x, then Remove(x) on the same unmodified collection will be efficient.

• void CopyTo(T[] arr, int i) copies the collection’s items to array arr in
enumeration order, starting at position i in arr. Throws ArgumentOutOfRange-
Exception if i < 0 or Count+i > arr.Length, and if so does not modify arr.
Throws NullReferenceException if arr is null. Throws ArrayTypeMismatchEx-
ception if some collection item is not assignable to the array’s element type,
after copying all items until, but not including, the offending one.

• bool Exists(Fun<T,bool> p) applies delegate p to each item x of the collection
in enumeration order until p(x) evaluates to true or until there are no more
items. Returns true if p(x) returned true for some item; otherwise returns
false. If the delegate p modifies the given collection, then a CollectionModi-
fiedException may be thrown.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p) creates an enumerable whose enu-
merators apply delegate p to each item x of the collection in enumeration or-
der, yielding those items for which p(x) evaluates to true. Applies p to the
collection’s items only to the extent that items are requested from the enu-
merator. In particular, predicate p will not be called until the first call of the
MoveNext() method in an enumerator created from the enumerable. Applies
p over again from the beginning of the collection for each enumerator created
from the enumerable. If the delegate p modifies the given collection, then a
CollectionModifiedException may be thrown.

• bool Find(Fun<T,bool> p, out T res) applies predicate p to each item x of
the collection in enumeration order until p(x) evaluates to true or until there
are no more items. Returns true if p(x) returned true for some item x and in
that case binds res to that item; otherwise returns false and binds the default
value for T to res. In case of success, res is the first item x in the collection
for which p(x) is true. If the delegate p modifies the given collection, then a
CollectionModifiedException may be thrown.

• T[] ToArray() creates a new array that contains the collection’s items in enu-
meration order.

Events
Section 8.8.5 describes the event handler types and section 8.8.6 describes the event
argument types. One cannot add event listeners to a list view (section 8.1), only to
the underlying list.

§4.2 Interface ICollectionValue<T> 51

• event CollectionChangedHandler<T> CollectionChanged is raised to signal
the end of a modification to the collection. The event argument is the collection
that was modified.

• event CollectionClearedHandler<T> CollectionCleared is raised after the
collection or part of it was cleared by Clear or RemoveInterval. The event argu-
ments are the collection itself and a description of what part of the collection
was cleared.

• event ItemInsertedHandler<T> ItemInserted is raised after an item was
added to the indexed collection by Enqueue, Insert, InsertAll, InsertFirst,
InsertLast, Push or the set accessor of an indexer this[i]=e. The event argu-
ments are the collection, the item that was added, and the position at which it
was added.

• event ItemRemovedAtHandler<T> ItemRemovedAt is raised after an item was
removed from the collection by Dequeue, Pop, RemoveAt, RemoveFirst, RemoveLast,
or the set accessor of an indexer this[i]=e. The event arguments are the col-
lection and the item that was removed.

• event ItemsAddedHandler<T> ItemsAdded is raised after an item was added
to the collection by Add, Insert, Update or similar, or by the set accessor of an
indexer this[i]=e. The event arguments are the collection itself, the item x
that was added, and the number of copies of x that were added (always 1 when
the collection has set semantics).

• event ItemsRemovedHandler<T> ItemsRemoved is raised after an item was re-
moved from the collection by Remove, RemoveAt, RemoveRangeFromTo, Replace,
RetainAll, Update or similar, or by the set accessor of an indexer this[i]=e.
The event arguments are the collection itself, the item x that was removed,
and the number of copies of x that were removed (always 1 when the collection
has set semantics).

52 Interface IDirectedCollectionValue<T> §4.3

4.3 Interface IDirectedCollectionValue<T>
Inherits from: ICollectionValue<T> and IDirectedEnumerable<T>.

Implemented by: ArrayList<T> (section 6.2), CircularQueue<T> (section 6.1),
HashedArrayList<T> (section 6.4), HashedLinkedList<T> (section 6.5), LinkedList<T>
(section 6.3), SortedArray<T> (section 6.7), TreeBag<T> (section 6.9), TreeSet<T>
(section 6.8), and WrappedArray<T> (section 6.6).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool IsEmpty, see page 49.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards() returns a new directed collection
value that has the opposite enumeration order of the given one.

• T Choose(), see page 50.

• void CopyTo(T[] arr, int i), see page 50.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool FindLast(Fun<T,bool> p, out T res) applies predicate p to each item
x of the collection in reverse enumeration order until p(x) evaluates to true
or until there are no more items. Returns true if p(x) returned true for some
item x and in that case binds res to that item; otherwise returns false and
binds the default value for T to res. In case of success, res is the last item

§4.3 Interface IDirectedCollectionValue<T> 53

x in the collection for which p(x) is true. Equivalent to, but potentially more
efficient than, Backwards().Find(p, out res). If the delegate p modifies the
given collection, then a CollectionModifiedException may be thrown.

• T[] ToArray(), see page 50.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.

54 Interface IDirectedEnumerable<T> §4.4

4.4 Interface IDirectedEnumerable<T>
Inherits from: System.Collections.Generic.IEnumerable<T> and System.IFormattable.

Implemented by: ArrayList<T> (section 6.2), CircularQueue<T> (section 6.1),
HashedArrayList<T> (section 6.4), HashedLinkedList<T> (section 6.5), LinkedList<T>
(section 6.3), SortedArray<T> (section 6.7), TreeBag<T> (section 6.9), TreeSet<T>
(section 6.8), and WrappedArray<T> (section 6.6).

Properties
• Read-only property EnumerationDirection Direction returns Forwards if the

enumeration direction is unchanged from the original, otherwise Backwards.

Methods
• IDirectedEnumerable<T> Backwards() returns a new directed enumerable that

has the opposite enumeration order of the given one.

§4.5 Interface IExtensible<T> 55

4.5 Interface IExtensible<T>
Inherits from: ICollectionValue<T>, System.ICloneable<T>.

Implemented by: ArrayList<T> (section 6.2), HashBag<T> (section 6.11), Hash-
Set<T> (section 6.10), HashedArrayList<T> (section 6.4), HashedLinkedList<T>
(section 6.5), IntervalHeap<T> (section 6.12), LinkedList<T> (section 6.3), SortedAr-
ray<T> (section 6.7), TreeBag<T> (section 6.9), TreeSet<T> (section 6.8), and Wrap-
pedArray<T> (section 6.6).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates is true if the collection has bag
semantics: if it may contain two items that are equal by the collection’s com-
parer or equality comparer. Otherwise false, in which case the collection has
set semantics.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property bool DuplicatesByCounting is true if only the number
of duplicate items is stored, not the individual duplicate values themselves;
otherwise false. Namely, values may be equal by the collection’s comparer or
equality comparer, yet distinct objects. Relevant only for collections with bag
semantics; true by convention for collections with set semantics.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer is the item
equality comparer used by this collection.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly is true if the collection is read-only, that
is, if all attempts at structural modification (Add, Clear, Insert, Remove, Update
and so on) will throw an exception; false if the collection admits such modifi-
cations. In particular, it is true for all guarded collections; see section 8.2.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool Add(T x) attempts to add item x to the collection. Returns true if the

item was added; returns false if it was not, for instance because the collection
has set semantics (AllowsDuplicates is false) and already contains an item
equal to x. If the item was added, it raises events ItemsAdded and Collection-
Changed. Throws ReadOnlyCollectionException if the collection is read-only.

56 Interface IExtensible<T> §4.5

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T attempts to add the items
xs to the collection, in enumeration order. If AllowsDuplicates is false, then
items in xs that are already in the collection, and duplicate items in xs, are ig-
nored. If any items were added, it raises event ItemsAdded for each item added
and then raises CollectionChanged. Throws ReadOnlyCollectionException if
the collection is read-only. The method is generic so that it can be applied to
enumerables with any item type U that is a subtype of T; see section 8.4.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• bool Check() performs a comprehensive integrity check of the collection’s in-
ternal representation. Relevant only for library developers.

• T Choose(), see page 50.

• Object Clone() creates a new collection as a shallow copy of the given one, as
if by creating an empty collection newcoll and then doing newcoll.AddAll(this).
See section 8.9.

• void CopyTo(T[] arr, int i), see page 50.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• T[] ToArray(), see page 50.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add and AddAll.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add and AddAll.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.

§4.6 Interface IIndexed<T> 57

4.6 Interface IIndexed<T>
Inherits from: ISequenced<T>.

Implemented by: ArrayList<T> (section 6.2), HashedArrayList<T> (section 6.4),
HashedLinkedList<T> (section 6.5), LinkedList<T> (section 6.3), SortedArray<T>
(section 6.7), TreeBag<T> (section 6.9), TreeSet<T> (section 6.8), and Wrapped-
Array<T> (section 6.6).

Properties and indexers

• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-only property Speed IndexingSpeed is the guaranteed run-time of the
collection’s indexer this[int]; see section 3.3.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-only indexer T this[int i] returns the i’th item of this indexed collec-
tion. Throws IndexOutOfRangeException if i < 0 or i >= Count.

• Read-only indexer IDirectedCollectionValue<T> this[int i, int n] returns
a new directed collection value containing those items of the given collection
that have indexes i, i+1, ..., i+n-1, in that order. Does not create a new col-
lection, but provides read-only access to the collection subsequence. Throws
ArgumentOutOfRangeException if i < 0 or n < 0 or i+n > Count.

58 Interface IIndexed<T> §4.6

Methods
• bool Add(T x), see page 55.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

• T Choose(), see page 50.

• void Clear(), see page 45.

• Object Clone(), see page 56.

• bool Contains(T x), see page 45.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• int FindIndex(Fun<T,bool> p) finds the position of the first item x that sat-
isfies predicate p, if any. More precisely, applies predicate p to each item x of
the collection in enumeration order until p(x) evaluates to true or until there
are no more items. Returns the index of the x for which p(x) returned true, if
any; otherwise returns −1. If the delegate p modifies the given collection, then
a CollectionModifiedException may be thrown.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• int FindLastIndex(Fun<T,bool> p) finds the position of the last item x that
satisfies predicate p, if any. More precisely, applies predicate p to each item
x of the collection in reverse enumeration order until p(x) evaluates to true
or until there are no more items. Returns the index of the x for which p(x)
returned true, if any; otherwise returns −1. If the delegate p modifies the
given collection, then a CollectionModifiedException may be thrown.

§4.6 Interface IIndexed<T> 59

• bool FindOrAdd(ref T x), see page 45.

• int GetSequencedHashCode(), see page 86.

• int GetUnsequencedHashCode(), see page 45.

• int IndexOf(T x) returns the least index i >= 0 such that this[i] equals x,
if any. Otherwise returns i < 0 such that the collection’s Add operation would
put x at position ~i, the one’s complement of i.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• int LastIndexOf(T x) returns the greatest index i >= 0 such that this[i]
equals x, if any. Otherwise returns i < 0 such that the collection’s Add opera-
tion would put x at position ~i, the one’s complement of i.

• bool Remove(T x), see page 46.

• bool Remove(T x, out T xRemoved), see page 46.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46.

• void RemoveAllCopies(T x), see page 46.

• T RemoveAt(int i) removes and returns the item at position i in the collec-
tion. Raises events ItemRemovedAt, ItemsRemoved and CollectionChanged.
Throws IndexOutOfRangeException if i < 0 or i >= Count. Throws ReadOn-
lyCollectionException if the collection is read-only.

• void RemoveInterval(int i, int n) removes those items from the collec-
tion that have positions i..(i+n-1). Raises events CollectionCleared and Col-
lectionChanged. Throws ArgumentOutOfRangeException if i < 0 or n < 0 or
i+n > Count. Throws ReadOnlyCollectionException if the collection is read-
only.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46.

• bool SequencedEquals(ISequenced<T> coll), see page 86.

• T[] ToArray(), see page 50.

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

• bool Update(T x), see page 47.

• bool Update(T x, out T xOld), see page 47.

• bool UpdateOrAdd(T x), see page 47.

• bool UpdateOrAdd(T x, out T xOld), see page 47.

60 Interface IIndexed<T> §4.6

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, Clear, FindOrAdd, Remove, RemoveAll, RemoveAllCopies,
RemoveAt, RemoveInterval, RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear and RemoveInterval.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.
Raised by RemoveAt.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51. Raised by Remove,
RemoveAll, RemoveAllCopies, RemoveAt, RetainAll, Update and UpdateOrAdd.

§4.7 Interface IIndexedSorted<T> 61

4.7 Interface IIndexedSorted<T>
Inherits from: IIndexed<T> and ISorted<T>.

Implemented by: SortedArray<T> (section 6.7), TreeBag<T> (section 6.9), and
TreeSet<T> (section 6.8).

Properties and indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property SCG.IComparer<T> Comparer, see page 88.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-only property Speed IndexingSpeed, see page 57.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-only indexer T this[int i], see page 57.

• Read-only indexer IDirectedCollectionValue<T> this[int i, int n], see page 57.

Methods
• bool Add(T x), see page 55.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• void AddSorted<U>(SCG.IEnumerable<U> xs) where U:T, see page 88.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

62 Interface IIndexedSorted<T> §4.7

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

• T Choose(), see page 50.

• void Clear(), see page 45.

• Object Clone(), see page 56.

• bool Contains(T x), see page 45.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• int CountFrom(T x) returns the number of items in the sorted collection that
are greater than or equal to x. Equivalent to RangeFrom(x).Count but poten-
tially much faster.

• int CountFromTo(T x, T y) returns the number of items in the sorted col-
lection that are greater than or equal to x and strictly less that y. Equivalent
to RangeFromTo(x, y).Count but potentially much faster.

• int CountTo(T y) returns the number of items in the sorted collection that
are strictly less that y. Equivalent to RangeTo(y).Count but potentially much
faster.

• bool Cut(System.IComparable<T> c, out T cP, out bool cPValid, out T cS,
out bool cSValid), see page 89.

• T DeleteMax(), see page 89.

• T DeleteMin(), see page 89.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• IIndexedSorted<T> FindAll(Fun<T,bool> p) applies delegate p to the items
of the sorted collection in increasing item order and returns a new indexed
sorted collection containing those items x for which p(x) is true. It holds that
FindAll(p).Count <= Count. If the delegate p modifies the given collection,
then a CollectionModifiedException may be thrown.

§4.7 Interface IIndexedSorted<T> 63

• int FindIndex(Fun<T,bool> p), see page 58.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• int FindLastIndex(Fun<T,bool> p), see page 58.

• T FindMax(), see page 91.

• T FindMin(), see page 91.

• bool FindOrAdd(ref T x), see page 45.

• int GetSequencedHashCode(), see page 86.

• int GetUnsequencedHashCode(), see page 45.

• int IndexOf(T x), see page 59.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• int LastIndexOf(T x), see page 59.

• IIndexedSorted<V> Map<V>(Fun<T,V> f, SCG.IComparer<V> cmp) applies dele-
gate f to the items x of the sorted collection in increasing order and returns
a new indexed sorted collection whose items are the results returned by f(x)
and whose item comparer is cmp. Throws ArgumentException if f is not strictly
increasing; that is, if cmp.Compare(f(x1),f(x2)) >= 0 for any two consecutive
items x1 and x2 from the given sorted collection. If the delegate f modifies the
given collection, then a CollectionModifiedException may be thrown.

• T Predecessor(T x), see page 91.

• IDirectedCollectionValue<T> RangeAll(), see page 91.

• IDirectedEnumerable<T> ISorted<T>.RangeFrom(T x), see page 91.

• IDirectedCollectionValue<T> RangeFrom(T x) returns a directed collection
value that is a read-only view, in enumeration order, of all those items in the
sorted collection that are greater than or equal to x.

• IDirectedEnumerable<T> ISorted<T>.RangeFromTo(T x, T y), see page 91.

• IDirectedCollectionValue<T> RangeFromTo(T x, T y) returns a directed col-
lection value that is a read-only view, in enumeration order, of all those items
in the sorted collection that are greater than or equal to x and strictly less than
y.

• IDirectedEnumerable<T> ISorted<T>.RangeTo(T y), see page 91.

• IDirectedCollectionValue<T> RangeTo(T y) returns a directed collection value
that is a read-only view, in enumeration order, of all those items in the sorted
collection that are strictly less than y.

64 Interface IIndexedSorted<T> §4.7

• bool Remove(T x), see page 46.

• bool Remove(T x, out T xRemoved), see page 46.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46.

• void RemoveAllCopies(T x), see page 46.

• T RemoveAt(int i), see page 59.

• void RemoveInterval(int i, int n), see page 59.

• void RemoveRangeFrom(T x), see page 92.

• void RemoveRangeFromTo(T x, T y), see page 92.

• void RemoveRangeTo(T y), see page 92.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46.

• bool SequencedEquals(ISequenced<T> coll), see page 86.

• T Successor(T x), see page 92.

• T[] ToArray(), see page 50.

• bool TryPredecessor(T x, out T res)see page 92.

• T TrySuccessor(T x)see page 92.

• bool TryWeakPredecessor(T x, out T res)see page 92.

• bool TryWeakSuccessor(T x, out T res)see page 92.

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

• bool Update(T x), see page 47.

• bool Update(T x, out T xOld), see page 47.

• bool UpdateOrAdd(T x), see page 47.

• bool UpdateOrAdd(T x, out T xOld), see page 47.

• T WeakPredecessor(T x), see page 93.

• T WeakSuccessor(T x), see page 93.

§4.7 Interface IIndexedSorted<T> 65

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, AddSorted, Clear, DeleteMax, DeleteMin, FindOrAdd, Remove,
RemoveAll, RemoveAllCopies, RemoveRangeFrom, RemoveRangeFromTo, RemoveRangeTo,
RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, AddSorted, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.
Raised by DeleteMax, DeleteMin, Remove, RemoveAll, RemoveAllCopies, RemoveRangeFrom,
RemoveRangeFromTo, RemoveRangeTo, RetainAll, Update and UpdateOrAdd.

66 Interface IList<T> §4.8

4.8 Interface IList<T>
Inherits from: IIndexed<T>, System.Collections.Generic.IList<T>,
System.Collection.IList, and System.IDisposable.

Implemented by: ArrayList<T> (section 6.2), HashedArrayList<T> (section 6.4),
HashedLinkedList<T> (section 6.5) and LinkedList<T> (section 6.3), and Wrapped-
Array<T> (section 6.6).

Properties and indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-write property bool FIFO is true if the methods Add and Remove behave
like a first-in-first-out queue, that is, if method Remove removes and returns
the first item in the list; false if they behave like a last-in-first-out stack. By
default false for ArrayList<T> and true for LinkedList<T>; on all lists, items
are added at the end of the list.

• Read-only property T First is the first item in the list or view, if any. Throws
NoSuchItemException if the list is empty. Otherwise equivalent to this[0].

• Read-only property Speed IndexingSpeed, see page 57.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsFixedSize is true if the size of the collection can-
not be changed. Any read-only list has fixed size, but a fixed-size list such
as WrappedArray<T> need not be read-only: the operations Reverse, Shuffle
and Sort are still applicable. Operations that attempt to change the size of a
fixed-size list throw FixedSizeCollectionException.

• Read-only property bool IsReadOnly, see page 55.

§4.8 Interface IList<T> 67

• Read-only property bool SC.ICollection.IsSynchronized is true if oper-
ations on the collection are synchronized (thread-safe). Always false. Pro-
vided to implement SC.IList.

• Read-only property bool IsValid is true if the list is a proper list or a valid
view; false if the list is an invalidated view. A newly created view is valid, but
may be invalidated by multi-item operations such as Clear, Reverse, Shuffle
and Sort on the underlying list (see section 8.1.6) and by the Dispose() method.

• Read-only property T Last is the last item, if any, in the list or view. Throws
NoSuchItemException if the list is empty. Otherwise equivalent to this[Count-1].

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-only property int Offset is the offset relative to the underlying list if
this list is a view (see section 8.1); or zero if this list is a proper list (not a
view).

• Read-only property Object SC.ICollection.SyncRoot returns an object that
can be used to synchronize access to the collection. For list views, guarded lists
and wrapped arrays, this is the SyncRoot of the underlying list or array. The
use of this property is not recommended; see section 8.11. Provided to imple-
ment SC.IList.

• Read-write indexer T this[int i] is the i’th item in the list or view, where
the first item is this[0] and the last item is this[Count-1]. The set accessor
of the indexer raises events ItemRemovedAt, ItemsRemoved, ItemInserted,
ItemsAdded and CollectionChanged. Throws IndexOutOfRangeException if i
< 0 or i >= Count. Throws ReadOnlyCollectionException if the set accessor is
used and the list is read-only.

• Read-write indexer Object SC.IList.this[int i] gets or sets the i’th item
as an object. The set accessor casts the given object obj to T and then executes
this[i] = (T)obj, see above. Provided to implement SC.IList.

• Read-only indexer IDirectedCollectionValue<T> this[int i, int n],
see page 57.

• Read-only property IList<T> Underlying is the underlying list if this list
is a view (see section 8.1); or null if this is a proper list (not a view). The
expression xs.Underlying == null can be used to test whether xs is a proper
list. The expression xs.Underlying ?? xs always returns a proper list: either
xs or its underlying list.

Methods
• bool Add(T x), see page 55. Adds x at the end of the list, if at all. Throws

FixedSizeCollectionException if the list has fixed size.

68 Interface IList<T> §4.8

• void SCG.ICollection<T>.Add(T x) attempts to add item x to the list by
calling Add(x), see above. Provided to implement SCG.IList<T>.

• int SC.IList.Add(Object obj) attempts to add obj to the end of the list by
casting obj to T and calling Add((T)obj), see above. Returns the list index at
which the item was added, or −1 if it could not be added; for instance, the list
may not allow duplicates. Provided to implement SC.IList.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56. Addition-
ally throws FixedSizeCollectionException if the list has fixed size.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

• T Choose(), see page 50.

• void Clear(), see page 45. Additionally throws FixedSizeCollectionException
if the list has fixed size.

• Object Clone() creates a new list as a shallow copy of the given list or view;
see page 56. Cloning of a view does not produce a new view, but a list contain-
ing the same items as the view, where the new list is of the same kind as that
underlying the view.

• bool Contains(T x), see page 45.

• bool SC.IList.Contains(Object obj) determines whether obj is in the list
by casting obj to T and then calling Contains((T)obj), see page 45. Provided
to implement SC.IList.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• void SC.ICollection.CopyTo(Array arr, int i) copies the list’s items to
array arr in enumeration order, starting at position i in arr. Throws excep-
tions in the same cases as the typesafe CopyTo method, see page 50. Provided
to implement SC.IList.

§4.8 Interface IList<T> 69

• void Dispose() invalidates the given view; or invalidates all views of the
given proper list and then clears it. More precisely, if the given list is a view,
this operation frees all auxiliary data structures used to represent the view
(except for the underlying list); this raises no events. If the given list is a
proper list, then all views of that list are invalidated and the list itself is
cleared but remains valid; this raises events CollectionCleared and Collection-
Changed. Subsequent operations on invalidated views, except for IsValid and
Dispose, will throw ViewDisposedException. This method is from interface
System.IDisposable.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• IList<T> FindAll(Fun<T,bool> p) applies delegate p to the items of the list
or view in index order and returns a new list containing those items x for
which p(x) is true. It holds that FindAll(p).Count <= Count. If the delegate
p modifies the given collection, then a CollectionModifiedException may be
thrown.

• int FindIndex(Fun<T,bool> p), see page 58.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• int FindLastIndex(Fun<T,bool> p), see page 58.

• bool FindOrAdd(ref T x), see page 45. Additionally throws FixedSizeCollec-
tionException if the list has fixed size.

• int GetSequencedHashCode(), see page 86.

• int GetUnsequencedHashCode(), see page 45.

• int IndexOf(T x), see page 59.

• void SC.IList.IndexOf(Object obj) casts obj to T and then returns the
least index i >= 0 such that the resulting value equals this[i], if any. Oth-
erwise returns −1, instead of the one’s complement returned by the typesafe
IndexOf method, see page 59. Provided to implement SC.IList.

• void Insert(int i, T x) inserts item x at position i in the list or view. After
successful insertion all items at position i and higher have had their position
increased by one, and it holds that this[i] is x. Raises events ItemInserted,
ItemsAdded and CollectionChanged. Throws IndexOutOfRangeException if i
< 0 or i > Count. Throws DuplicateNotAllowedException if AllowsDuplicates

70 Interface IList<T> §4.8

is false and x is already in the underlying list. Throws ReadOnlyCollectionEx-
ception if the list or view is read-only, and FixedSizeCollectionException if the
list has fixed size.

• void SC.IList.Insert(int i, Object obj) inserts obj at position i by cast-
ing obj to T and then calling Insert(i, (T)obj), see above. Provided to imple-
ment SC.IList.

• void Insert(IList<T> u, T x) inserts item x into the given list or view, at
the end of list or view u. Raises events ItemInserted, ItemsAdded and Collec-
tionChanged. Throws DuplicateNotAllowedException if AllowsDuplicates is
false and x is already in the underlying list. Throws ReadOnlyCollectionEx-
ception if the given list or view (not u) is read-only, and FixedSizeCollectionEx-
ception if it has fixed size. The view or list u must be non-null, and the given
view or list must have the same underlying list, or one or both may be that
underlying list; otherwise IncompatibleViewException is thrown.

• void InsertAll<U>(int i, SCG.IEnumerable<U> xs) where U:T inserts items
from xs at position i in enumeration order. If any items were inserted, it raises
events ItemInserted and ItemsAdded for each item and then raises Collection-
Changed. Throws IndexOutOfRangeException if i < 0 or i > Count. Items
from xs that are already in the underlying list, and duplicate items in xs, are
ignored if AllowsDuplicates is false. Throws ReadOnlyCollectionException if
the list or view is read-only, and FixedSizeCollectionException if it has fixed
size.

• void InsertFirst(T x) inserts item x as the first item in the list or view, at
position zero. Raises events ItemInserted, ItemsAdded and CollectionChanged.
Throws DuplicateNotAllowedException if AllowsDuplicates is false and x is
already in the underlying list. Throws ReadOnlyCollectionException if the
list or view is read-only, and FixedSizeCollectionException if it has fixed size.
Equivalent to Insert(0, x).

• void InsertLast(T x) inserts item x as the last item in the list or view, at po-
sition Count. Raises events ItemInserted, ItemsAdded and CollectionChanged.
Throws DuplicateNotAllowedException if AllowsDuplicates is false and x is
already in the underlying list. Throws ReadOnlyCollectionException if the
list or view is read-only, and FixedSizeCollectionException if it has fixed size.
Equivalent to Insert(Count, x).

• bool IsSorted() applies the default comparer for type T to pairs of neighbor
items x and y from the list or view in index order until it returns a positive
number (which indicates that x is greater than y, and so the list is not sorted),
or until the end of the list or view is reached. Returns false if the comparer
was positive for any neighbor items x and y; otherwise returns true.

• bool IsSorted(SCG.IComparer<T> cmp) applies the comparer cmp to pairs of
neighbor items x and y from the list or view in index order until cmp(x, y)

§4.8 Interface IList<T> 71

returns a positive number (which indicates that x is greater than y, and so the
list is not sorted), or until the end of the list or view is reached. Returns false if
cmp(x, y) was positive for any neighbor items x and y; otherwise returns true.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• int LastIndexOf(T x), see page 59.

• IList<T> LastViewOf(T x) returns a new list view that points at the last
occurrence of x, if any, in the given list or view. More precisely, the new list view
w has length 1 and w.Offset is the largest index for which this[w.Offset] is
equal to x. Note also that w[0] equals w.First equals w.Last equals x. Returns
null if no item in the given list or view equals x.

• IList<V> Map<V>(Fun<T,V> f) applies delegate f to the items x of the list or
view in index order and returns a new list whose items are the results f(x).
The new list is of the same kind (for instance, array list, linked list, hash-
indexed array list, or hash-indexed linked list) as the given one. The new list
will use the default item equality comparer for type V; see section 2.3. Throws
DuplicateNotAllowedException if the (new) list does not allow duplicates and
applying f to the given list produces two new items that are equal by the
new item equality comparer. It holds that Map(f).Count equals Count. If the
delegate f modifies the given collection, then a CollectionModifiedException
may be thrown.

• IList<V> Map<V>(Fun<T,V> f, SCG.IEqualityComparer<V> eqc) applies dele-
gate f to the items x of the list or view in index order and returns a new list
whose items are the results f(x). The new list must be of the same kind (for
instance, array list, linked list, hash-indexed array list, or hash-indexed linked
list) as the given one. The new list will use the given item equality comparer
eqc for type V. Throws DuplicateNotAllowedException if the (new) list does
not allow duplicates and f produces two new items that are equal by eqc. It
holds that Map(f,eqc).Count equals Count. If the delegate f modifies the given
collection, then a CollectionModifiedException may be thrown.

• T Remove() removes and returns the first item from the list or view if FIFO
is true, or removes and returns the last item if FIFO if false. Raises events
ItemRemovedAt, ItemsRemoved and CollectionChanged. Throws ReadOnly-
CollectionException if the list or view is read-only, throws FixedSizeCollec-
tionException if it has fixed size, and throws NoSuchItemException if the list
or view is empty.

• bool Remove(T x), see page 46. Additionally throws FixedSizeCollectionEx-
ception if the list has fixed size.

• void SC.IList.Remove(Object obj) removes obj from the list by casting obj
to T and then calling Remove((T)obj), see page 46. Provided to implement
SC.IList.

72 Interface IList<T> §4.8

• bool Remove(T x, out T xRemoved), see page 46. Additionally throws Fixed-
SizeCollectionException if the list has fixed size.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46. Addi-
tionally throws FixedSizeCollectionException if the list has fixed size.

• void RemoveAllCopies(T x), see page 46. Additionally throws FixedSizeCol-
lectionException if the list has fixed size.

• T RemoveAt(int i), see page 59. Additionally throws FixedSizeCollectionEx-
ception if the list has fixed size.

• void SCG.IList<T>.RemoveAt(int i) removes the item at position i in the
list by calling RemoveAt(i), ignoring its return value, see page 59. Provided to
implement SCG.IList<T>.

• void SC.IList.RemoveAt(int i) removes the item at position i in the list
by calling RemoveAt(i), ignoring its return value, see page 59. Provided to
implement SC.IList.

• T RemoveFirst() removes and returns the first item from the list or view.
Raises events ItemRemovedAt, ItemsRemoved and CollectionChanged. The
methods Add and RemoveFirst together behave like a first-in-first-out queue
(section 9.22). Throws ReadOnlyCollectionException if the list or view is read-
only, throws FixedSizeCollectionException if it has fixed size, and throws No-
SuchItemException if the list or view is empty.

• void RemoveInterval(int i, int n), see page 59.

• T RemoveLast() removes and returns the last item from the list or view.
Raises events ItemRemovedAt, ItemsRemoved and CollectionChanged. The
methods Add and RemoveFirst together behave like a last-in-first-out stack (sec-
tion 9.22). Throws ReadOnlyCollectionException if the list or view is read-only,
throws FixedSizeCollectionException if it has fixed size, and throws NoSuch-
ItemException if the list or view is empty.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46. Addi-
tionally throws FixedSizeCollectionException if the list has fixed size.

• void Reverse() reverses the items in the list or view: an item that was at
position j before the operation is at position Count-1-j after the operation, for
0 <= j < Count. For its effect on views of the list, see section 8.1.6. Raises
event CollectionChanged. Throws ReadOnlyCollectionException if the list or
view is read-only.

• bool SequencedEquals(ISequenced<T> coll), see page 86.

§4.8 Interface IList<T> 73

• void Shuffle() randomly permutes the items of the list or view using the li-
brary’s pseudo-random number generator; see section 3.8. Throws InvalidOp-
erationException if the list is read-only. Equivalent to Shuffle(new C5Random()).
For its effect on views of the list, see section 8.1.6. Raises event Collection-
Changed. Throws ReadOnlyCollectionException if the list or view is read-only.

• void Shuffle(System.Random rnd) randomly permutes the items of the list
using the given random number generator rnd. Throws InvalidOperationEx-
ception if the list is read-only. For its effect on views of the list, see sec-
tion 8.1.6. Raises event CollectionChanged. Throws ReadOnlyCollectionEx-
ception if the list or view is read-only. Can be applied also to instances of
C5Random (section 3.8) which is a subclass of System.Random.

• IList<T> Slide(int i) slides the given view by i items, to the left if i < 0
and to the right if i > 0. Returns the given view. Throws ArgumentOut-
OfRangeException if the operation would bring either end of the view out-
side the underlying list; or more precisely, if i+Offset < 0 or i+Offset+Count
> Underlying.Count. Throws ReadOnlyCollectionException if the view is read-
only, and throws NotAViewException if the current list is not a view.

• IList<T> Slide(int i, int n) slides the given view by i items, to the left if i
< 0 and to the right if i > 0, and sets the length of the view to n. Returns the
given view. Throws ArgumentOutOfRangeException if the operation would
bring either end of the view outside the underlying list; or more precisely,
if i+Offset < 0 or i+Offset+n > Underlying.Count. Throws ReadOnlyCollec-
tionException if the view is read-only, and throws NotAViewException if the
list is not a view.

• void Sort() sorts the list or view using the default comparer for the item
type; see section 2.6. Throws ReadOnlyCollectionException if the list or view
is read-only. For its effect on views of the list, see section 8.1.6. Raises event
CollectionChanged.

• void Sort(SCG.IComparer<T> cmp) sorts the list or view using the given item
comparer; see section 2.6. Throws ReadOnlyCollectionException if the list is
read-only. For its effect on views of the list, see section 8.1.6. Raises event
CollectionChanged.

• IList<T> Span(IList<T> w) returns a new view, if any, spanned by two exist-
ing views or lists. The call u.Span(w) produces a new view whose left endpoint
is the left endpoint of u and whose right endpoint is the right endpoint of w. If
the right endpoint of w is strictly to the left of the left endpoint of u, then null
is returned. The views or lists u and w must have the same underlying list,
or one or both may be that underlying list, and w must be non-null otherwise
IncompatibleViewException is thrown.

74 Interface IList<T> §4.8

When list is the underlying list, then list.Span(w) is a view that spans from
the beginning of the list to the right endpoint of w; and u.Span(list) is a view
that spans from the left endpoint of u to the end of the list.

• T[] ToArray(), see page 50.

• bool TrySlide(int i) returns true if the given view can be slid by i items,
and in that case slides it exactly as Slide(i); otherwise returns false and does
not modify the given view. More precisely, returns true if i+Offset >= 0 and
i+Offset+Count <= Underlying.Count. Throws ReadOnlyCollectionException
if the view is read-only, and throws NotAViewException if the list is not a
view.

• bool TrySlide(int i, int n) returns true if the given view can be slid by i
items and have its length set to n, and in that case slides it exactly as Slide(i,
n); otherwise returns false and does not modify the given view. More precisely,
returns true if i+Offset >= 0 and i+Offset+n <= Underlying.Count. Throws
ReadOnlyCollectionException if the view is read-only, and throws NotAView-
Exception if the list is not a view.

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

• bool Update(T x), see page 47. Additionally throws FixedSizeCollectionEx-
ception if the list has fixed size.

• bool Update(T x, out T xOld), see page 47. Additionally throws FixedSizeCol-
lectionException if the list has fixed size.

• bool UpdateOrAdd(T x), see page 47. Additionally throws FixedSizeCollec-
tionException if the list has fixed size.

• bool UpdateOrAdd(T x, out T xOld), see page 47. Additionally throws Fixed-
SizeCollectionException if the list has fixed size.

• IList<T> View(int i, int n) returns a new view w with offset i relative to
the given list or view, and with length n. More precisely, w.Offset equals
Offset+i and w.Count equals n. Throws ArgumentOutOfRangeException if the
view would not fit inside given list or view; that is, if i < 0 or n < 0 or i+n >
Count. A view of a read-only list or view is itself read-only. Note that a view
created from a view is itself just a view of the underlying list. Views are not
nested inside each other; for instance, a view created from another view w is
not affected by subsequent sliding of w.

• IList<T> ViewOf(T x) returns a new list view that points at the first occur-
rence of x, if any, in the list or view. More precisely, the new list view w has
length 1 and w.Offset is the least index for which this[w.Offset] is equal to
x. Note also that w[0] equals w.First equals w.Last equals x. Returns null if
no item in the list equals x.

§4.8 Interface IList<T> 75

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, Clear, Dispose, FindOrAdd, Insert, InsertAll, InsertFirst,
InsertLast, Remove, RemoveAll, RemoveAllCopies, RemoveAt, RemoveFirst,
RemoveInterval, RemoveLast, RetainAll, Reverse, Shuffle, Sort, Update and
UpdateOrAdd, and by the set accessor of the indexer this[int].

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear, Dispose and RemoveInterval.

• event ItemInsertedHandler<T> ItemInserted, see page 51.
Raised by Insert, InsertAll, InsertFirst, InsertLast and by the set accessor
of the indexer this[int].

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.
Raised by RemoveAt and by the set accessor of the indexer this[int].

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, FindOrAdd, Insert, InsertAll, InsertFirst, InsertLast,
Update and UpdateOrAdd, and by the set accessor of the indexer this[int].

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.
Raised by Remove, RemoveAll, RemoveAllCopies, RemoveAt, RetainAll, Update
and UpdateOrAdd, and by the set accessor of the indexer this[int].

76 Interface IPersistentSorted<T> §4.9

4.9 Interface IPersistentSorted<T>
Inherits from: ISorted<T> and System.IDisposable.

Implemented by: TreeBag<T> (section 6.9) and TreeSet<T> (section 6.8).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property SCG.IComparer<T> Comparer, see page 88.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer,
see page 55.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool Add(T x), see page 55.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• void AddSorted<U>(SCG.IEnumerable<U> xs) where U:T, see page 88.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

§4.9 Interface IPersistentSorted<T> 77

• T Choose(), see page 50.

• void Clear(), see page 45.

• Object Clone(), see page 56.

• bool Contains(T x), see page 45.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• bool Cut(System.IComparable<T> c, out T cP, out bool cPValid, out T cS,
out bool cSValid), see page 89.

• T DeleteMax(), see page 89.

• T DeleteMin(), see page 89.

• void Dispose() disposes the persistent sorted collection if it is a snapshot, re-
leasing any internal data and preventing it from holding on to external data.
Calling Dispose on a persistent sorted collection that is not a snapshot will dis-
pose all snapshots made from the collection and then clear the collection, rais-
ing events CollectionCleared and CollectionChanged. Subsequent operations
on disposed snapshots, except for Dispose, will fail. This method is inherited
from System.IDisposable.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• T FindMax(), see page 91.

• T FindMin(), see page 91.

• bool FindOrAdd(ref T x), see page 45.

• int GetSequencedHashCode(), see page 86.

• int GetUnsequencedHashCode(), see page 45.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• T Predecessor(T x), see page 91.

78 Interface IPersistentSorted<T> §4.9

• IDirectedCollectionValue<T> RangeAll(), see page 91.

• IDirectedEnumerable<T> RangeFrom(T x), see page 91.

• IDirectedEnumerable<T> RangeFromTo(T x, T y), see page 91.

• IDirectedEnumerable<T> RangeTo(T y), see page 91.

• bool Remove(T x), see page 46.

• bool Remove(T x, out T xRemoved), see page 46.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46.

• void RemoveAllCopies(T x), see page 46.

• void RemoveRangeFrom(T x), see page 92.

• void RemoveRangeFromTo(T x, T y), see page 92.

• void RemoveRangeTo(T y), see page 92.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46.

• bool SequencedEquals(ISequenced<T> coll), see page 86.

• ISorted<T> Snapshot() returns a snapshot of the persistent sorted collection.
The snapshot is read-only (so property IsReadonly is true) and is unaffected
by subsequent updates to the original collection, but all such updates become
slightly slower. See sections 8.5 and 12.6. Any number of snapshots can be
made from a given collection. There is no point in making a snapshot from a
snapshot, and an attempt to do so will throw InvalidOperationException.
Note that a snapshot has type ISorted<T>, not IIndexedSorted<T>. This is be-
cause item access by index on a snapshot would be inefficient in many plausi-
ble implementations of snapshotting, including the one used in the C5 library;
see sections 12.6 and 13.10.

• T Successor(T x), see page 92.

• T[] ToArray(), see page 50.

• bool TryPredecessor(T x, out T res)see page 92.

• T TrySuccessor(T x)see page 92.

• bool TryWeakPredecessor(T x, out T res)see page 92.

• bool TryWeakSuccessor(T x, out T res)see page 92.

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

§4.9 Interface IPersistentSorted<T> 79

• bool Update(T x), see page 47.

• bool Update(T x, out T xOld), see page 47.

• bool UpdateOrAdd(T x), see page 47.

• bool UpdateOrAdd(T x, out T xOld), see page 47.

• T WeakPredecessor(T x), see page 93.

• T WeakSuccessor(T x), see page 93.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, AddSorted, Clear, DeleteMax, DeleteMin, Dispose, FindOrAdd,
Remove, RemoveAll, RemoveAllCopies, RemoveRangeFrom, RemoveRangeFromTo, RemoveRangeTo,
RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear and Dispose.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, AddSorted, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.
Raised by DeleteMax, DeleteMin, Remove, RemoveAll, RemoveAllCopies, RemoveRangeFrom,
RemoveRangeFromTo, RemoveRangeTo, RetainAll, Update and UpdateOrAdd.

80 Interface IPriorityQueue<T> §4.10

4.10 Interface IPriorityQueue<T>
Inherits from: IExtensible<T>.

Implemented by: IntervalHeap<T> (section 6.12).

Properties and indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property SCG.IComparer<T> Comparer returns the item comparer
used by this priority queue.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer,
see page 55.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-write indexer T this[IPriorityQueueHandle<T> h] gets or sets the item
with handle h in this priority queue. The indexer’s set accessor this[h] = x
is equivalent to Replace(h, x) and raises events ItemsRemoved, ItemsAdded
and CollectionChanged. Throws InvalidHandleException if the handle h is not
currently associated with this priority queue: the item with that handle may
have been removed or the handle may be currently associated with a different
priority queue.

Methods
• bool Add(T x), see page 55.

• bool Add(ref IPriorityQueueHandle<T> h, T x) adds item x to the priority
queue, passing back a handle for that item in h. If h was null before the call,
then a new handle is created and bound to h; otherwise the handle given in
h must be unused (no longer associated with a priority queue) and then is re-
used and associated with x in this queue. Returns true because addition of x
always succeeds. Raises events ItemsAdded and CollectionChanged. Throws
InvalidHandleException if h is non-null and already in use, that is, already

§4.10 Interface IPriorityQueue<T> 81

associated with some priority queue. Throws ReadOnlyCollectionException if
the collection is read-only.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• bool Check(), see page 56.

• T Choose(), see page 50.

• Object Clone() creates a new priority queue as a shallow copy of the given
one; see page 56. No handles are associated with the new priority queue.

• void CopyTo(T[] arr, int i), see page 50.

• T Delete(IPriorityQueueHandle<T> h) removes and returns the item with
the given handle h. Raises events ItemsRemoved and CollectionChanged.
Throws NullReferenceException if the handle is null, and throws InvalidHan-
dleException if it is not associated with this priority queue. Throws ReadOn-
lyCollectionException if the collection is read-only.

• T DeleteMax() removes and returns a maximal item from the priority queue.
Raises events ItemsRemoved and CollectionChanged. Throws NoSuchItemEx-
ception if the priority queue is empty. Throws ReadOnlyCollectionException if
the collection is read-only.

• T DeleteMax(out IPriorityQueueHandle<T> h) removes and returns a maxi-
mal item from the priority queue, assigning its now unused handle, if any, to
variable h. Assigns null to h if no handle was associated with the returned
item. Raises events ItemsRemoved and CollectionChanged. Throws NoSuch-
ItemException if the priority queue is empty. Throws ReadOnlyCollectionEx-
ception if the collection is read-only.

• T DeleteMin() removes and returns a minimal item from the priority queue.
Raises events ItemsRemoved and CollectionChanged. Throws NoSuchItemEx-
ception if the priority queue is empty. Throws ReadOnlyCollectionException if
the collection is read-only.

• T DeleteMin(out IPriorityQueueHandle<T> h) removes and returns a mini-
mal item from the priority queue, assigning its now unused handle, if any, to
variable h. Assigns null to h if no handle was associated with the returned
item. Raises events ItemsRemoved and CollectionChanged. Throws NoSuch-
ItemException if the priority queue is empty. Throws ReadOnlyCollectionEx-
ception if the collection is read-only.

• bool Exists(Fun<T,bool> p), see page 50.

82 Interface IPriorityQueue<T> §4.10

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(IPriorityQueueHandle<T> h, out T x) returns true if the handle
h is associated with an item in the priority queue, and if so, assigns that item
to x; otherwise returns false and assigns the default value for T to x.

• T FindMax() returns the item with the given handle. Throws NoSuchItem-
Exception if the priority queue is empty.

• T FindMax(out IPriorityQueueHandle<T> h) returns a maximal item from the
priority queue, assigning its handle, if any, to variable h. Assigns null to h if no
handle was associated with the returned item. Throws NoSuchItemException
if the priority queue is empty.

• T FindMin() returns a minimal item from the priority queue.
Throws NoSuchItemException if the priority queue is empty.

• T FindMin(out IPriorityQueueHandle<T> h) returns a minimal item from the
priority queue, assigning its handle, if any, to variable h. Assigns null to h if no
handle was associated with the returned item. Throws NoSuchItemException
if the priority queue is empty.

• T Replace(IPriorityQueueHandle<T> h, T x) replaces the priority queue item
associated with handle h with item x, and returns the item previously as-
sociated with h. Raises events ItemsRemoved, ItemsAdded and Collection-
Changed. Throws InvalidHandleException if the handle is not associated with
any item in the priority queue. Throws ReadOnlyCollectionException if the
collection is read-only.

• T[] ToArray(), see page 50.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.

§4.11 Interface IQueue<T> 83

4.11 Interface IQueue<T>
Inherits from: IDirectedCollectionValue<T>.

Implemented by: ArrayList<T> (section 6.2), CircularQueue<T> (section 6.1 and
LinkedList<T> (section 6.3).

Properties and indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates is true if the queue can contain
two items that are equal by the queue’s item equality comparer; false other-
wise.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool IsEmpty, see page 49.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-only indexer T this[int i] returns the i’th oldest item from the queue,
where the oldest item this[0] is at the front of the queue, and the most re-
cently enqueued item this[Count-1] is at the end of the queue. Throws Index-
OutOfRangeException if i < 0 or i >= Count.

Methods
• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• T Choose(), see page 50.

• void CopyTo(T[] arr, int i), see page 50.

• T Dequeue() removes and returns the item at the front of the queue, that is,
the oldest item remaining in the queue, if any. Raises events ItemRemovedAt,
ItemsRemoved and CollectionChanged. Throws NoSuchItemException if the
queue is empty. Throws ReadOnlyCollectionException if the collection is read-
only.

84 Interface IQueue<T> §4.11

• void Enqueue(T x) adds item x at the end of the queue. Raises events ItemIn-
serted, ItemsAdded and CollectionChanged. Throws ReadOnlyCollectionEx-
ception if the collection is read-only.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• T[] ToArray(), see page 50.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Dequeue and Enqueue.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.

• event ItemInsertedHandler<T> ItemInserted, see page 51.
Raised by Enqueue.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.
Raised by Dequeue.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Enqueue.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.
Raised by Dequeue.

§4.12 Interface ISequenced<T> 85

4.12 Interface ISequenced<T>
Inherits from: ICollection<T> and IDirectedCollectionValue<T>.

Implemented by: ArrayList<T> (section 6.2), HashedArrayList<T> (section 6.4),
HashedLinkedList<T> (section 6.5), LinkedList<T> (section 6.3), SortedArray<T>
(section 6.7), TreeBag<T> (section 6.9), TreeSet<T> (section 6.8), and Wrapped-
Array<T> (section 6.6).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool Add(T x), see page 55.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

• T Choose(), see page 50.

86 Interface ISequenced<T> §4.12

• void Clear(), see page 45.

• Object Clone(), see page 56.

• bool Contains(T x), see page 45.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• bool FindOrAdd(ref T x), see page 45.

• int GetSequencedHashCode() returns the sequenced, that is, item order
sensitive, hash code of the collection: a transformation of the hash codes of
its items, each computed using the collection’s item equality comparer.

• int GetUnsequencedHashCode(), see page 45.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• bool Remove(T x), see page 46.

• bool Remove(T x, out T xRemoved), see page 46.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46.

• void RemoveAllCopies(T x), see page 46.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46.

• bool SequencedEquals(ISequenced<T> coll) returns true if this collection
contains the same items as coll with same multiplicities and in the same
order. More precisely, enumeration of this collection and of coll must yield
equal items, place for place.

• T[] ToArray(), see page 50.

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

§4.12 Interface ISequenced<T> 87

• bool Update(T x), see page 47.

• bool Update(T x, out T xOld), see page 47.

• bool UpdateOrAdd(T x), see page 47.

• bool UpdateOrAdd(T x, out T xOld), see page 47.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, Clear, FindOrAdd, Remove, RemoveAll, RemoveAllCopies,
RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51. Raised by Remove,
RemoveAll, RemoveAllCopies, RetainAll, Update and UpdateOrAdd.

88 Interface ISorted<T> §4.13

4.13 Interface ISorted<T>
Inherits from: ISequenced<T>.

Implemented by: SortedArray<T> (section 6.7), TreeBag<T> (section 6.9), and
TreeSet<T> (section 6.8).

Properties
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates, see page 55.

• Read-only property SCG.IComparer<T> Comparer is the item comparer used by
this sorted collection. Always non-null.

• Read-only property Speed ContainsSpeed, see page 44.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool DuplicatesByCounting, see page 55.

• Read-only property SCG.IEqualityComparer<T> EqualityComparer, see page 55.

• Read-only property bool IsEmpty, see page 49.

• Read-only property bool IsReadOnly, see page 55.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

Methods
• bool Add(T x), see page 55.

• void AddAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 56.

• void AddSorted<U>(SCG.IEnumerable<U> xs) where U:T adds all items from
xs to the sorted collection, ignoring items already in the collection. If any items
were added, it raises event ItemsAdded for each item added, and then raises
event CollectionChanged. The items from xs must appear in increasing order
according to the sorted collection’s item comparer, otherwise ArgumentExcep-
tion is thrown. Throws ReadOnlyCollectionException if the collection is read-
only.

• bool All(Fun<T,bool> p), see page 49.

§4.13 Interface ISorted<T> 89

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• bool Check(), see page 56.

• T Choose(), see page 50.

• void Clear(), see page 45.

• Object Clone(), see page 56.

• bool Contains(T x), see page 45.

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 45.

• int ContainsCount(T x), see page 45.

• void CopyTo(T[] arr, int i), see page 50.

• bool Cut(System.IComparable<T> c, out T cP, out bool cPValid, out T cS,
out bool cSValid) returns true if the sorted collection contains an item x such
that c.CompareTo(x) is zero, otherwise false. If the sorted collection contains
an item x such that c.CompareTo(x) is positive and so c greater than x, then cP
is the greatest such item and cPValid is true; otherwise cPValid is false and cP
is the default value for type T. Symmetrically, if the sorted collection contains
an item x such that c.CompareTo(x) is negative and so c less than x, then cS
is the least such item and cSValid is true; otherwise cSValid is false and cS is
the default value for type T. Never throws exceptions.
The method int c.CompareTo(T x) need not be the item comparer for type T,
but its graph must pass from positive to zero at most once and from zero to
negative at most once. Then cP is the last x value before reaching zero, if
any, and cS is the first x value after reaching zero, if any. See figures 4.2, 4.3
and 4.4.
If c is of type T and the collection’s item comparer is the natural comparer for
T, then cP is the predecessor and cS is the successor of c in the sorted collection,
if any, and cPValid and cSValid report whether these values are defined.

• T DeleteMax() removes and returns the maximal item from the sorted collec-
tion, if any. Raises events ItemsRemoved and CollectionChanged. Throws No-
SuchItemException if the collection is empty. Throws ReadOnlyCollectionEx-
ception if the collection is read-only.

• T DeleteMin() removes and returns the minimal item from the sorted collec-
tion, if any. Raises events ItemsRemoved and CollectionChanged. Throws No-
SuchItemException if the collection is empty. Throws ReadOnlyCollectionEx-
ception if the collection is read-only.

90 Interface ISorted<T> §4.13

x

cP

cSz

c
.
C
o
m
p
a
r
e
T
o
(
x
)

0

Figure 4.2: Cut(c,...) when cP and cS exist, and c.CompareTo(z)=0 for some z.

x

c cS

cP

c
.
C
o
m
p
a
r
e
T
o
(
x
)

0

Figure 4.3: Cut(c,...) when cP and cS exist, but c.CompareTo(x)=0 for no x.

x

cP

0

c
.
C
o
m
p
a
r
e
T
o
(
x
)

z

Figure 4.4: Cut(c,...) when cP but not cS exists, and c.CompareTo(z)=0 for some z.

§4.13 Interface ISorted<T> 91

• bool Exists(Fun<T,bool> p), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

• bool Find(ref T x), see page 45.

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• T FindMax() returns the maximal item from the sorted collection, if any.
Throws NoSuchItemException if the collection is empty.

• T FindMin() returns the minimal item from the sorted collection, if any.
Throws NoSuchItemException if the collection is empty.

• bool FindOrAdd(ref T x), see page 45.

• int GetSequencedHashCode(), see page 86.

• int GetUnsequencedHashCode(), see page 45.

• ICollectionValue<KeyValuePair<T,int>> ItemMultiplicities(), see page 45.

• T Predecessor(T x) returns the predecessor of x, if any. The predecessor is
the greatest item in the sorted collection that is less than x according to the
item comparer. Throws NoSuchItemException if x does not have a predecessor;
that is, no item in the collection is less than x.

• IDirectedCollectionValue<T> RangeAll() returns a directed collection value
that is a read-only view, in enumeration order, of all the items in the sorted
collection.

• IDirectedEnumerable<T> RangeFrom(T x) returns a directed enumerable
whose enumerators yield, in increasing order, all those items in the sorted
collection that are greater than or equal to x.

• IDirectedEnumerable<T> RangeFromTo(T x, T y) returns a directed enumer-
able whose enumerators yield, in increasing order, all those items in the sorted
collection that are greater than or equal to x and strictly less than y.

• IDirectedEnumerable<T> RangeTo(T y) returns a directed enumerable whose
enumerators yield, in enumeration order, all those items in the sorted collec-
tion that are strictly less than y.

• bool Remove(T x), see page 46.

• bool Remove(T x, out T xRemoved), see page 46.

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U:T, see page 46.

• void RemoveAllCopies(T x), see page 46.

92 Interface ISorted<T> §4.13

• void RemoveRangeFrom(T x) deletes every item in the sorted collection that
is greater than or equal to x. If any items were removed, raises ItemsRemoved
for each removed item and then raises CollectionChanged once. Throws Read-
OnlyCollectionException if the collection is read-only.

• void RemoveRangeFromTo(T x, T y) deletes every item in the sorted collec-
tion that is greater than or equal to x and strictly less than y. If any items were
removed, raises ItemsRemoved for each removed item and then raises Collec-
tionChanged once. Throws ReadOnlyCollectionException if the collection is
read-only.

• void RemoveRangeTo(T y) deletes every item in the sorted collection that is
strictly less than y. If any items were removed, raises ItemsRemoved for each
removed item and then raises CollectionChanged once. Throws ReadOnlyCol-
lectionException if the collection is read-only.

• void RetainAll<U>(SCG.IEnumerable<T> xs) where U:T, see page 46.

• bool SequencedEquals(ISequenced<T> coll), see page 86.

• T Successor(T x) returns the successor of x, if any. The successor is the least
item in the sorted collection that is greater than x according to the collection’s
item comparer. Throws NoSuchItemException if x does not have a successor;
that is, no item in the collection is greater than x.

• T[] ToArray(), see page 50.

• bool TryPredecessor(T x, out T res) returns true if x has a predecessor
and in that case binds the predecessor to res; otherwise returns false and
binds the default value of T to res. The predecessor is the greatest item in the
sorted collection that is less than x according to the collection’s item comparer.

• T TrySuccessor(T x) returns true if x has a successor and in that case binds
the successor to res; otherwise returns false and binds the default value of T
to res. The successor is the least item in the sorted collection that is greater
than x according to the item collection’s comparer.

• bool TryWeakPredecessor(T x, out T res) returns true if x has a weak
predecessor and in that case binds the weak predecessor to res; otherwise
returns false and binds the default value of T to res. The weak predecessor is
the greatest item in the sorted collection that is less than or equal to x accord-
ing to the collection’s item comparer.

• bool TryWeakSuccessor(T x, out T res) returns returns true if x has a
weak successor and in that case binds the weak successor to res; otherwise
returns false and binds the default value of T to res. The weak successor is
the least item in the sorted collection that is greater than or equal to x accord-
ing to the collection’s item comparer.

§4.13 Interface ISorted<T> 93

• ICollectionValue<T> UniqueItems(), see page 46.

• bool UnsequencedEquals(ICollection<T> coll), see page 46.

• bool Update(T x), see page 47.

• bool Update(T x, out T xOld), see page 47.

• bool UpdateOrAdd(T x), see page 47.

• bool UpdateOrAdd(T x, out T xOld), see page 47.

• T WeakPredecessor(T x) returns the weak predecessor of x, if any. The weak
predecessor is the greatest item in the sorted collection that is less than or
equal to x according to the collection’s item comparer. Throws NoSuchItemEx-
ception if x does not have a weak predecessor; that is, no item in the collection
is less than or equal to x.

• T WeakSuccessor(T x) returns the weak successor of x, if any. The weak
successor is the least item in the sorted collection that is greater than or equal
to x according to the item comparer. Throws NoSuchItemException if x does
not have a weak successor; that is, no item in the collection is greater than or
equal to x.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Add, AddAll, AddSorted, Clear, DeleteMax, DeleteMin, FindOrAdd, Remove,
RemoveAll, RemoveAllCopies, RemoveRangeFrom, RemoveRangeFromTo, RemoveRangeTo,
RetainAll, Update and UpdateOrAdd.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.
Raised by Clear.

• event ItemInsertedHandler<T> ItemInserted, see page 51.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Add, AddAll, AddSorted, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51. Raised by DeleteMax,
DeleteMin, Remove, RemoveAll, RemoveAllCopies, RemoveRangeFrom, RemoveRangeFromTo,
RemoveRangeTo, RetainAll, Update and UpdateOrAdd.

94 Interface IStack<T> §4.14

4.14 Interface IStack<T>
Inherits from: IDirectedCollectionValue<T>.

Implemented by: ArrayList<T> (section 6.2), CircularQueue<T> (section 6.1) and
LinkedList<T> (section 6.3).

Properties and indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property bool AllowsDuplicates is true if the stack can contain
two items that are equal by the stack’s item equality comparer; false otherwise.

• Read-only property int Count, see page 49.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property EnumerationDirection Direction, see page 54.

• Read-only property bool IsEmpty, see page 49.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-only indexer T this[int i] returns the i’th item from the stack, where
this[0] is the oldest item, at the bottom of the stack, and this[Count-1] is
the most recently pushed item, at the top of the stack. Throws IndexOut-
OfRangeException if i < 0 or i >= Count. To index relative to the stack top
(the youngest item) in a stack st, use st[st.Count-j-1] where j is the desired
offset relative to the stack top, 0 <= j < st.Count.

Methods
• bool All(Fun<T,bool> p), see page 49.

• void Apply(Act<T> act), see page 49.

• IDirectedEnumerable<T> IDirectedEnumerable<T>.Backwards(),
see page 54.

• IDirectedCollectionValue<T> Backwards(), see page 52.

• T Choose(), see page 50.

• void CopyTo(T[] arr, int i), see page 50.

• SCG.IEnumerable<T> Filter(Fun<T,bool> p), see page 50.

• bool Find(Fun<T,bool> p, out T res), see page 50.

§4.14 Interface IStack<T> 95

• bool FindLast(Fun<T,bool> p, out T res), see page 52.

• T Pop() removes and returns the top item from the stack, that is, the youngest
item remaining on the stack, if any. Raises events ItemRemovedAt, Items-
Removed and CollectionChanged. Throws NoSuchItemException if the stack
is empty. Throws ReadOnlyCollectionException if the collection is read-only.

• void Push(T x) pushes item x onto the stack top. Raises events ItemInserted,
ItemsAdded and CollectionChanged. Throws ReadOnlyCollectionException if
the collection is read-only.

• T[] ToArray(), see page 50.

Events
• event CollectionChangedHandler<T> CollectionChanged, see page 51.

Raised by Pop and Push.

• event CollectionClearedHandler<T> CollectionCleared, see page 51.

• event ItemInsertedHandler<T> ItemInserted, see page 51.
Raised by Push.

• event ItemRemovedAtHandler<T> ItemRemovedAt, see page 51.
Raised by Pop.

• event ItemsAddedHandler<T> ItemsAdded, see page 51.
Raised by Push.

• event ItemsRemovedHandler<T> ItemsRemoved, see page 51.
Raised by Pop.

96 Interface IStack<T> §4.14

Chapter 5

Dictionary interface details

This chapter gives a detailed description of the dictionary interfaces shown in fig-
ure 5.1. Since all important functionality of the dictionary implementation classes
is described by the interfaces, this is the main documentation of the entire library
(also available online as HTML help files).

The dictionary interfaces are presented in alphabetical order.

IDictionary<K,V>

ISortedDictionary<K,V>

ICollectionValue<KeyValuePair<K,V>>

SCG.IEnumerable<KeyValuePair<K,V>>

Figure 5.1: The dictionary interface hierarchy (same as figure 1.4).

97

98 Interface IDictionary<K,V> §5.1

5.1 Interface IDictionary<K,V>
Inherits from: ICollectionValue<KeyValuePair<K,V>>, System.ICloneable,
IShowable.

Implemented by: HashDictionary<K,V> (section 7.1) and TreeDictionary<K,V>
(section 7.2).

Properties and Indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property int Count, see page 49. This is the number of (key,value)
pairs in the dictionary.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property SCG.IEqualityComparer<K> EqualityComparer returns
the key equality comparer used by this dictionary, or a compatible equality
comparer if the dictionary is comparer-based.

• Read-only property Fun<K,V> Fun returns a new delegate f that represents the
dictionary as a finite function; more precisely, f(k) is computed as this[k].

• Read-only property bool IsEmpty, see page 49. Returns true if the dictionary
contains no (key,value) pairs.

• Read-only property bool IsReadOnly is true if the dictionary does not admit
addition, deletion or update of entries.

• Read-only property ICollectionValue<K> Keys returns a collection value which
is a view of the dictionary’s keys. Its enumeration order is the same as that of
the dictionary and as that of the Values property.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-write indexer V this[K k] gets or sets the value associated with the
given key. The indexer’s set accessor this[k] = v replaces the value associ-
ated with k if there already is an entry whose key equals k, otherwise adds
a new entry that associates v with k. It raises events ItemsRemoved, Items-
Added and CollectionChanged in the first case; raises ItemsAdded and Collec-
tionChanged in the second case. It throws ReadOnlyCollectionException if the
collection is read-only. The indexer’s get accessor throws NoSuchItemExcep-
tion if there is no entry whose key equals k.

• Read-only property ICollectionValue<V> Values returns a collection value
which is a view of the dictionary’s values. Its enumeration order is the same
as that of the dictionary and as that of the Keys property.

§5.1 Interface IDictionary<K,V> 99

Methods
• void Add(K k, V v) adds a new entry with key k and associated value v to

the dictionary. Raises events ItemsAdded and CollectionChanged. Throws
DuplicateNotAllowedException if the dictionary already has an entry with key
equal to k. Throws ReadOnlyCollectionException if the dictionary is read-only.

• void AddAll<U,W>(SCG.IEnumerable<KeyValuePair<U,W>> kvs) where U:K
where W:V adds all entries from kvs to the dictionary. Raises events Items-
Added and CollectionChanged. Throws DuplicateNotAllowedException if kvs
contains duplicate keys or a key that is already in the dictionary. Throws
ReadOnlyCollectionException if the dictionary is read-only.

• bool All(Fun<KeyValuePair<K,V>,bool> p), see page 49.

• void Apply(Act<KeyValuePair<K,V>> act), see page 49.

• bool Check() performs a comprehensive integrity check of the dictionary’s
representation. Relevant only for library developers.

• KeyValuePair<K,V> Choose(), see page 50.

• void Clear() removes all entries from the dictionary. Raises events Collec-
tionCleared and CollectionChanged. Throws ReadOnlyCollectionException if
the dictionary is read-only.

• Object Clone() creates a new dictionary as a shallow copy of the given one, as
if by creating an empty dictionary newdict and then doing newdict.AddAll(this).
See section 8.9.

• bool Contains(K k) returns true if the dictionary contains an entry whose
key equals k; otherwise false.

• bool ContainsAll<U>(SCG.IEnumerable<U> ks) where U:K returns true if the
dictionary contains keys equal to all the keys in ks; otherwise false.

• void CopyTo(KeyValuePair<K,V>[] arr, int i), see page 50.

• bool Exists(Fun<KeyValuePair<K,V>, bool> p), see page 50.

• SCG.IEnumerable<KeyValuePair<K,V>> Filter(Fun<KeyValuePair<K,V>, bool>
p), see page 50.

• bool Find(Fun<KeyValuePair<K,V>,bool> p, out KeyValuePair<K,V> res),
see page 50.

• bool Find(K k, out V v) returns true if the dictionary contains an entry
whose key equals k and if so assigns the associated value to v; otherwise re-
turns false and assigns the default value for T to v. This method provides an
exception-free variant of v = this[k].

100 Interface IDictionary<K,V> §5.1

• bool Find(ref K k, out V v) returns true if the dictionary contains an entry
whose key equals k and if so assigns that key to k and assigns the associated
value to v; otherwise returns false and assigns the default value for T to v.
This method provides an exception-free variant of v = this[k]. In addition it
binds the actual key to parameter k; the actual key may be distinct from the
given k but is necessarily equal to it by the dictionary’s key equality comparer.

• bool FindOrAdd(K k, ref V v) returns true if the dictionary contains an en-
try whose key equals k and if so assigns the associated value to v; otherwise
returns false and adds a new entry with key k and associated value v to the
dictionary. Raises event ItemsAdded and CollectionChanged in the latter case.
Throws ReadOnlyCollectionException if the dictionary is read-only.

• bool Remove(K k) returns true if the dictionary contains an entry whose key
equals k and if so removes that entry; otherwise returns false. If an entry was
removed, it raises ItemsRemoved and CollectionChanged. Throws ReadOnly-
CollectionException if the dictionary is read-only.

• bool Remove(K k, out V v) returns true if the dictionary contains an entry
whose key equals k and if so removes that entry and assigns the associated
value to v; otherwise returns false and assigns the default value for T to v. If an
entry was removed, it raises ItemsRemoved and CollectionChanged. Throws
ReadOnlyCollectionException if the dictionary is read-only.

• KeyValuePair<K,V>[] ToArray(), see page 50.

• bool Update(K k, V v) returns true if the dictionary contains an entry whose
key equals k and if so replaces the associated value with v; otherwise returns
false without modifying the dictionary. In the former case it raises events
ItemsRemoved, ItemsAdded and CollectionChanged. Throws ReadOnlyCol-
lectionException if the dictionary is read-only.

• bool Update(K k, V v, out V vOld) returns true if the dictionary contains
an entry whose key equals k and if so replaces the associated value with v
and then assigns the old value to vOld; otherwise returns false and assigns the
default value for V to vOld without modifying the dictionary. In the former case
it raises events ItemsRemoved, ItemsAdded and CollectionChanged. Throws
ReadOnlyCollectionException if the dictionary is read-only.

• bool UpdateOrAdd(K k, V v) returns true if the dictionary contains an en-
try whose key equals k and if so replaces the associated value with v; other-
wise returns false and adds a new entry with key k and associated value v
to the dictionary. In the first case, raises events ItemsRemoved, ItemsAdded
and CollectionChanged; and in the second case raises events ItemsAdded and
CollectionChanged. Throws ReadOnlyCollectionException if the dictionary is
read-only.

§5.1 Interface IDictionary<K,V> 101

• bool UpdateOrAdd(K k, V v, out V vOld) returns true if the dictionary con-
tains an entry whose key equals k and if so replaces the associated value with v
and then assigns the old value to vOld; otherwise returns false, adds a new en-
try with key k and associated value v to the dictionary, and assigns the default
value for V to vOld. In the first case, raises events ItemsRemoved, ItemsAdded
and CollectionChanged; and in the second case raises events ItemsAdded and
CollectionChanged. Throws ReadOnlyCollectionException if the dictionary is
read-only.

Events
• event CollectionChangedHandler<KeyValuePair<K,V>> CollectionChanged,

see page 51. Raised by this[k]=v, Add, AddAll, Clear, FindOrAdd, Remove, Update
and UpdateOrAdd.

• event CollectionClearedHandler<KeyValuePair<K,V>> CollectionCleared,
see page 51. Raised by Clear.

• event ItemInsertedHandler<KeyValuePair<K,V>> ItemInserted, see page 51.
Not raised.

• event ItemRemovedAtHandler<KeyValuePair<K,V>> ItemRemovedAt,
see page 51. Not raised.

• event ItemsAddedHandler<KeyValuePair<K,V>> ItemsAdded, see page 51.
Raised by this[k]=v, Add, AddAll, FindOrAdd, Update and UpdateOrAdd.

• event ItemsRemovedHandler<KeyValuePair<K,V>> ItemsRemoved, see page 51.
Raised by this[k]=v, Remove, Update and UpdateOrAdd.

102 Interface ISortedDictionary<K,V> §5.2

5.2 Interface ISortedDictionary<K,V>
Inherits from: IDictionary<K,V>.

Implemented by: TreeDictionary<K,V> (section 7.2).

Properties and Indexers
• Read-only property EventTypeEnum ActiveEvents, see page 49.

• Read-only property SCG.IComparer<K> Comparer returns the key comparer
used by this sorted dictionary. Always non-null.

• Read-only property int Count, see page 49. This is the number of (key,value)
pairs in the dictionary.

• Read-only property Speed CountSpeed, see page 49.

• Read-only property SCG.IEqualityComparer<K> EqualityComparer, see page 98.

• Read-only property Fun<K,V> Fun, see page 98.

• Read-only property bool IsEmpty, see page 49. Returns true if the dictionary
contains no (key,value) pairs.

• Read-only property bool IsReadOnly, see page 98.

• Read-only property ISorted<K> ISortedDictionary<K,V>.Keys returns a
read-only sorted collection which is a view of the dictionary’s keys. Its enu-
meration order is the same as that of the dictionary and as that of the Values
property, namely increasing key order.

• Read-only property EventTypeEnum ListenableEvents, see page 49.

• Read-write indexer V this[K k], see page 98.

• Read-only property ICollectionValue<V> Values, see page 98.

Methods
• void Add(K k, V v), see page 99.

• void AddAll<U,W>(SCG.IEnumerable<KeyValuePair<U,W>> kvs) where U:K
where W:V, see page 99.

• void AddSorted(SCG.IEnumerable<KeyValuePair<K,V>> kvs) adds all entries
from kvs to the sorted dictionary, ignoring any entry from kvs whose key is
already in the dictionary. If any entries were added, it raises event Items-
Added for each item added, and then raises event CollectionChanged. The

§5.2 Interface ISortedDictionary<K,V> 103

entries from kvs must appear in increasing key order according to the sorted
dictionary’s key comparer, otherwise ArgumentException is thrown. Throws
ReadOnlyCollectionException if the dictionary is read-only.

• bool All(Fun<KeyValuePair<K,V>,bool> p), see page 49.

• void Apply(Act<KeyValuePair<K,V>> act), see page 49.

• bool Check(), see page 99.

• void Clear(), see page 99.

• KeyValuePair<K,V> Choose(), see page 50.

• Object Clone() creates a new sorted dictionary as a shallow copy of the given
one, as if by creating an empty sorted dictionary newdict and then executing
newdict.AddAll(this). See section 8.9.

• bool Contains(K k), see page 99.

• bool ContainsAll<U>(SCG.IEnumerable<U> ks) where U:K, see page 99.

• void CopyTo(KeyValuePair<K,V>[] arr, int i), see page 50.

• bool Cut(IComparable<K> c, out KeyValuePair<K,V> cP,
out bool cPValid, out KeyValuePair<K,V> cS, out bool cSValid) returns
true if the sorted dictionary contains an entry (k,v) such that c.CompareTo(k)
is zero, otherwise false. If the sorted dictionary contains an entry (k,v) such
that c.CompareTo(k) is positive and so c greater than k, then cP is the entry
with the greatest such k and cPValid is true; otherwise cPValid is false and cP
is the default value for type KeyValuePair<K,V>. Symmetrically, if the sorted
dictionary contains an entry (k,v) such that c.CompareTo(k) is negative and so
c less than k, then cS is the entry with the least such k and cSValid is true; oth-
erwise cSValid is false and cS is the default value for type KeyValuePair<K,V>.
Never throws exceptions.

The method int c.CompareTo(K k) need not be the comparer for key type k,
but its graph must pass from positive to zero at most once and from zero to
negative at most once. See figures 4.2, 4.3 and 4.4.

If c is of type K and the dictionary’s key comparer is the natural comparer for
K, then cP is the predecessor entry and cS is the successor entry of the entry
with key c in the sorted dictionary, if any, and cPValid and cSValid report
whether these values are defined.

• KeyValuePair<K,V> DeleteMax() removes and returns the entry with maxi-
mal key from the sorted dictionary, if any. Raises events ItemsRemoved and
CollectionChanged. Throws NoSuchItemException if the dictionary is empty.
Throws ReadOnlyCollectionException if the dictionary is read-only.

104 Interface ISortedDictionary<K,V> §5.2

• KeyValuePair<K,V> DeleteMin() removes and returns the entry with mini-
mal key from the sorted dictionary, if any. Raises events ItemsRemoved and
CollectionChanged. Throws NoSuchItemException if the dictionary is empty.
Throws ReadOnlyCollectionException if the dictionary is read-only.

• bool Exists(Fun<KeyValuePair<K,V>, bool> p), see page 50.

• SCG.IEnumerable<KeyValuePair<K,V>> Filter(Fun<KeyValuePair<K,V>, bool>
p), see page 50.

• bool Find(Fun<KeyValuePair<K,V>,bool> p, out KeyValuePair<K,V> res),
see page 50.

• bool Find(K k, out V v), see page 99.

• bool Find(ref K k, out V v), see page 100.

• KeyValuePair<K,V> FindMax() returns the entry with maximal key from the
sorted dictionary, if any. Throws NoSuchItemException if the dictionary is
empty.

• KeyValuePair<K,V> FindMin() returns the entry with minimal key from the
sorted dictionary, if any. Throws NoSuchItemException if the dictionary is
empty.

• bool FindOrAdd(K k, ref V v), see page 100.

• KeyValuePair<K,V> Predecessor(K k) returns the entry that is the predeces-
sor of k, if any. The predecessor of k is the entry in the sorted dictionary with
the greatest key strictly less than k according to the key comparer. Throws
NoSuchItemException if k does not have a predecessor entry; that is, no key is
less than k.

• IDirectedCollectionValue<KeyValuePair<K,V>> RangeAll() returns a read-
only directed collection value that is a view, in increasing key order, of all the
entries in the sorted dictionary.

• IDirectedEnumerable<KeyValuePair<K,V>> RangeFrom(K x) returns a directed
enumerable whose enumerators yield, in increasing key order, all those entries
in the sorted dictionary whose keys are greater than or equal to x.

• IDirectedEnumerable<KeyValuePair<K,V>> RangeFromTo(K x, K y) returns a
directed enumerable whose enumerators yield, in increasing key order, all
those entries in the sorted collection whose keys are greater than or equal
to x and strictly less than y.

• IDirectedEnumerable<KeyValuePair<K,V>> RangeTo(K y) returns a directed
enumerable whose enumerators yield, in increasing key order, all those entries
in the sorted collection whose keys are strictly less than y.

§5.2 Interface ISortedDictionary<K,V> 105

• bool Remove(K k), see page 100.

• bool Remove(K k, out V v), see page 100.

• void RemoveRangeFrom(K x) deletes every entry in the sorted dictionary for
which the key is greater than or equal to x. If any entries were removed,
it raises ItemsRemoved for each removed item and then raises Collection-
Changed. Throws ReadOnlyCollectionException if the dictionary is read-only.

• void RemoveRangeFromTo(K x, K y) deletes every entry in the sorted collec-
tion for which the key is greater than or equal to x and strictly less than y. If
any items were removed, raises ItemsRemoved for each removed entry and
then raises CollectionChanged. Throws ReadOnlyCollectionException if the
dictionary is read-only.

• void RemoveRangeTo(K y) deletes every entry in the sorted dictionary for
which the key is strictly less than y. If any entries were removed, raises Items-
Removed for each removed item and then raises CollectionChanged. Throws
ReadOnlyCollectionException if the dictionary is read-only.

• KeyValuePair<K,V> Successor(K k) returns the entry that is the successor
of k, if any. The successor of k is the entry in the sorted dictionary with the
least key that is strictly greater than k according to the key comparer. Throws
NoSuchItemException if k does not have a successor; that is, no entry in the
dictionary has a key that is greater than k.

• KeyValuePair<K,V>[] ToArray(), see page 50.

• bool TryPredecessor(K k, out KeyValuePair<K,V> res) returns true if there
is a precedessor of k and in that case binds the predecessor to res; otherwise
returns false and binds the default value of KeyValuePair<K,V> to res. The
predecessor of k is the entry in the sorted dictionary with the greatest key
strictly less than k according to the key comparer. Throws NoSuchItemExcep-
tion if k does not have a predecessor entry; that is, no key is less than k.

• bool TrySuccessor(K k, out KeyValuePair<K,V> res) returns true if there
is a successor of k and in that case binds the successor to res; otherwise returns
false and binds the default value of KeyValuePair<K,V> to res. The successor
of k is the entry in the sorted dictionary with the least key strictly greater than
k according to the key comparer. Throws NoSuchItemException if k does not
have a successor; that is, no entry in the dictionary has a key that is greater
than k.

• bool TryWeakPredecessor(K k, out KeyValuePair<K,V> res) returns true
if there is a weak precedessor of k and in that case binds the weak prede-
cessor to res; otherwise returns false and binds the default value of Key-
ValuePair<K,V> to res. The weak predecessor of k is the entry in the sorted
dictionary with the greatest key less than or equal to k according to the key

106 Interface ISortedDictionary<K,V> §5.2

comparer. Throws NoSuchItemException if k does not have a weak predeces-
sor entry; that is, no key is less than or equal to k.

• bool TryWeakSuccessor(K k, out KeyValuePair<K,V> res) returns true if
there is a weak successor of k and in that case binds the weak successor to res;
otherwise returns false and binds the default value of KeyValuePair<K,V> to
res. The weak successor of k is the entry in the sorted collection with the least
key that is greater than or equal to k according to the key comparer. Throws
NoSuchItemException if k does not have a weak successor; that is, no entry in
the dictionary has a key that is greater than or equal to k.

• bool Update(K k, V v), see page 100.

• bool Update(K k, V v, out V vOld), see page 100.

• bool UpdateOrAdd(K k, V v), see page 100.

• bool UpdateOrAdd(K k, V v, out V vOld), see page 101.

• KeyValuePair<K,V> WeakPredecessor(K k) returns the entry that is the weak
predecessor of k, if any. The weak predecessor of k is the entry in the sorted
dictionary with the greatest key less than or equal to k according to the key
comparer. Throws NoSuchItemException if k does not have a weak predeces-
sor entry; that is, no key is less than or equal to k.

• KeyValuePair<K,V> WeakSuccessor(K k) returns the entry that is the weak
successor of k, if any. The weak successor of k is the entry in the sorted collec-
tion with the least key that is greater than or equal to k according to the key
comparer. Throws NoSuchItemException if k does not have a weak successor;
that is, no entry in the dictionary has a key that is greater than or equal to k.

Events
• event CollectionChangedHandler<KeyValuePair<K,V>> CollectionChanged,

see page 51. Raised by this[k]=v, Add, AddAll, AddSorted, Clear, DeleteMax,
DeleteMin, FindOrAdd, Remove, RemoveRangeFrom, RemoveRangeFromTo, Remove-
RangeTo, Update and UpdateOrAdd.

• event CollectionClearedHandler<KeyValuePair<K,V>> CollectionCleared,
see page 51. Raised by Clear.

• event ItemInsertedHandler<KeyValuePair<K,V>> ItemInserted, see page 51.
Not raised.

• event ItemRemovedAtHandler<KeyValuePair<K,V>> ItemRemovedAt,
see page 51. Not raised.

• event ItemsAddedHandler<KeyValuePair<K,V>> ItemsAdded, see page 51.
Raised by this[k]=v, Add, AddAll, AddSorted, FindOrAdd, Update and UpdateOrAdd.

§5.2 Interface ISortedDictionary<K,V> 107

• event ItemsRemovedHandler<KeyValuePair<K,V>> ItemsRemoved, see page 51.
Raised by this[k]=v, DeleteMax, DeleteMin, Remove, RemoveRangeFrom, Remove-
RangeFromTo, RemoveRangeTo, Update and UpdateOrAdd.

108 Interface ISortedDictionary<K,V> §5.2

Chapter 6

Collection implementations

The preceding chapters introduced the collection interfaces, or concepts. This chap-
ter describes the collection classes, or implementations: data structures and al-
gorithms. The collection classes and the interfaces they implement are shown in
figure 6.2 which is an extension of figure 4.1.

A collection class is partially characterized by its features: does it allow du-
plicates, are duplicates stored explicitly, how fast is membership test (Contains),
and so on. Some of the these properties are accessible as C# properties called
AllowsDuplicates, DuplicatesByCounting, IsFixedSize, and so on. An overview of
the collection classes from this perspective is given in figure 6.1.

Collection class Al
lo

ws
Du

pl
ic

at
es

Du
pl

ic
at

es
By

Co
un

ti
ng

Is
Fi

xe
dS

iz
e

FI
FO

de
fa

ul
t

Co
nt

ai
ns

Sp
ee

d

In
de

xi
ng

Sp
ee

d

CircularQueue<T> true false false − − −
ArrayList<T> true false false false Linear Constant
LinkedList<T> true false false true Linear Linear
HashedArrayList<T> false true false false Constant Constant
HashedLinkedList<T> false true false true Constant Linear
WrappedArray<T> true false true (throws) Linear Constant
SortedArray<T> false true false − Logarithmic Constant
TreeSet<T> false true false − Logarithmic Logarithmic
TreeBag<T> true true false − Logarithmic Logarithmic
HashSet<T> false true false − Constant −
HashBag<T> true true false − Constant −
IntervalHeap<T> true false false − − −

Figure 6.1: Properties of C5 collection classes. In all cases, property CountSpeed has
the value Constant.

109

110 Collection implementations §6.0

ISequenced<T>

ICollection<T>

IExtensible<T>

ICollectionValue<T>

SCG.IEnumerable<T>

IIndexed<T>

IPersistentSorted<T>

IPriorityQueue<T>

HashSet<T>

HashBag<T>

TreeSet<T>

TreeBag<T>

IntervalHeap<T>SortedArray<T>

IList<T>

HashedArrayList<T>ArrayList<T>

LinkedList<T> HashedLinkedList<T>

CircularQueue<T>

IQueue<T> IStack<T>

WrappedArray<T>

SC.IList

SCG.ICollection<T>IDirectedCollectionValue<T>

IDirectedEnumerable<T>

SCG.IList<T>

IIndexedSorted<T>

ISorted<T>

ICloneable

IShowable

Figure 6.2: The collection classes and interfaces. Solid lines indicate a subinterface
relation, and dashed lines indicate an implementation relation.

§6.2 Circular queues 111

6.1 Circular queues
Class CircularQueue<T> implements the interfaces IQueue<T> (see sections 1.4.10
and 4.11) and IStack<T> (sections 1.4.9 and 4.14) and uses an underlying array to
implement a first-in-first-out (FIFO) queue by methods Enqueue and Dequeue, or a
last-in-first-out (LIFO) stack by methods Push and Pop. In fact, Push has the same
effect as Enqueue whereas Pop and Dequeue remove items from opposite ends of the
circular queue (or stack). A circular queue has efficient O(1) item access by index in
contrast to queues based on linked lists. For a circular queue cq, the item cq[0] is
the first (oldest) item in the queue, the one that will be returned by the next call to
cq.Dequeue().

Class CircularQueue<T> has two constructors:

• CircularQueue<T>() creates a circular queue with a default initial capacity.

• CircularQueue<T>(int capacity) creates a circular queue with at least the
given initial capacity. The circular queue will grow as needed when items
are added.

6.2 Array lists
Class ArrayList<T> implements interfaces IList<T> (see sections 1.4.11 and 4.8),
IStack<T> (sections 1.4.9 and 4.14) and IQueue<T> (sections 1.4.10 and 4.11) using
an internal array to store the list items. Item access by index i takes time O(1), or
constant time, regardless of i, but insertion of one or more items at position i takes
time O(Count−i), proportional to the number of items that must be moved to make
room for the new item.

Method Add(x) adds x at the end of the list. The Remove() method by default
removes and returns the array list’s last item, so the default value of the FIFO prop-
erty is false. An array list allows duplicates, so AllowsDuplicates is true, and stores
duplicates explicitly, so DuplicatesByCounting is false. The IsFixedSize property is
false, so insertion and deletion is supported. The Sort method on ArrayList<T> is
introspective quicksort, a version of quicksort guaranteed to be efficient.

Class ArrayList<T> has four constructors:

• ArrayList<T>() creates an array list with a default initial capacity and a de-
fault item equality comparer.

• ArrayList<T>(SCG.IEqualityComparer<T> eqc) creates an array list with a de-
fault initial capacity and the given item equality comparer. Throws NullRef-
erenceException if eqc is null.

• ArrayList<T>(int capacity) creates an array list with at least the given ini-
tial capacity and a default item equality comparer.

112 Hashed array lists §6.4

• ArrayList<T>(int capacity, SCG.IEqualityComparer<T> eqc) creates an array
list with at least the given initial capacity and with the given item equality
comparer. Throws NullReferenceException if eqc is null.

6.3 Linked lists
Class LinkedList<T> implements interfaces IList<T> (sections 1.4.11 and 4.8), IStack<T>
(sections 1.4.9 and 4.14) and IQueue<T> (sections 1.4.10 and 4.11) using a doubly-
linked list of internal nodes to store the list items. Insertion of an item at a given
point in the list takes time O(1), or constant time, but getting to that point by in-
dexing may take linear time. Item access by index i takes time proportional to the
distance from the nearest end of the list, more precisely O(min(i,Count−i)), and so
is fast only near the ends of the list.

Method Add(x) adds x at the end of the list. The Remove() method by default re-
moves and returns the linked list’s first item, so the default value of the FIFO prop-
erty is true. A linked list allows duplicates, so AllowsDuplicates is true and method
Add always returns true. Duplicates are stored explicitly, so property DuplicatesByCounting
is false. The IsFixedSize property is false, so insertion and deletion is supported.
The Sort method on LinkedList<T> is an in-place merge sort, which is stable.

Class LinkedList<T> has two constructors:

• LinkedList<T>() creates a linked list with a default item equality comparer.

• LinkedList<T>(SCG.IEqualityComparer<T> eqc) creates a linked list with the
given item equality comparer. Throws NullReferenceException if eqc is null.

6.4 Hashed array lists
Class HashedArrayList<T> implements IList<T> (section 1.4.11) and is very simi-
lar to an ordinary array list (section 6.2), but in addition maintains a hash table so
that it can quickly find the position of a given item in the array list. Item lookup by
item value using the IndexOf(x) and ViewOf(x) methods take time O(1), or constant
time, thanks to this hash table.

In contrast to an ordinary array list, a hashed array list does not allow dupli-
cates, so property AllowsDuplicates is false. As for an ordinary array list, the de-
fault value of the FIFO property and the IsFixedSize property are false.

Class HashedArrayList<T> has four constructors:

• HashedArrayList<T>() creates an array list with a default initial capacity and
a default item equality comparer.

• HashedArrayList<T>(SCG.IEqualityComparer<T> eqc) creates an array list with
a default initial capacity and the given item equality comparer. Throws Null-
ReferenceException if eqc is null.

§6.6 Hashed linked lists 113

• HashedArrayList<T>(int capacity) creates an array list with at least the given
initial capacity and a default item equality comparer.

• HashedArrayList<T>(int capacity, SCG.IEqualityComparer<T> eqc) creates an
array list with at least the given initial capacity and the given item equality
comparer. Throws NullReferenceException if eqc is null.

6.5 Hashed linked lists
Class HashedLinkedList<T> implements IList<T> (sections 1.4.11 and 4.8) and is
very similar to an ordinary linked list (section 6.3), but in addition maintains a hash
table so that it can quickly find the position of a given item in the linked list. Item
lookup by item value using the ViewOf(x) method takes time O(1), or constant time,
thanks to this hash table. Finding the index of a given item using the IndexOf(x)
method takes time O(n), proportional to the length of the list.

In contrast to an ordinary linked list, a hashed linked list does not allow du-
plicates, so property AllowsDuplicates is false. As for an ordinary linked list, the
default value of the FIFO property is true and the IsFixedSize property is false.

Class HashedLinkedList<T> has two constructors:

• HashedLinkedList<T>() creates a linked list with a default item equality com-
parer.

• HashedLinkedList<T>(SCG.IEqualityComparer<T> eqc) creates a linked list with
the given item equality comparer. Throws NullReferenceException if eqc is
null.

6.6 Wrapped arrays
Class WrappedArray<T> implements IList<T> (section 1.4.11 and 4.8) and provides
a way to wrap an ordinary one-dimensional array of type T[] as a fixed-size array
list (section 6.2). The primary use of wrapped arrays is to allow all IList<T> func-
tionality, in particular views, search and reordering, to be used on ordinary one-
dimensional arrays.

Wrapping an array as a WrappedArray<T> does not copy the array, and is an
O(1), or constant time, operation. Subsequent updates to the underlying array show
through to the WrappedArray<T>, and vice versa. Updates to the underlying array
do not raise events, whereas updates through the wrapper do. Most IList<T> op-
erations, including the creation of views, work also for WrappedArray<T>, but not
those methods that would cause the collection to grow or shrink. In particular,
Add, Clear, FIFO, Insert, Remove, and RemoveAt do not work, but will throw Fixed-
SizeCollectionException. By contrast, operations such as Reverse, Shuffle and Sort

114 Sorted arrays §6.7

do work: although they change the collection, they do not change its size. All sup-
ported operations have the same running time as for ArrayList<T>.

The properties AllowsDuplicates and IsFixedSize are true.
Class WrappedArray<T> has one constructor:

• WrappedArray<T>(T[] arr) creates a wrapped array list whose underlying ar-
ray is arr. It is not read-only, but it has fixed size: its Count is fixed and equals
arr.Length. Throws NullReferenceException if arr is null.

• WrappedArray<T>(T[] arr, SCG.IEqualityComparer<T> eqc) creates a wrapped
array list whose underlying array is arr. It is not read-only, but it has fixed
size: its Count is fixed and equals arr.Length. Throws NullReferenceException
if arr or eqc is null.

6.7 Sorted arrays
Class SortedArray<T> implements interface IIndexedSorted<T> (see sections 1.4.6
and 4.7). A sorted array is similar to an array list because it supports indexing,
FindIndex, and so on, but different because it does not support list views, First,
Last, Shuffle and so on. In contrast to an array list, a sorted array keeps its items
sorted and does not allow duplicates, so property AllowsDuplicates is false.

Class SortedArray<T> has the following constructors:

• SortedArray<T>() creates a new sorted array with a default initial capacity, a
default item comparer, and a default item equality comparer. The default item
comparer uses the natural comparer for T; if T does not implement ICompara-
ble<T> or IComparable, then NotComparableException is thrown.

• SortedArray<T>(int capacity) creates a new sorted array with at least the
given initial capacity, a default item comparer, and a default item equality
comparer.

• SortedArray<T>(SCG.IComparer<T> cmp) creates a new sorted array with a de-
fault capacity, the given item comparer, and a default item equality comparer.
Throws NullReferenceException if cmp is null.

• SortedArray<T>(int capacity, SCG.IComparer<T> cmp) creates a new sorted
array with at least the given capacity, the given item comparer, and a default
item equality comparer. Throws NullReferenceException if cmp is null.

• SortedArray<T>(int capacity, SCG.IComparer<T> cmp, SCG.IEqualityComparer<T>
eqc) creates a new sorted array with at least the given capacity, the given item
comparer, and the given item equality comparer. Throws NullReferenceExcep-
tion if cmp or eqc is null.

§6.9 Tree-based sets 115

The item comparer is used to determine item equality and item order in the sorted
array. The item equality comparer is used only to define an equality comparer for
the entire sorted array. This is useful, for instance, if the sorted array is used as an
item in a hash-based collection: An equality comparer may be much faster than a
comparer.. For instance, two strings of different length are clearly not equal, but if
they have a long prefix in common, it may be inefficient for a comparer to determine
which one is less than the other one.

Efficiency warning: Random insertions and deletions on a large SortedArray<T>
are slow because all items after the insertion or deletion point must be moved at
each insertion or deletion. Use a TreeSet<T> if you need to make random insertions
and deletions on a sorted collection. Use SortedArray<T> only if the number of
items is small or if the sorted array is modified rarely but is accessed frequently by
item index or item value.

6.8 Tree-based sets

Class TreeSet<T> implements interfaces IIndexedSorted<T> (sections 1.4.6 and 4.7)
and IPersistentSorted<T> (sections 1.4.8 and 4.9) and represents a set of items us-
ing a balanced red-black tree; see section 13.10. Item access by index or by item
value takes time O(logn), and item insertion and item deletion take time O(logn)
amortized. A tree set does not allow duplicates, so the property AllowsDuplicates
is false. From a tree-based set, one can efficiently make a snapshot, or persistent
copy; see section 8.5.

Class TreeSet<T> has three constructors:

• TreeSet<T>() creates a new tree set with a default item comparer and a default
item equality comparer. The default item comparer uses the natural comparer
for T; if T does not implement IComparable<T> or IComparable, then NotCom-
parableException is thrown.

• TreeSet<T>(SCG.IComparer<T> cmp) creates a new tree set with the given item
comparer and a default item equality comparer. Throws NullReferenceExcep-
tion if cmp is null.

• TreeSet<T>(SCG.IComparer<T> cmp, SCG.IEqualityComparer<T> eqc) creates a
new tree set with the given item comparer and the given item equality com-
parer. Throws NullReferenceException if eqc is null.

The item comparer is used to determine item equality and item order in the tree
set. The item equality comparer is used only to define an equality comparer for the
entire tree set. This is needed, for instance, if the tree set is used as an item in a
hash-based collection.

116 Hash sets §6.10

6.9 Tree-based bags
Class TreeBag<T> implements interfaces IIndexedSorted<T> (sections 1.4.6 and 4.7)
and IPersistentSorted<T> (sections 1.4.8 and 4.9) and represents a bag, or multiset,
of items using a balanced red-black tree. Item access by index or by item value takes
time O(logn), and item insertion and item deletion take time O(logn) amortized.

A tree bag allows duplicates, so the property AllowsDuplicates is true, and only
one representative for each item equivalence class is stored, so DuplicatesByCounting
is true.

From a tree-based bag, one can efficiently make a snapshot, or persistent copy;
see section 8.5.

Class TreeBag<T> has three constructors:

• TreeBag<T>() creates a new tree bag with a default item comparer and a de-
fault item equality comparer. The default item comparer uses the natural
comparer for T; if T does not implement IComparable<T> or IComparable,
then NotComparableException is thrown.

• TreeBag<T>(SCG.IComparer<T> cmp) creates a new tree bag with the given item
comparer and a default item equality comparer. Throws NullReferenceExcep-
tion if cmp is null.

• TreeBag<T>(SCG.IComparer<T> cmp, SCG.IEqualityComparer<T> eqc) creates a
new tree bag with the given item comparer and the given item equality com-
parer, which must be compatible. Throws NullReferenceException if eqc is
null.

The item comparer is used to determine item equality and item order in the tree
bag. The item equality comparer is used only to define an equality comparer for the
entire tree bag. This is needed, for instance, if the tree bag is used as an item in a
hash-based collection.

6.10 Hash sets
Class HashSet<T> implements interface IExtensible<T> (sections 1.4.3 and 4.5)
and represents a set of items using a hash table with linear chaining; see sec-
tion 13.4. Item access by item value takes time O(1), and item insertion and item
deletion take time O(1) amortized. A hash set does not allow duplicates, so the
property AllowsDuplicates is false.

Class HashSet<T> has four constructors:

• HashSet<T>() creates a new hash set with a default initial table size (16), a
default fill threshold (0.66), and a default item equality comparer.

• HashSet<T>(SCG.IEqualityComparer<T> eqc) creates a new hash set with a de-
fault initial table size (16), a default fill threshold (0.66), and the given item
equality comparer. Throws NullReferenceException if eqc is null.

§6.11 Hash bags 117

• HashSet<T>(int capacity, SCG.IEqualityComparer<T> eqc) creates a new hash
set with the given initial table size, a default fill threshold (0.66), and the given
item equality comparer. Throws ArgumentException if capacity <= 0. Throws
NullReferenceException if eqc is null.

• HashSet<T>(int capacity, double fill, SCG.IEqualityComparer<T> eqc) cre-
ates a new hash set with the given initial table size, the given fill threshold,
and the given item equality comparer. Throws ArgumentException if capacity
<= 0 or if fill < 0.1 or fill > 0.9. Throws NullReferenceException if eqc is
null.

In addition to the methods described by the interfaces implemented by HashSet<T>,
it has one method:

• ISortedDictionary<int,int> BucketCostDistribution() returns a new ta-
ble bcd reporting the current bucket cost distribution in the internal represen-
tation of the hash set. The value of bcd[c] is the number of buckets that have
cost c. The bcd table can be used to diagnose whether a performance problem
may be due to a bad choice of hash function.
A bucket in a hash table is an equivalence class of items whose hash values
map to the same entry in the hash table, for the current table size. The cost
of a bucket is the number of equality comparisons that must be performed by
the item equality comparer to determine that an item is not a member of the
bucket. This is the number of equality comparisons made when a lookup fails.
The largest bucket cost of a hash table gives an upper bound on the execution
time of a hash table lookup. A large bucket cost is caused by a poor choice
of hash function for the given distribution of items. In particular, if the hash
function gives all items the same constant hash code, then the table will have
a single bucket with a very large cost.
For good performance, a hash table should only have buckets with low bucket
cost. Use BucketCostDistribution.Keys.FindMax() to find the largest bucket
cost in the hash set. As a rule of thumb this number should not be more than
25. See antipattern 131 for typical bucket cost distributions resulting from
good and bad hash functions.

6.11 Hash bags
Class HashBag<T> implements interface IExtensible<T> (sections 1.4.3 and 4.5)
and represents a bag (multiset) of items using a hash table with linear probing. Item
access by item value takes time O(1), and item insertion and item deletion take time
O(1) amortized. A hash bag allows duplicates, so the property AllowsDuplicates is
true, but duplicate items are not stored explicitly, only the number of duplicates, so
DuplicatesByCounting is true.

Class HashBag<T> has four constructors:

118 Interval heaps or priority queues §6.12

• HashBag<T>() creates a new hash bag with a default initial table size (16), a
default fill threshold (0.66), and a default item equality comparer.

• HashBag<T>(SCG.IEqualityComparer<T> eqc) creates a new hash bag with a de-
fault initial table size (16), a default fill threshold (0.66), and the given item
equality comparer. Throws NullReferenceException if eqc is null.

• HashBag<T>(int capacity, SCG.IEqualityComparer<T> eqc) creates a new hash
bag with the given initial table size, a default fill threshold (0.66), and the
given item equality comparer. Throws ArgumentException if capacity <= 0.
Throws NullReferenceException if eqc is null.

• HashBag<T>(int capacity, double fill, SCG.IEqualityComparer<T> eqc) cre-
ates a new hash bag with the given initial table size, the given fill threshold,
and the given item equality comparer. Throws ArgumentException if capacity
<= 0 or if fill < 0.1 or fill > 0.9. Throws NullReferenceException if eqc is
null.

6.12 Interval heaps or priority queues
Class IntervalHeap<T> implements interface IPriorityQueue<T> (sections 1.4.12
and 4.10) using an interval heap stored as an array of pairs. The FindMin and
FindMax operations, and the indexer’s get-accessor, take time O(1). The DeleteMin,
DeleteMax, Add and Update operations, and the indexer’s set-accessor, take time
O(logn). In contrast to an ordinary priority queue, an interval heap offers both min-
imum and maximum operations with the same efficiency. The AllowsDuplicates
property is true, and DuplicatesByCounting is false. See section 13.11 for imple-
mentation details.

Class IntervalHeap<T> has four constructors:

• IntervalHeap<T>() creates a new interval heap with a default capacity (16)
and a default item comparer. The default item comparer uses the natural
comparer for T; if T does not implement IComparable<T> or IComparable,
then NotComparableException is thrown.

• IntervalHeap<T>(SCG.IComparer<T> cmp) creates a new interval heap with a
default capacity (16) and the given item comparer. Throws NullReferenceEx-
ception if cmp is null.

• IntervalHeap<T>(int capacity) creates a new interval heap with at least the
given capacity and a default item comparer. The default item comparer uses
the natural comparer for T; if T does not implement IComparable<T> or ICom-
parable, then NotComparableException is thrown.

• IntervalHeap<T>(int capacity, SCG.IComparer<T> cmp) creates a new inter-
val heap with at least the given capacity and with the given item comparer.
Throws NullReferenceException if cmp is null.

Chapter 7

Dictionary implementations

As shown in figure 7.1 there are two dictionary implementations, namely HashDic-
tionary<K,V> and TreeDictionary<K,V>. The former uses a key equality comparer
to compare dictionary keys, and the latter uses a key comparer, or ordering, to com-
pare dictionary keys. The latter implements the ISortedDictionary<K,V> interface;
both implement the IDictionary<K,V> interface.

IDictionary<K,V>

TreeDictionary<K,V>HashDictionary<K,V>

ISortedDictionary<K,V>

ICollectionValue<KeyValuePair<K,V>>

SCG.IEnumerable<KeyValuePair<K,V>>

Figure 7.1: The dictionary classes and interfaces. Solid lines indicate a subinterface
or subclass relation, and dashed lines indicate an implementation relation.

7.1 Hash-based dictionaries
Class HashDictionary<K,V> implements interface IDictionary<K,V> and represents
a dictionary of (key,value) pairs, or entries, using a hash table with linear chaining.
Entry access and entry deletion by key takes expected time O(1), and entry insertion

119

120 Tree-based dictionaries §7.2

takes expected time O(1) also. Enumeration of the keys, values or entries of a hash
dictionary does not guarantee any particular enumeration order, but key enumer-
ation order and value enumeration order follow the (key,value) pair enumeration
order.

Class HashDictionary<K,V> has three constructors:

• HashDictionary<K,V>() creates a new hash dictionary with a default initial ta-
ble size (16), a default fill threshold (0.66), and a default key equality comparer
for key type K, see section 2.3.

• HashDictionary<K,V>(SCG.IEqualityComparer<K> eqc) creates a new hash dic-
tionary with a default initial table size (16), a default fill threshold (0.66),
and the given key equality comparer. Throws NullReferenceException if eqc is
null.

• HashDictionary<K,V>(int capacity, double fill, SCG.IEqualityComparer<K>
eqc) creates a new hash dictionary with the given initial table size, the given
fill threshold (0.66), and the given key equality comparer. Throws NullRefer-
enceException if eqc is null.

In addition to the methods described by interface IDictionary<K,V>, class HashDic-
tionary<K,V> has one method:

• ISortedDictionary<int,int> BucketCostDistribution() returns a new ta-
ble bcd reporting the current bucket cost distribution in the internal represen-
tation of the hash dictionary. The value of bcd[c] is the number of buckets that
have cost c. The bcd table can be used to determine whether a performance
problem may be due to a bad choice of hash function. For further information,
see the description of method BucketCostDistribution in section 6.10.

7.2 Tree-based dictionaries
Class TreeDictionary<K,V> implements interface ISortedDictionary<K,V> and rep-
resents a dictionary of (key,value) pairs, or entries, using an ordered balanced red-
black binary tree. Entry access, entry deletion, and entry insertion take time O(logn).
Enumeration of the keys, values or entries of a tree dictionary follow the key order,
as determined by the key comparer

Class TreeDictionary<K,V> has two constructors:

• TreeDictionary<K,V>() creates a new tree dictionary with a default key com-
parer for key type K; see section 2.6. The default key comparer uses the natu-
ral comparer for K; if K does not implement IComparable<K> or IComparable,
then NotComparableException is thrown.

• TreeDictionary<K,V>(SCG.IComparer<K> cmp) creates a new tree dictionary with
the given key comparer. Throws NullReferenceException if cmp is null.

§7.2 Tree-based dictionaries 121

• TreeDictionary<K,V>(SCG.IComparer<K> cmp, SCG.IEqualityComparer<K> eqc)
creates a new tree dictionary with the given key comparer and the given key
equality comparer. Throws NullReferenceException if cmp or eqc is null.

The key comparer is used to determine item equality and item order in the tree
dictionary. The key equality comparer is used only to define an equality comparer
for the entire dictionary. This is needed if the tree dictionary is used as an item in a
hash-based collection.

122 Tree-based dictionaries §7.2

Chapter 8

Advanced functionality

8.1 List views
A list view represents a contiguous segment of an underlying list and may be used
to perform local operations on that list. There may be several, possibly overlapping,
views on the same list. All list operations from interface IList<T> (section 1.4.11)
apply to views as well, and the term “list” is usually taken to mean “list or view”,
whereas a A proper list is a list that is not a view. A view has a unique underlying
list that is a proper list.

Using list views, many operations can be concisely expressed in a way that is
efficient both on array lists and linked lists, as shown by the patterns in chapter 9.
Any list operation (enumeration, item search, indexing, insertion, removal, sorting,
reversal, . . .) can be applied also to a list view, thus restricting the operations to a
contiguous subsequence of the list. This improves orthogonality and predictability
and reduces the number of overloaded method variants needed in the library.

8.1.1 Basic concepts of list views
A view is delimited by a left endpoint and a right endpoint, both of which are at
inter-item space in the underlying list. Figure 8.1 shows a list with four items (a, b,
c, d) and seven views (A–G).

The offset of a view is the number of items before its left endpoint in the under-
lying list. Property Offset reports the offset of a view. In the example, views A and
G have offset 0, view F has offset 1, views B and C have offset 2, view D has offset
3, and view E has offset 4.

The length of a view is the number of items between the left and right endpoints.
Property Count reports the length of a view. For a zero-item view, also called an
empty view, both endpoints are in the same inter-item space. In the example, views
A and F have length 2, views B and E have length 0, views C and D have length 1,
and view G has length 4.

123

124 List views §8.1

a

0

b

1 2 3

c d

A B C D

F

G

E

Figure 8.1: Seven views of the same underlying four-item list.

Two views u and w of the same underlying list overlap if they have one or more
items in common or if one is a zero-item view strictly inside the other. Equivalently,
the left endpoint of one is strictly before the right endpoint of the other, and vice
versa. Formally, u and w overlap if u.Offset < w.Offset+w.Count and w.Offset <
u.Offset+u.Count. It follows that the overlaps relation is symmetric, any non-empty
view overlaps with itself, and an empty (zero-item) view overlaps only with views
of length two or more. In the example, views A, B and C overlap with F and G but
not with each other; view D overlaps with G; and views F and G overlap. Each non-
empty view A, C, D, F and G overlaps with itself, but the empty view B overlaps only
with the strictly enclosing views F and G, and E does not overlap with any view. The
length of an overlap is the number of items the two views have in common; this may
be zero but only if one view is empty and strictly inside the other.

A view u contains a view w of the same underlying list if w is non-empty and
the left and right endpoints of w are inside u, or if w is empty and its endpoints are
strictly inside u. Formally, if w.Count > 0 it must hold that u.Offset <= w.Offset
and w.Offset+w.Count <= u.Offset+u.Count, or if w.Count = 0 it must hold that
u.Offset < w.Offset < u.Offset+u.Count. It follows that a non-empty view con-
tains itself, that an empty view contains no views, that if two views contain each
other then they have the same offset and length, and that a view contains any
empty views strictly inside it but not the empty views at its ends. In particular, a
proper list contains all its views except the empty views at its ends. Also, if u con-
tains w then they overlap. In fact, u contains w if and only if they overlap and the
length of the overlap equals the length of w. In the example, each of the views A,
C and D contains itself only; view F contains B, C and F; and view G contains the
views A, B, C, D, F and G but not E.

Section 9.4 presents C# methods corresponding to the above definitions.

§8.1 List views 125

8.1.2 Operations on list views
Operations on views include:

• Updates, insertions or deletions of items within a view. These operations im-
mediately affect the underlying list and possibly other views, according to the
rules in section 8.1.5.

• All other list properties and methods may be used on a view and will operate on
the items within the view only. In particular, one may perform enumeration
(and backwards enumeration), search, reversal, sorting, shuffling, clearing,
and so on. Again these operations work on the underlying list and affect that
list and possibly other views of the list.

• The Count property is the length of the view, that is, the number of items it
contains.

• The Offset property of a view gives the index of the view’s beginning within
the underlying list.

• The Slide(i) method slides the view left (if i<0) or right (if i>0) by the given
number of items. Throws ArgumentOutOfRangeException if this would move
either endpoint of the view outside the underlying list, that is, if i+Offset < 0
or i+Offset+Count > Underlying.Count.

• The Slide(i,n) method slides the view by i items and also sets its size to n,
thus extending the view to include more items or shrinking it to include fewer.
Throws ArgumentOutOfRangeException if this would move either endpoint of
the view outside the underlying list, that is, if i+Offset < 0 or i+Offset+n >
Underlying.Count.

• IList<T> Span(IList<T> w) returns a new view spanned by two existing views,
if any. The call u.Span(w) produces a new view whose left endpoint is the left
endpoint of u and whose right endpoint is the right endpoint of w. If the right
endpoint of w is strictly to the left of the left endpoint of u, then null is re-
turned. The views u and w must have the same underlying list, or one or both
may be that underlying list, and w must be non-null; otherwise Incompatible-
ViewException is thrown.

When list is the underlying list of view u, then u.Span(list) is a view that
spans from the left endpoint of u to the end of the list, and list.Span(u) is a
view that spans from the beginning of the list to the right endpoint of u.

• bool TrySlide(i) returns true if the given view can be slid by i items, and
in that case slides it exactly as Slide(i); otherwise returns false and does
not modify the given view. More precisely, returns true if i+Offset >= 0 and
i+Offset+Count <= Underlying.Count. Throws ReadOnlyCollectionException
if the view is read-only.

126 List views §8.1

• bool TrySlide(i, n) returns true if the given view can be slid by i items
and have its length set to n, and in that case slides it exactly as Slide(i, n);
otherwise returns false and does not modify the given view. More precisely,
returns true if i+Offset >= 0 and i+Offset+n <= Underlying.Count. Throws
ReadOnlyCollectionException if the view is read-only.

• The property Underlying returns the view’s underlying list, or returns null
if applied to a proper list. The expression (list.Underlying != null) is true
when list is a view and false when it is a proper list. Similarly, the expres-
sion (list.Underlying ?? list) evaluates to the underlying list regardless of
whether list is a view or itself a proper list.

8.1.3 Creating list views
There are several ways to create a view from a list or view list:

• Method list.View(i,n) creates and returns a new view with offset i and
length n. Throws ArgumentOutOfRangeException if the view would not fit
inside list; or more precisely, if i < 0 or n < 0 or i+n > list.Count.

• Method list.ViewOf(x) creates and returns a new view of length 1 containing
the first occurrence of item x in list, if any; otherwise returns null.

• Method list.LastViewOf(x) creates and returns a new view of length 1 con-
taining the last occurrence of item x in list, if any; otherwise returns null.

These methods work whether list is a view or a proper list. They always produce
a view of the underlying list, so the Offset of the resulting view will be relative to
that underlying list, not to any view.

8.1.4 One-item views and zero-item views
One-item and zero-item views are surprisingly useful as different kinds of cursors
on a list:

• An n-item list list has n distinct one-item views, created by list.View(i,1)
where 0 ≤ i < list.Count. A one-item view points at a particular item.

• An n-item list list has n+1 distinct zero-item views, created by list.View(i,0)
where 0 ≤ i≤ list.Count. A zero-item view u has u.Count = 0 and represents
a position between, or before or after, list items.

Zero-item view are conceptually and practically useful as inter-item cursors, pre-
cisely because there are enough of them to unambiguously point at a pre-item, inter-
item, or post-item space.

§8.1 List views 127

8.1.5 The effect of inserting or deleting an item
The effect on a view of an operation, such as insertion or deletion, depends on
whether the operation is performed on another view or the underlying list, or is
performed explicitly on that view. Insertions and deletions to the underlying list or
to another view before or inside a given view immediately show through the view.

The following rules apply when the operation is performed on another view or on
the underlying list:

• An insertion at the underlying list’s position i increases by 1 the offset of view
u if i <= u.Offset.

• An insertion at the underlying list’s position i increases by 1 the length of view
u if u.Offset < i < u.Offset+Count. It follows that the length of a zero-item
or one-item view is never affected by insertions into another view or into the
underlying list. This contributes to their usefulness as cursors.

• A deletion at the underlying list’s position i decreases by 1 the offset of view u
if i < u.Offset.

• A deletion at the underlying list’s position i decreases by 1 the length of view
u if u.Offset <= i < u.Offset+Count. It follows that deletion from another
view or from the underlying list never affects the length of a zero-item view,
whereas it might remove the sole item in a one-item view.

Operations performed explicitly on a given view w follow these rules:

• Insertion explicitly performed on a view increases its length by 1 and leaves
its offset unaffected.

• A deletion explicitly performed on a view decreases its length by 1 and leaves
its offset unaffected.

For instance, an insertion at the beginning of the underlying list in figure 8.1 is
at position i=0; it increases the offset of all views A–G by 1 but does not affect
their length. However, an insertion explicitly performed at the beginning of view A
increases the length of A by 1 and leaves its offset unaffected at 0, and increases the
offset of all views B–G by 1 but does not affect their length.

An insertion at the end of the underlying list in figure 8.1 is at position i=4; its
only effect on the views A–G is to increase the offset of the zero-item view E. In
particular, it does not affect the whole-list view G. However, an insertion into view
E will increase the length of E but not affect its offset, nor will it affect any of the
views A, B, C, D, F, G.

A newly created view is valid, but some operations on a list or another view of
the list may invalidate the view; see section 8.1.6. All operations on invalid views,
except for IsValid and Dispose, will throw ViewDisposedException.

128 List views §8.1

8.1.6 List views and multi-item list operations
Operations such as Reverse, Sort and Shuffle on a list or a list view u potentially
affect many items and therefore many views at once.

• u.Clear() where u is a list or list view affects another view w of the same
underlying list as follows:

– If w contains u, then w.Count is reduced by u.Count.
– Otherwise, if u contains w (but not vice versa), then w is cleared: w.Count

becomes zero, and w.Offset becomes u.Offset.
– Otherwise, if w is completely to the left of u, then w is unchanged.
– Otherwise, if w is completely to the right of u, then w.Offset is reduced by
u.Count.

– Otherwise, if u and w overlap (but neither contains the other) and w.Offset
< u.Offset, then w.Count is reduced by the length of the overlap.

– Otherwise, if u and w overlap (but neither contains the other) and w.Offset
> u.Offset, then w.Offset is reduced to u.Offset and w.Count is reduced
by the length of the overlap.

These cases are exhaustive. For instance, if w.Offset = u.Offset, then either
w is an empty view to the left of u, or w contains u, or u contains w. The intention
is that u.Clear() affects u and other views in the same way as removing the
items of u one by one, except that the two procedures will raise different events.
In particular, if u is a zero-item view, then u.Clear() affects no other view, and
if u is a one-item view, then u.Clear() has the same effects as deleting the item
at position u.Offset by u.Remove().

• u.Reverse(), where u is a list or view, affects another view w of the same un-
derlying list as follows:

– If w contains u, then the offset and length of w are unchanged.
– Otherwise, if u contains w (but not vice versa), then w is “mirrored” inside
u by setting w.Offset to 2 * u.Offset + u.Count - v.Offset - v.Count.

– Otherwise, if u and w do not overlap, then w is unchanged.
In particular, any zero-item views at the ends of u are unchanged.

– Otherwise, if u and w overlap (but none is contained in the other), then w
is invalidated.
It follows that u.Reverse() does not invalidate any zero-item or one-item
views. Also, when u is a proper list, then u.Reverse() does not invalidate
any views at all.

These cases are exhaustive. Also, when u is a zero-item or one-item view, then
u.Reverse() affects no other view.

§8.1 List views 129

• u.Sort(...) and u.Shuffle(...) where u is a list or list view, affect another
view w of the same underlying list as follows:

– If w contains u, then the offset and length of w are unchanged.
– Otherwise, if u contains w (but not vice versa), then w is invalidated.

It follows that when u is a proper list, then all views of u except zero-item
views at its ends are invalidated.

– Otherwise, if u and w do not overlap, then w is unchanged.
In particular, any zero-item views at the ends of u are unchanged.

– Otherwise, if u and w overlap but none is contained in the other, then w is
invalidated.

These cases are exhaustive. Also, when u is a zero-item or one-item view, then
u.Sort(...) and u.Shuffle(...) affect no other view.

8.1.7 List views and event handlers
One cannot attach an event handler (section 8.8) to a view, only to the underlying
list. Consequently, the item positions reported via the event arguments when an
event is raised are the absolute positions in the underlying list, even if the event
was raised as a consequence of calling a method on some view.

An attempt to add or remove an event handler on a view will throw InvalidOp-
erationException.

One can determine whether an event such as ItemInserted(coll, args) has af-
fected a given view u by examining args which is an object of class ItemAtEventArgs;
see section 8.8.6. Let uo be the Offset and uc the Count of view u before the event.
Then the event affected the view if uo <= args.Index && args.Index < uo + uc.

Also, when an operation such as Clear is applied to a view u, it raises a Collec-
tionCleared event (and no ItemsRemoved events) on the underlying list. The event
argument will be a ClearedRangeEventArgs object whose Full field is false, whose
Start field is uo and whose Count field is uc, where uo is the Offset and uc the Count
of view u before the Clear operation.

8.1.8 Views of a guarded list, and guarded views of a list
One can create a view vg of a GuardedList<T> (section 8.2). Clearly, such a view
does not permit updates of the underlying list, but one can slide the view, and one
can obtain and inspect (but not update) the underlying list vg.Underlying. Hence
one cannot use a view of a guarded list to hide parts of that list from a client.

Conversely one can put a GuardedList<T> wrapper around a list view to obtain
a guarded view gv of a list. A guarded view does not permit updating nor sliding,
but one can still use it to obtain and inspect (but not update) the underlying list
gv.Underlying. Hence one cannot use a guarded view of a list to hide parts of that
list from a client.

130 Read-only wrappers §8.2

8.2 Read-only wrappers
To provide read-only access to a collection, wrap it as a guarded collection. The
IsReadOnly property of a guarded collection is true. Structural modifications such
as adding, inserting, updating or removing items will throw ReadOnlyCollectionEx-
ception. However, a guarded collection cannot itself prevent modifications inside
each of the collection’s items. A guarded collection is not a copy of the underlying
collection coll, just a view of it, so modifications to the underlying collection will be
visible through the guarded-collection wrapper.

Typically the guarded collection will be passed to a method DoWork or some other
consumer that must be prevented from modifying the collection. For instance, for
a HashSet<T> collection the appropriate wrapper class is GuardedCollection<T>,
and the wrapper could be created and used like this:

HashSet<T> coll = ...;
DoWork(new GuardedCollection<T>(coll));

The method DoWork can be declared to take as argument an ICollection<T>; that
interface describes all the members of the GuardedCollection<T> class:

void DoWork<T>(ICollection<T> gcoll) { ... }

Similar read-only wrappers exist for the other collection classes and for the dictio-
nary classes. For each class the relevant read-only wrapper and the corresponding
interface are shown in figure 8.2. To create a read-only list view (section 8.1) use
the GuardedList<T> wrapper; the resulting view cannot be slid and its Underlying
property returns a read-only list.

Class Read-only wrapper classes Interface
HashSet<T> GuardedCollection<T> ICollection<T>
HashBag<T> GuardedCollection<T> ICollection<T>
TreeSet<T> GuardedIndexedSorted<T> IIndexedSorted<T>
TreeBag<T> GuardedIndexedSorted<T> IIndexedSorted<T>
SortedArray<T> GuardedIndexedSorted<T> IIndexedSorted<T>
ArrayList<T> GuardedList<T> IList<T>
HashedArrayList<T> GuardedList<T> IList<T>
LinkedList<T> GuardedList<T> IList<T>
HashedLinkedList<T> GuardedList<T> IList<T>
CircularQueue<T> GuardedQueue<T> IQueue<T>
HashDictionary<K,V> GuardedDictionary<K,V> IDictionary<K,V>
TreeDictionary<K,V> GuardedSortedDictionary<K,V> ISortedDictionary<K,V>

Figure 8.2: Read-only wrappers for collection and dictionary classes.

There is no wrapper class for priority queues; a read-only priority queue is not
very useful. A read-only FIFO queue, on the other hand, can at least be indexed

§8.2 Read-only wrappers 131

into. Some additional read-only wrapper classes are used when developing custom
collection classes as described in section 14.1.

You may wonder why we use guarded collection wrappers, which detect modifica-
tion attempts only at run-time, instead of ‘read-only’ interfaces, which could detect
modification attempts at compile-time simply by omitting operations that modify
the collection. The reason is that the ‘read-only’ interface approach does not work.

Namely, consider a hypothetical read-only interface IReadonlyList<T> that is
like IList<T> except that it does not expose operations that can modify the list.
Then we would expect that e.g. ArrayList<T> implements IReadonlyList<T>, and
we could pass an array list as an IReadonlyList<T> object readonlyList whenever
we want to guard it. However, the recipient could perform a run-time type test and
cast readonlyList down to LinkedList<T>, thus subverting all protection of the list.

This particular problem could be avoided by having distinct implementation
classes ArrayList<T> : IList<T> and GuardedList<T> : IReadonlyList<T>, and pre-
sumably IList<T> : IReadonlyList<T> so that a read-write list can be used every-
where a read-only list is expected. One problem with this is that a list view taken
off an IList<T> should implement IList<T>, whereas one taken off an IReadon-
lyList<T> should be a GuardedList<T> that implements IReadonlyList<T>. Hence
the return types of the ViewOf(T) and View and Slide methods would have to be
different in the two interfaces, which is currently not possible in the C# language,
although the CLI/.NET intermediate language does support co-variant return types.

132 Collections of collections §8.3

8.3 Collections of collections
Sometimes it is useful to create a collection whose items are themselves collec-
tions. For instance, one may use a dictionary whose keys are bags of characters
(section 11.4), or a dictionary whose keys are sets of integers (section 11.5). The
collection that contains other collections as items will be called the outer collection
and the collections that appear as items in the outer collection will be called inner
collections.

It is important that the inner collections have appropriate comparers or equality
comparers, including hash functions. Assume that the inner collection type is S and
that its item type is W; for instance, S may be HashSet<W> or ISorted<W>:

• When the outer collection is hash-based, an item equality comparer of type
SCG.IEqualityComparer<S> for the inner collections is created automatically;
see section 2.3. Usually this default equality comparer is appropriate.
For instance, when the inner collection type S implements ISequenced<W>,
the default equality comparer is a SequencedCollectionEqualityComparer<S,W>
whose equality and hash function take into account the order of items in the in-
ner collections. A sequenced equality comparer will be used when inner collec-
tions of type LinkedList<W>, ArrayList<W>, SortedArray<W>, TreeSet<W>,
or TreeBag<W> are used as items in a hash-based outer collection.
When the inner collection type S is unsequenced, that is, implements ICollec-
tionValue<W> but not ISequenced<W>, the default equality comparer will be
an UnsequencedCollectionEqualityComparer<T,W> whose equality and hash
function ignore the order of items in the inner collections. An unsequenced
equality comparer will be used when inner collections of type HashSet<W> or
HashBag<W> are used as items in a hash-based outer collection.

• Correctness Warning: Modifications to an inner collection after it has been
inserted as an item in an outer collection should be avoided. If the inner
collection’s equality function, hash function or comparer are affected by the
modification, the inner collection may be “lost” and no longer retrievable from
the outer collection, which will most likely cause strange errors; see antipat-
tern 132. A safe way to avoid such problems is make a read-only copy of the
inner collection before storing it in the outer collection. Tree snapshots are
ideal for this purpose; see pattern 86 and section 8.5.

• Correctness Warning: It is possible for a collection to be a member of itself,
but equality functions, hash functions and comparers are likely to go into an
infinite loop or overflow the call stack when applied to such a collection.

§8.4 Generic bulk methods 133

8.4 Generic bulk methods
You may wonder why some methods take a generic type parameter where one does
not seem to be needed. For instance, interface IExtensible<T> describes this generic
method that takes a type parameter U:

void AddAll<U>(SCG.IEnumerable<U> xs) where U : T;

One might think that this simpler non-generic method would suffice:

void AddAll(SCG.IEnumerable<T> xs);

However, the version with the additional generic type parameter is more generally
applicable. To see this, consider a class Vehicle with a subclass Car, and assume you
have two variables vehicles and cars, bound to lists of vehicles and cars, respec-
tively:

IList<Vehicle> vehicles = ...;
IList<Car> cars = ...;

Further suppose you want to add all items from cars to the vehicles list. Clearly
you could use vehicles.Add(car) to add a single Car to the vehicles list. However, if
only the second, non-generic version of AddAll is available, you cannot apply AddAll
to the cars list like this:

vehicles.AddAll(cars); // Illegal: cars not of type SCG.IEnumerable<Vehicle>

The problem is that although Car is a subtype of Vehicle, IList<Car> is not a subtype
of IList<Vehicle> and does not implement SCG.IEnumerable<Vehicle>.

The first, generic version of AddAll solves the problem by introducing some extra
flexibility. Namely, the additional type parameter U may be instantiated to Car.
First, this satisfies the type parameter constraint U : T since Car is a subclass of
Vehicle, and secondly, it makes cars a legal first argument for AddAll<Car>:

vehicles.AddAll<Car>(cars); // Legal: cars has type SCG.IEnumerable<Car>

The extra type parameter U on AddAll partially compensates for the fact that the
IList<T> type is neither covariant nor contravariant in the type parameter T.

The following generic bulk methods are described by interfaces IExtensible<T>,
ICollection<T>, IList<T> and ISorted<T>:

• void AddAll<U>(SCG.IEnumerable<U> xs) where U : T

• void AddSorted<U>(SCG.IEnumerable<U> xs) where U : T

• bool ContainsAll<U>(SCG.IEnumerable<U> xs) where U : T

• bool ContainsAny<U>(SCG.IEnumerable<U> xs) where U : T

• void InsertAll<U>(int i, SCG.IEnumerable<U> xs) where U : T

• void RemoveAll<U>(SCG.IEnumerable<U> xs) where U : T

• void RetainAll<U>(SCG.IEnumerable<U> xs) where U : T

134 Sorting arrays §8.6

8.5 Snapshots of tree-based collections
Tree-based sets and tree-based bags in C5 support efficient snapshots. In constant
time, regardless of the size of the set or bag, one can obtain a persistent (read-only)
copy the set or bag. Subsequent modification of the original set or bag will be slightly
slower and will use slightly more space; see sections 12.6 and 13.10.

Nevertheless, constant-time snapshots offer several advantages:

• One can iterate (using foreach) over a snapshot of a set or bag while updat-
ing the set or bag. Recall that usually one cannot update a collection while
iterating over it.

• Snapshots can be used to easily implement rather advanced and very efficient
algorithms, such as point location in the plane; see section 11.9.

8.6 Sorting arrays
Class Sorting provides several generic methods for sorting one-dimensional arrays:

• static void IntroSort<T>(T[] arr, int i, int n, SCG.IComparer<T> cmp)
sorts arr[i..(i+n-1)] using introspective quicksort and comparer cmp. This
sorting algorithm is not stable but guaranteed efficient, with worst-case execu-
tion time O(n logn). It must hold that 0 <= i and 0 <= n and i+n <= arr.Length.

• static void IntroSort<T>(T[] arr) sorts arr using introspective quicksort
and the default comparer for type T. This sorting algorithm is not stable but
guaranteed efficient, with execution time O(n logn) where n is the length of arr.

• static void InsertionSort<T>(T[] arr, int i, int n, SCG.IComparer<T> cmp)
sorts arr[i..(i+n-1)] using insertion sort and comparer cmp. This method
should be used only on short array segments, when n is small; say, less than
20.

• static void HeapSort<T>(T[] arr, int i, int n, SCG.IComparer<T> cmp)
sorts arr[i..(i+n-1)] using heap sort and comparer cmp. This sorting algo-
rithm is not stable but guaranteed efficient, with execution time O(n logn). In
practice it is somewhat slower than introspective quicksort.

In addition to the above array sort methods, the library provides an implementation
of merge sort for linked lists, via the Sort method; see page 73.

§8.8 Formatting of collections and dictionaries 135

8.7 Formatting of collections and dictionaries
For debugging purposes it is convenient to format or print collections and dictio-
naries as strings. However, it is inefficient and inconvenient to print a collection
with 50,000 items to the console. Therefore the collection classes provide facili-
ties for limiting the amount of output, displaying ellipses “...” in the resulting
string to indicate that some items are not shown. They do so by implementing the
C5.IShowable interface (section 3.9), which derives from System.IFormattable.

The results of formatting various kinds of collections and dictionaries are out-
lined in figure 8.3.

Class Output format Note
Array list or sorted array [0:x0, · · ·, n:xn]
Linked list [x0, · · ·, xn]
Circular queue [x0, · · ·, xn]
Priority queue { x0, · · ·, xn }
Hash set or tree set { x0, · · ·, xn }
Hash bag or tree bag {{ x0(*m0), · · ·, xn(*mn) }} if xi has multiplicity mi
Tree dictionary [k0 => v0, · · ·, kn => vn]
Hash dictionary { k0 => v0, · · ·, kn => vn }
Record (x0, · · ·, xn)

Figure 8.3: Formatting of collections with items x0, · · ·, xn, and of dictionaries with
(key,value) pairs (k0, v0), · · ·, (kn, vn).

In general, [· · ·] is a sequenced indexed collection; {· · ·} is an unsequenced collection
with set semantics; {{· · ·}} is an unsequenced collection with bag semantics; and
(· · ·) is a record: a pair, triple or quadruple.

The formatting of a collection or dictionary coll as a string can be requested in
several different ways:

• String.Format("{0}", coll) returns a formatted version of coll; this is equiv-
alent to coll.ToString().

• String.Format("{0:L327}", coll) returns a formatted version of coll using
up to roughly 327 characters. Items omitted from the output because of the
space limit are displayed using an ellipsis “. . . ”. The formatting specifier
"L327" can be used also in calls to the methods Console.WriteLine, String.Format
and StringBuilder.AppendFormat.

Both the above formatting methods draw on the same underlying formatting rou-
tines, so the formatted result will be the same. Formatting is applied recursively,
so formatting a linked list of sets of integers may produce a result of the form
[{1,2},{1,3}].

All collection classes implement the interface System.IFormattable to permit the
use of formatting specifications as shown above. The actual implementation of out-
put limitation is specified by interface IShowable; see section 3.9.

136 Events: Observing changes to a collection §8.8

8.8 Events: Observing changes to a collection
Often one part of a system needs to be notified when another part of the system is
modified in some way. For instance, a graphical display may need to be updated
when items are added to or removed from a list of possible choices. To obtain no-
tification about such modifications of a collection, one associates an event handler,
which is a delegate, with a particular event on the collection. When the collection is
modified by an insertion, say, the relevant event is raised by calling the associated
event handler (if any).

8.8.1 Design principles for collection events
• The events raised by modifying a collection should permit observers to effi-

ciently discover in what way the collection was modified.

In principle, it would suffice to report that the collection changed somehow
and leave it to the observer to determine what happened by inspection of the
collection. But that may be very inefficient if the change is the removal of
a single item from a million-item collection. Hence C5 provides events that
report precisely the item(s) affected by the change.

• It should be safe for the event handler to inspect the collection.

Therefore events are raised, and event handlers called, only when the collec-
tion is in a consistent state, and only after an update has been successfully
performed on the collection.

• The sequence of events raised by a collection update should accurately reflect
the resulting state of the collection.

This holds even if the update fails by throwing an exception (other than by
a comparer or equality comparer), and it holds even for a bulk update that
partially updates the collection and then throws an exception.

• Events should be precise: an event is raised only if there is an actual change to
the collection, not just as a consequence of calling a method such as AddAll(xs).
Such a call will actually cause no change if xs is empty, or if the collection has
set semantics and contains all items of xs already.

• The use or non-use of events should not change the asymptotic run-time or
space complexity of an operation.

As a consequence of this principle, the Clear method does not generate an
ItemsRemoved event for every item removed, only a CollectionCleared event
and a CollectionChanged event. Note that this holds even for a Clear opera-
tion on a list view. So list.View(0,10).Clear(), which removes the first 10
items from list, will not generate ten ItemsRemoved events, but one Collec-
tionCleared event that carries a description of the range of indexes cleared.

§8.8 Events: Observing changes to a collection 137

Similarly, let bag be a bag collection for which DuplicatesByCounting is true.
Then bag.Update(x) raises the three events ItemsRemoved, ItemsAdded and
CollectionChanged once each with an event argument giving the multiplicity
of x in the bag, regardless of that multiplicity, and even though all copies of x
are updated.

• The Reverse, Shuffle, and Sort operations on a list generate only a Collec-
tionChanged event, no ItemsAdded or ItemsRemoved events. Therefore the
precise effect of such multi-item operations cannot be tracked using events;
one must inspect the collection to establish its state.

• A sequence of descriptive events signaling the concrete changes is always fol-
lowed by a CollectionChanged event that signals the end of information about
this update.

• A CollectionChanged event is preceded by one or more descriptive events, ex-
cept in the case of multi-item updates caused by Reverse, Shuffle or Sort,
where a CollectionChanged event may follow another CollectionChanged event
without any intervening events.

8.8.2 Interfaces, events and event handlers
An event handler for an event X is a delegate of type XHandler. When an event
is raised, the handlers currently associated with that event are called. Figure 8.4
shows the events supported by the C5 collection library, as well as the event handler
type (delegate type, see section 8.8.5) and event argument type for each event. All
events are declared in the ICollectionValue<T> interface.

When an event handler is called, the internal state of the collection is consistent,
so it is safe for the event handler to use the collection, for instance query its size,
or enumerate its items. However, the event handler should not modify the collec-
tion. Such modification may cause confusion at the code that caused the original
modification and may lead to an infinite chain of collection changes and event han-
dler calls. Moreover, the collection class implementations do not protect themselves
against such changes, so they may lead to inexplicable failures.

For efficiency, an observer should add handlers only for events that are interest-
ing to the observer. Section 9.23 shows some usage patterns for event handlers.

Event Event handler type Page Event argument type Page
CollectionChanged CollectionChangedHandler<T> 139 (none)
CollectionCleared CollectionClearedHandler<T> 139 ClearedEventArgs 141
ItemsAdded ItemsAddedHandler<T> 140 ItemCountEventArgs<T> 142
ItemInserted ItemInsertedHandler<T> 140 ItemAtEventArgs<T> 141
ItemsRemoved ItemsRemovedHandler<T> 140 ItemCountEventArgs<T> 142
ItemRemovedAt ItemRemovedAtHandler<T> 140 ItemAtEventArgs<T> 141

Figure 8.4: Events, event handler types, and event argument types.

138 Events: Observing changes to a collection §8.8

8.8.3 Methods and the event sequences they raise
Figure 8.5 shows for each method the sequence of events it may raise. A (+) after an
event sequence means that the event sequence may be repeated one or more times.
Square brackets [. . .] around an event means that it may be omitted. If a call to
AddAll, Clear, RemoveAll, RemoveAllCopies, RetainAll or RemoveInterval does not
modify the collection, then no events are raised, not even CollectionChanged.

Methods Event sequence
Add ItemsAdded, CollectionChanged
AddAll ItemsAdded+, CollectionChanged
Clear CollectionCleared, CollectionChanged
Insert, InsertFirst, ... ItemInsertedAt, ItemsAdded, CollectionChanged
InsertAll (ItemInsertedAt, ItemsAdded)+, CollectionChanged
Remove ItemsRemoved, CollectionChanged
RemoveAt, RemoveFirst, ... ItemRemovedAt, ItemsRemoved, CollectionChanged
RemoveAll, RetainAll ItemsRemoved+, CollectionChanged
RemoveInterval CollectionCleared, CollectionChanged
RemoveAllCopies ItemsRemoved, CollectionChanged
Update ItemsRemoved, ItemsAdded, CollectionChanged
UpdateOrAdd [ItemsRemoved,] ItemsAdded, CollectionChanged
this[i]=x ItemRemovedAt, ItemsRemoved,

ItemInserted, ItemsAdded, CollectionChanged
Push, Enqueue ItemInserted, ItemsAdded, CollectionChanged
Pop, Dequeue ItemRemovedAt, ItemsRemoved, CollectionChanged

Figure 8.5: Methods and their event sequences. An event sequence followed by (+)
may be raised one or more times. An event within [. . .] may or may not be raised.

8.8.4 Listenable events
All six events are defined on interface ICollectionValue<T> (section 4.2) but some
collection implementations support only a subset of the events, as shown in fig-
ure 8.6. The results are those reported by property ListenableEvents (see page 49)
using type EventTypeEnum (section 3.1).

8.8.5 The event handler types
An event handler is a delegate. All event handlers in C5 have return type void,
but each event handler takes a specific argument that provides information about
the event. In all cases, the collection that was modified (the so-called sender of the
event) is passed to the event handler as the first argument. For list collections,
the sender is always the underlying list, even if the modification was performed by
calling a method on a view of that list.

§8.8 Events: Observing changes to a collection 139

Class Listenable events
CircularQueue<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
ArrayList<T> All
LinkedList<T> All
HashedArrayList<T> All
HashedLinkedList<T> All
SortedArray<T> None
WrappedArray<T> None
TreeSet<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
TreeBag<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
HashSet<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
HashBag<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
IntervalHeap<T> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
HashDictionary<K,V> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved
TreeDictionary<K,V> CollectionChanged, CollectionCleared, ItemsAdded, ItemsRemoved

Figure 8.6: Listenable events on collection and dictionary classes.

As explained below, additional event-specific information such as the item that
was inserted or deleted, or the position at which the insertion or deletion happen,
may also be passed. For list collections, such position information is always the
absolute position in the underlying list, even if the modification was performed by
calling a method on a view of that list.

Event handler type CollectionChangedHandler<T>

This handler type is declared as

delegate void CollectionChangedHandler<T>(Object coll)

It is called as collectionChanged(coll) when all other events caused by a change to
collection coll have been raised.

Event handler type CollectionClearedHandler<T>

This handler type is declared as

delegate void CollectionClearedHandler<T>(Object coll, ClearedEventArgs args)

It is called as collectionCleared(coll, new ClearedEventArgs(true, n)) when Clear()
is called on an entire collection coll, that is, not on a list view or index range. In
this case n equals coll.Count, the number of items in the collection before the mod-
ification.

It is called as collectionCleared(coll, new ClearedRangeEventArgs(false, i,
n)) when Clear() is called on some view u whose underlying list is coll, in which
case i = u.Offset and n = u.Count; or when coll.RemoveInterval(i,n) is called
and coll is an indexed collection and not a list view; or when u.RemoveInterval(j,n)
is called and u is a view with underlying list coll, in which case i = u.Offset+j.

140 Events: Observing changes to a collection §8.8

Event handler type ItemsAddedHandler<T>

This handler type is declared as

delegate void ItemsAddedHandler<T>(Object coll, ItemCountEventArgs<T> args)

It is called as itemsAdded(coll, new ItemCountEventArgs<T>(x,n)) when n>0 copies
of item x are added to collection coll. In the frequent case where just a single copy of
x is added, n will be 1. When AddAll(xs) is used to add items to the collection, then
the ItemsAddedHandler<T> is called repeatedly, once for each item that is actually
added to the collection, followed by a final call to a CollectionChangedHandler<T>
if any items were added.

Event handler type ItemInsertedHandler<T>

This handler type is declared as

delegate void ItemInsertedHandler<T>(Object coll, ItemAtEventArgs<T> args)

It is called as itemInserted(coll, new ItemAtEventArgs<T>(x, i)) when an item
x is inserted at position i in collection coll, by Insert, InsertFirst or InsertLast
or by aliases such as Push, Pop, Enqueue or Dequeue. When AddAll(xs) is used to
add items starting at a particular position in the collection, then the ItemsAdded-
Handler<T> is called repeatedly, once for each item that is actually added to the
collection, followed by a final call to a CollectionChangedHandler<T> if any items
were added.

Event handler type ItemsRemovedHandler<T>

This handler type is declared as

delegate void ItemsRemovedHandler<T>(Object coll, ItemCountEventArgs<T> args)

It is called as itemsRemoved(coll, new ItemCountEventArgs<T>(x, n)) when n > 0
copies of item x are removed from collection coll, whether by Remove, Update, Update-
OrAdd or similar, or by overwriting using an indexer. In the frequent case where just
a single copy of x is removed, n is 1.

Event handler type ItemRemovedAtHandler<T>

This handler type is declared as

delegate void ItemRemovedAtHandler<T>(Object coll, ItemAtEventArgs<T> args)

It is called as itemRemovedAt(coll, new ItemAtEventArgs<T>(x, i)) when item x is
removed from position i in collection coll, by RemoveAt, RemoveFirst or RemoveLast.
Every ItemRemovedAt event is always followed by an ItemsRemoved event with the
same collection argument coll and the item argument x.

§8.8 Events: Observing changes to a collection 141

8.8.6 The event argument types
These four classes are used to provide information about collection events. They all
derive from System.EventArgs in the CLI (or .NET Framework) class library.

Event argument type ClearedEventArgs

This class and its subclasses describe a CollectionCleared event that concerns all or
part of a collection. The class derives from System.EventArgs and has two public
fields and one constructor:

• Read-only field int Count is the number of items cleared by the operation.

• Read-only field bool Full is true if the entire collection (as opposed to a list
view or an index range) was cleared. It is false if a list view or index range was
cleared, even if the view or index range comprised the entire collection.

• Constructor ClearedEventArgs(bool full, int n) creates a new cleared event
argument object with Full equal to full and count n.

Event argument type ClearedRangeEventArgs

This class describes a CollectionCleared event that concerns part of a collection,
such as a list view or index range. The class derives from ClearedEventArgs from
which it inherits fields Full and Count; in addition it has one field and one construc-
tor:

• Read-only field int? Start is the position of the first item in the range deleted,
when known. The position is known if Start.HasValue is true, or equivalently,
Start != null. The Start position may be unknown if an operation is per-
formed through a view on a HashedLinkedList<T>, but is always known for
operations on array lists, hashed array lists and linked lists.

• Constructor ClearedRangeEventArgs(int i, int n) creates a cleared range
event argument object with Full being false, offset i and count n.

Event argument type ItemAtEventArgs<T>

This class derives from System.EventArgs and has two public fields and one con-
structor:

• Read-only field int Index is the index at which the insertion or deletion oc-
curred.

• Read-only field T Item is the item that was inserted or deleted.

• Constructor ItemAtEventArgs<T>(T x, int i) creates a new event argument
object with item x and known index i.

142 Cloning of collections §8.10

Event argument type ItemCountEventArgs<T>

This class derives from System.EventArgs and has two public fields and one con-
structor:

• Read-only field int Count is the multiplicity with which the insertion or dele-
tion occurred. The multiplicity will always be greater than 0 for events raised
by the C5 collection classes; it is 1 when only a single copy of an item was added
or removed; and it may be greater than 1 when manipulating collections that
have bag semantics and for which DuplicatesByCounting is true,

• Read-only field T Item is the item that was inserted or removed.

• Constructor ItemCountEventArgs<T>(T x, int n) creates a new event ar-
gument object with item x and count n.

8.9 Cloning of collections
Collections that implement IExtensible<T> are cloneable, and so are all dictionar-
ies. In particular, they implement the interface System.ICloneable which describes
this method:

• Object Clone() creates and returns a shallow copy of the given collection or
dictionary.

Cloning returns a new collection or dictionary containing the same items as the
given one, and having the same comparer, equality comparer and so on. Cloning
produces a shallow copy: it does not attempt to clone the collection’s items them-
selves.

In general, when coll is an extensible collection or a dictionary, then

newColl = coll.Clone();

is equivalent to

newColl = ... new collection of appropriate type ...;
newColl.AddAll(coll);

but the former is usually more efficient. As a consequence of this, the clone of a list
view is not a new list view, but a new list containing the same items as the given
view.

The clone of a guarded collection is a guarded collection of the same kind.

§8.10 Serialization 143

8.10 Serialization
All C5 collection classes, dictionary classes and exception classes are serializable
using the System.Runtime.Serialization.Formatter.Binary namespace, which sup-
ports serialization to and deserialization from binary format. The example below
shows how a collection can be serialized to file and subsequently deserialized.

Collections cannot be serialized using the System.Xml.Serialization namespace.
First, that would require collections to implement a public method Add(Object obj),
which would completely undermine type safety, and also subvert read-only collec-
tions such as GuardedList<T>. Secondly, XML serialization as implemented by that
namespace does not preserve sharing in the object graph and hence would disrupt
most of the internal data structures of collections and dictionaries.

Furthermore, System.Runtime.Serialization.Formatter.Soap cannot be used be-
cause it does not support generic types. Also, that serializer is deprecated starting
with .NET version 3.5.

Here is an example showing how to serialize a linked list to a file and how to
deserialize it from file again. We need these using declarations:

using System.IO; // FileStream, Stream
using System.Runtime.Serialization.Formatters.Binary; // BinaryFormatter

Now we can create a BinaryFormatter instance and define a pair of general serial-
ization and deserialization methods:

private static readonly BinaryFormatter formatter = new BinaryFormatter();

public static void ToFile<T>(IExtensible<T> coll, String filename) {
Stream outstream = new FileStream(filename, FileMode.OpenOrCreate);
formatter.Serialize(outstream, coll);
outstream.Close();

}

public static T FromFile<T>(String filename) {
Stream instream = new FileStream(filename, FileMode.Open);
Object obj = formatter.Deserialize(instream);
instream.Close();
return (T)obj;

}

To illustrate the use of these, we create a list of some recent US presidents, serialize
it, and deserialize it:

IList<String> names = new LinkedList<String>();
String reagan = "Reagan";
names.AddAll(new String[] { reagan, reagan, "Bush", "Clinton",

"Clinton", "Bush", "Bush" });
ToFile(names, "prez.bin");
IList<String> namesFromFile = FromFile<IList<String>>("prez.bin");

144 Thread safety and locking §8.11

The deserialized linked list namesFromFile is sequenced-equals to names, and the
deserialized strings are distinct objects from the original strings, but deserialization
preserves sharing: objects that were shared in the serialized data structure are
shared also in deserialized data structure:

names.SequencedEquals(namesFromFile) True
Object.ReferenceEquals(reagan, namesFromFile[1]) False
Object.ReferenceEquals(namesFromFile[0], namesFromFile[1]) True

8.11 Thread safety and locking
The C5 collection and dictionary implementations are intentionally not thread-safe:
modifying the same collection or dictionary from multiple concurrent threads may
corrupt internal data structures and produce arbitrary behavior. This is the case
also for the Java’s collection classes and for the standard C#/.NET collection classes
in System.Collections.Generic.

For safe concurrent use of a collection or dictionary, lock on an object sync before
manipulating the collection(s):

private static readonly Object sync = new Object();

public static void SafeAdd<T>(IExtensible<T> coll, T x) {
lock (sync) {

coll.Add(x);
}

}

The sync object should be private and not exposed to clients, because one client
thread could block other threads by — intentionally or unintentionally — locking
on that object.

Locking is even more important if an update affects more than one collection or
dictionary:

private static readonly Object sync = new Object();

public static void SafeMove<T>(ICollection<T> from, ICollection<T> to) {
lock (sync)

if (!from.IsEmpty) {
T x = from.Choose();
Thread.Sleep(0); // yield processor to other threads
from.Remove(x);
to.Add(x);

}
}

§8.11 Thread safety and locking 145

Preferably lock on a single object as shown above. If multiple locks need to be ob-
tained, there is a risk of introducing a deadlock, unless the locks are always consis-
tently obtained in the same order.

The C5 collections and dictionaries intentionally do not have a SyncRoot property
that returns an object on which to synchronize a collection. Such a property was pro-
vided by the non-generic System.Collections namespace, and also by C5.IList<T> to
support the non-generic SC.IList interface, but was abandoned in the more recent
System.Collections.Generic namespace. The reason is that SyncRoot appears to en-
courage locking on a single collection at a time, which leads to race conditions or
deadlocks when multiple collections and multiple locks are involved. For similar
reasons, C5 does not provide synchronized wrappers around collections.

While multi-threaded writes require locking, read access does not. Multiple
threads can query the same C5 collection or dictionary, or enumerate it, at the same
time without locking, provided no threads write to the collection or dictionary at the
same time.

However, recall that while enumerating a collection or dictionary (with foreach
or similar), one must not modify it, neither from the enumerating thread nor from
a different one. Doing so will throw CollectionModifiedException at the first sub-
sequent step of the enumeration; see section 3.7.2. A tree-based collection can be
safely enumerated while modifying it; see pattern 66.

146 Thread safety and locking §8.11

Chapter 9

Programming patterns in C5

9.1 Patterns for read-only access
A collection or dictionary can be made read-only by wrapping it as a guarded collec-
tion; see section 8.2 for an overview. Then the guarded collection can be passed to
other methods or objects without risk of their directly modifying it.

Pattern 1 Read-only access to a hash-based collection
Typically a guarded collection will be passed to a method DoWork or some other con-
sumer that must be prevented from modifying the collection. For a HashSet<T>
or HashBag<T> collection the appropriate wrapper class is GuardedCollection<T>,
which implements interface ICollection<T>:

ICollection<T> coll = new HashSet<T>();
...
DoWork(new GuardedCollection<T>(coll));

The method DoWork can be declared to take as argument an ICollection<T>; that
interface describes all the members of the GuardedCollection<T> class:

static void DoWork<T>(ICollection<T> gcoll) { ... }

Pattern 2 Read-only access to an indexed collection
The GuardedIndexedSorted<T> wrapper class implements all members of the in-
terface IIndexedSorted<T> and is used to provide read-only access to a TreeSet<T>,
TreeBag<T> or SortedArray<T>.

IIndexedSorted<T> coll = new TreeSet<T>();
...
DoWork(new GuardedIndexedSorted<T>(coll));

static void DoWork<T>(IIndexedSorted<T> gcoll) { ... }

147

148 Patterns using zero-item views §9.2

Pattern 3 Read-only access to a list
The GuardedList<T> wrapper class implements the IList<T> interface and is used
to provide read-only access to an ArrayList<T>, HashedArrayList<T>, LinkedList<T>,
HashedLinkedList<T>, or WrappedArray<T>.

IList<T> coll = new ArrayList<T>();
...
DoWork(new GuardedList<T>(coll));

static void DoWork<T>(IList<T> gcoll) { ... }

Pattern 4 Read-only access to a hash dictionary
The GuardedDictionary<K,V> wrapper class implements the IDictionary<K,V> in-
terface and is suitable for providing read-only access to a HashDictionary<K,V>.

IDictionary<K,V> dict = new HashDictionary<K,V>();
...
DoWork(new GuardedDictionary<K,V>(dict));

static void DoWork<K,V>(IDictionary<K,V> gdict) { ... }

Pattern 5 Read-only access to a tree dictionary
The GuardedSortedDictionary<K,V> wrapper class implements the interface ISorted-
Dictionary<K,V> and is used to provide read-only access to a TreeDictionary<K,V>.

ISortedDictionary<K,V> dict = new TreeDictionary<K,V>();
...
DoWork(new GuardedSortedDictionary<K,V>(dict));

static void DoWork<K,V>(ISortedDictionary<K,V> gdict) { ... }

9.2 Patterns using zero-item views
A zero-item view can be used to point between any two list items, or before or after
a list item, rather than point at a list item. This is useful for indicating where to
insert new items; see pattern 12. Let view be a zero-item view of a list list.

Pattern 6 Get the number of list items before (zero-item) view

view.Offset

Pattern 7 Get the number of list items after zero-item view

view.Underlying.Count - view.Offset

§9.2 Patterns using zero-item views 149

Pattern 8 Move the view one item to the left
The first alternative throws ArgumentOutOfRangeException if there is no item be-
fore the view, whereas the second alternative just returns false.

view.Slide(-1) view.TrySlide(-1)

Pattern 9 Move the view one item to the right
The first alternative throws ArgumentOutOfRangeException if there is no item af-
ter the view, whereas the second alternative just returns false.

view.Slide(+1) view.TrySlide(+1)

Pattern 10 Test whether (zero-item) view is at beginning of underlying list

view.Offset == 0

Pattern 11 Test whether zero-item view is at end of underlying list

view.Offset == view.Underlying.Count

Pattern 12 Insert item at position indicated by zero-item view
An item x can be inserted at the inter-item space pointed to by a zero-item view
in two ways. This will insert x into the underlying list and into the view, which
will become a one-item view pointing at the item, provided insertion succeeds and
returns true:

view.Add(x)

This will insert x into the underlying list (and into any overlapping views), but the
given view will remain a zero-item view that points before the newly inserted item:

list.Insert(view, x)

Pattern 13 Delete the item before the view
This throws ArgumentOutOfRangeException if there is no item before the view. The
call to RemoveFirst is possible because Slide returns the view after sliding it.

view.Slide(-1,1).RemoveFirst()

Pattern 14 Delete the item after the view
This throws ArgumentOutOfRangeException if there is no item after the view. The
call to RemoveFirst is possible because Slide returns the view after sliding it.

view.Slide(0,1).RemoveFirst()

150 Patterns using one-item views §9.3

Pattern 15 Get a zero-item view at the left or right end of a list or view
These operations succeed whenever list is a proper list or a valid view.

public static IList<T> LeftEndView<T>(IList<T> list) {
return list.View(0,0);

}
public static IList<T> RightEndView<T>(IList<T> list) {
return list.View(list.Count,0);

}

9.3 Patterns using one-item views
A one-item view can be used to point at any list item, rather than between items as
does a zero-item view. This can be used to delete the item, replace the item, insert
new items before or after it, and in general to reach nearby items. For instance, the
IList<T> methods

IList<T> ViewOf(T y)
IList<T> LastViewOf(T y)

return a one-item view of y, or return null if y is not in the list. If the list is a
HashedArrayList<T> or a HashedLinkedList<T> then these operations are fast; if
the list is just an ArrayList<T> or a LinkedList<T>, they require a linear search
and will be slow unless the list is short.

Note that a one-item view is a kind of item cursor on a list, pointing at an item
in a list or view. There can be several cursors on the same list at the same time.
Insertion into a one-item view increases its length (Count), but insertion into other
views or into the underlying list never affects the length (but possibly the offset) of
a one-item view. Deletion from another view or from the underlying list may delete
the sole item in a one-item view and thus reduce its length.

When list is an IList<T>, the following code patterns may be used.

Pattern 16 Get the sequence predecessor of y
This throws NullReferenceException if y is not in the list and throws ArgumentOut-
OfRangeException if y has no predecessor.

public static T SequencePredecessor<T>(IList<T> list, T y) {
return list.ViewOf(y).Slide(-1)[0];

}

Pattern 17 Get the sequence predecessor x of y without exceptions
This returns true and sets x to the predecessor of y if y is in the list and has a
predecessor; otherwise returns false.

§9.3 Patterns using one-item views 151

public static bool SequencePredecessor<T>(IList<T> list, T y, out T x) {
IList<T> view = list.ViewOf(y);
bool ok = view != null && view.TrySlide(-1);
x = ok ? view[0] : default(T);
return ok;

}

Note the use of TrySlide to determine whether there is a predecessor for y. Using
view.Offset >= 1 or similar would needlessly compute the precise offset of y, when
only one bit of information is needed: whether the view can be slid left by one item.

Pattern 18 Get the sequence successor of first (leftmost) y
This throws NullReferenceException if y is not in the list and throws ArgumentOut-
OfRangeException if y has no successor.

public static T SequenceSuccessor<T>(IList<T> list, T y) {
return list.ViewOf(y).Slide(+1)[0];

}

Pattern 19 Get the sequence successor x of first y, without exceptions
This returns true and sets x to the successor of y if y is in the list and has a successor;
otherwise returns false. It uses TrySlide for the same reason as pattern 17.

public static bool SequenceSuccessor<T>(IList<T> list, T y, out T x) {
IList<T> view = list.ViewOf(y);
bool ok = view != null && view.TrySlide(+1);
x = ok ? view[0] : default(T);
return ok;

}

Pattern 20 Insert a new item x as sequence successor to first y
This operation works both when list is a proper list and when it is a view. It
succeeds provided list contains y and is not read-only, and throws NullReference-
Exception if y is not in list.

public static void InsertAfterFirst<T>(IList<T> list, T x, T y) {
list.Insert(list.ViewOf(y), x);

}

The call ViewOf(y) finds the first (leftmost) one-item view that contains y (if any),
and then Insert inserts x into list at the end of that view, that is, after y. Using
LastViewOf(y) one can insert after the last (rightmost) occurrence of y instead.

When list is a view, this is subtly different from list.ViewOf(y).InsertLast(x),
which will insert x into the underlying proper list, but not into the view list.

152 Patterns using views §9.4

Pattern 21 Insert a new item x as sequence predecessor to first y
This operation works both when list is a proper list and when it is a view. It
succeeds provided list contains y and is not read-only, and throws NullReference-
Exception if y is not in list.

public static void InsertBeforeFirst<T>(IList<T> list, T x, T y) {
list.Insert(list.ViewOf(y).Slide(0, 0), x);

}

The call ViewOf(y) finds the first (leftmost) one-item view that contains y (if any);
then Slide(0, 0) makes it a zero-item view before the occurrence of y; and then
Insert inserts x at that position. Using LastViewOf(y) one can insert before the last
(rightmost) occurrence of y instead.

Pattern 22 Delete the sequence predecessor of y
This operation throws NullReferenceException is y is not in the list.

public static T RemovePredecessorOfFirst<T>(IList<T> list, T y) {
return list.ViewOf(y).Slide(-1).Remove();

}

Pattern 23 Delete the sequence successor of y
This operation throws NullReferenceException is y is not in the list.

public static T RemoveSuccessor<T>(IList<T> list, T y) {
return list.ViewOf(y).Slide(+1).Remove();

}

9.4 Patterns using views
Pattern 24 Allocating a view with the using statement
This method replaces the first occurrence of each x from xs by y in list. For each x
in xs that appears in list, a new view is created that contains an item equal to x.
That item is removed (so the view becomes empty) and y is inserted instead.

public static void ReplaceXsByY<T>(HashedLinkedList<T> list, T[] xs, T y) {
foreach (T x in xs) {

using (IList<T> view = list.ViewOf(x)) {
if (view != null) {

view.Remove();
view.Add(y);

}
}

}
}

§9.4 Patterns using views 153

By allocating the view variable in the using statement we make sure that the view
is disposed (invalidated) immediately after its last use. This is a sensible thing to
do, because the time to insert or remove items in a list grows with the number of
live views on that list.

Pattern 25 Index of left or right endpoint of a view
The right and left endpoints of a view is the index of its first and last item in the
underlying list.

public static int LeftEndIndex<T>(IList<T> view) {
return view.Offset;

}
public static int RightEndIndex<T>(IList<T> view) {

return view.Offset + view.Count;
}

Pattern 26 Determine whether views overlap
Two views u and w of the same underlying list overlap if they have some item in
common or one is an empty view strictly inside the other.

public static bool Overlap<T>(IList<T> u, IList<T> w) {
if (u.Underlying == null || u.Underlying != w.Underlying)
throw new ArgumentException("views must have same underlying list");

else
return u.Offset < w.Offset+w.Count && w.Offset < u.Offset+u.Count;

}

Pattern 27 Determine length of overlap of views
The length of the overlap of views u and w is the number of items they have in
common. If one view is a zero-item view inside another view, the length of the
overlap may be zero even though the views overlap.

public static int OverlapLength<T>(IList<T> u, IList<T> w) {
if (Overlap(u, w))
return Math.Min(u.Offset+u.Count, w.Offset+w.Count)

- Math.Max(u.Offset, w.Offset);
else
return -1; // No overlap

}

Pattern 28 Determine whether one view contains another view
View u contains view w of the same underlying list if w is non-empty and both the
left and right endpoints of w are within u, or if w is empty and strictly inside u.

154 Patterns using views §9.4

public static bool ContainsView<T>(IList<T> u, IList<T> w) {
if (u.Underlying == null || u.Underlying != w.Underlying)

throw new ArgumentException("views must have same underlying list");
else

if (w.Count > 0)
return u.Offset <= w.Offset && w.Offset+w.Count <= u.Offset+u.Count;

else
return u.Offset < w.Offset && w.Offset < u.Offset+u.Count;

}

Pattern 29 Determine whether two lists or views have the same underlying list
The requirement of u and w having the same underlying list may be relaxed by
permitting u or w or both to be proper lists, not views. Then we get: Two lists or
views u and w have the same underlying list if both are the same proper list, or both
are views with the same underlying list, or one is a view whose underlying list is
the other one. This method intentionally throws NullReferenceException if either u
or w is null.

public static bool SameUnderlying<T>(IList<T> u, IList<T> w) {
return (u.Underlying ?? u) == (w.Underlying ?? w);

}

Pattern 30 Use views to find index of the first item that satisfies a predicate
This pattern shows a possible implementation of method FindFirstIndex(p) from
interface IList<T> using views. It is efficient for array lists as well as linked lists.
This method creates a view and slides it over the list, from left to right. For each
list item x it evaluates the predicate p(x) and if the result is true, returns the offset
of the view, which is the index of the first item satisfying p.

Note how the view is initially empty and points at the beginning of the list,
before the first item (if any). Then the view is extended to length 1 if possible, and
p is applied to the item within the view. If the result is false, the view is slid right
by one position and shrunk to length 0 at the same time (always possible at that
point), and the procedure is repeated.

public static int FindFirstIndex<T>(IList<T> list, Fun<T,bool> p) {
using (IList<T> view = list.View(0, 0)) {

while (view.TrySlide(0, 1)) {
if (p(view.First))

return view.Offset;
view.Slide(+1, 0);

}
}
return -1;

}

§9.4 Patterns using views 155

Pattern 31 Use views to find index of the last item that satisfies a predicate
This pattern shows a possible implementation of method FindLastIndex(p) from
interface IList<T> using views, which is efficient for array lists as well as linked
lists. The method creates a view and slides it over the list, from right to left. For
each list item x it evaluates the predicate p(x) and if the result is true, returns the
offset of the view, which is the index of the last item satisfying p. Note how the
view is initially empty and points at the end of the list, after the last item (if any).
Then the view is slid left by 1 position and extended to length 1, if possible, and p is
applied to the item at that position.

public static int FindLastIndex<T>(IList<T> list, Fun<T,bool> p) {
using (IList<T> view = list.View(list.Count, 0)) {
while (view.TrySlide(-1, 1)) {
if (p(view.First))

return view.Offset;
}

}
return -1;

}

Pattern 32 Use views to find the indexes of all items equal to a given one
This method uses ViewOf on ever shorter tails (views) of a list to find all indexes of
items equal to x. At any time, the view tail represents the list suffix that begins
at tail.Offset. Using ViewOf, the suffix is searched for the first occurrence of x, if
any; the tail is updated to point at that occurrence, the left endpoint of tail is slid
past the occurrence, tail is extended to span the rest of the list, and the search is
repeated.

public static SCG.IEnumerable<int> IndexesOf<T>(IList<T> list, T x) {
IList<T> tail = list.View(0, list.Count);
tail = tail.ViewOf(x);
while (tail != null) {
yield return tail.Offset;
tail = tail.Slide(+1,0).Span(list);
tail = tail.ViewOf(x);

}
}

156 Patterns for item search in a list §9.6

9.5 Patterns for item search in a list
Let list be an IList<T>, such as ArrayList<T>, LinkedList<T>,
HashedArrayList<T>, HashedLinkedList<T>, or WrappedArray<T>.

Pattern 33 Find the first (leftmost) position of item x in list

int j = list.IndexOf(x);
if (j >= 0) {
// x is a position j in list

} else {
// x is not in list

}

Pattern 34 Find the last (rightmost) position of item x in list

int j = list.LastIndexOf(x);
if (j >= 0) {
// x is at position j in list

} else {
// x is not in list

}

Pattern 35 Find the first (leftmost) index of item x in the sublist list[i..i+n-1]

int j = list.View(i,n).IndexOf(x);
if (j >= 0) {
// x is at position j+i in list

} else {
// x is not in list[i..i+n-1]

}

Pattern 36 Find the last (rightmost) index of item x in the sublist list[i..i+n-1]

int j = list.View(i,n).LastIndexOf(x);
if (j >= 0) {
// x is at position j+i in list

} else {
// x is not in list[i..i+n-1]

}

Let n be the length of the of the list (or view).

• If list is an ArrayList<T>, a LinkedList<T>, or a WrappedArray<T>, the
search takes time O(n).

• If list is a HashedArrayList<T> or a HashedLinkedList<T>, the search takes
time O(1).

§9.7 Item not found in indexed collection 157

9.6 Item not found in indexed collection
When the value x searched for in an indexed collection is not found, the IndexOf(x)
and LastIndexOf(x) methods return a number j < 0.

In the case of a sorted collection, the negative return value is ~k, the one’s com-
plement of k, where k >= 0 is an index such that if x is inserted at position k then
the collection remains sorted.

In the case of a non-sorted collection, the negative return value is ~n, where n
equals Count, the number of items in the collection.

Hence the pattern below works regardless of the implementation of the indexed
collection.

Pattern 37 Inserting item in indexed collection if not found
If x is not in the collection, then coll.Insert(~j, x) will be equivalent to coll.Add(x)
on unsorted list implementations such as ArrayList<T> and LinkedList<T>, and
therefore efficient. On SortedArray<T> it will insert x where it belongs to keep the
array sorted.

int j = coll.IndexOf(x);
if (j >= 0) { // x is at coll[j]

...
} else { // x is not in coll, but belongs at ~j

coll.Insert(~j, x);
...

}

9.7 Patterns for removing items from a list
Let list be an IList<T>, such as ArrayList<T>, HashedArrayList<T>, LinkedList<T>,
or HashedLinkedList<T>.

Pattern 38 Removing all items of the list

list.Clear()

Pattern 39 Removing items with indexes i...i+n-1
There are two obvious ways to remove all items in the range of indexes i...i+n-1
from a list, shown below. Both have the same effect and both raise a Collection-
Cleared event followed by a CollectionChanged event, unlike multiple Remove oper-
ations, which would raise multiple ItemsRemoved events followed by a Collection-
Changed event (see section 8.8.1).

list.RemoveInterval(i,n) list.View(i,n).Clear()

158 Patterns for predecessor and successor items §9.8

Pattern 40 Removing items with indexes i and higher
As in the previous pattern, there are two obvious ways to remove all items with
indexes i and higher. Both have the same effect and both raise a CollectionCleared
event followed by a CollectionChanged event.

list.RemoveInterval(i, list.Count-i) list.View(i, list.Count-i).Clear()

The Clear operations themselves take time O(1) for LinkedList<T> and takes time
O(list.Count−n) for ArrayList<T>. View creation is inefficient for a LinkedList<T>
unless the beginning or the end of the view is near the beginning or end of list. In
general, index-based operations on linked lists are slow and should be avoided.

9.8 Patterns for predecessor and successor items
A sorted collection, such as a SortedArray<T>, TreeSet<T> or TreeBag<T>, makes
it easy and efficient to find the predecessor or successor of a given value y. The
predecessor is the collection’s greatest item less than y, and the successor is the
collection’s least element greater than y. A weak predecessor or weak successor x
may equal y.

Pattern 41 Weak successor: the least item x greater than or equal to y
Let coll be an ISorted<T> and y a T value. Here are two ways to find the weak
successor x of y, if it exists. When it does not exists, the left-hand expression throws
NoSuchItemException and the right-hand expression returns false:

x = coll.WeakSuccessor(y) coll.TryWeakSuccessor(y, out x)

Pattern 42 Weak predecessor: the greatest item x less than or equal to y
Let coll be an ISorted<T> and y a T value. Here are two ways to find the weak
predecessor x of y, if it exists. When it does not exists, the left-hand expression
throws NoSuchItemException and the right-hand expression returns false:

x = coll.WeakPredecessor(y) coll.TryWeakPredecessor(y, out x)

Pattern 43 Successor: the least item x greater than y
Let coll be an ISorted<T> and y a T value. Here are two ways to find the suc-
cessor x of y, if it exists. When it does not exists, the left-hand expression throws
NoSuchItemException and the right-hand expression returns false:

x = coll.Successor(y) coll.TrySuccessor(y, out x)

Pattern 44 Predecessor: the greatest item x less than y
Let coll be an ISorted<T> and y a T value. Here are two ways to find the prede-
cessor x of y, if it exists. When it does not exists, the left-hand expression throws
NoSuchItemException and the right-hand expression returns false:

§9.8 Patterns for predecessor and successor items 159

x = coll.Predecessor(y) coll.TryPredecessor(y, out x)

The patterns below show how the Cut method on ISorted<T> (see page 89) can be
used to implement the exception-free variants TrySuccessor and so on shown in
patterns 41 to 44 above, provided y’s type T implements IComparable<T>.

Pattern 45 Using Cut to find the least item x greater than or equal to y
This method returns true and assigns to ySucc the least item in coll greater than
or equal to y, if any; otherwise returns false.

public static bool WeakSuccessor<T>(ISorted<T> coll, T y, out T ySucc)
where T : IComparable<T>

{
T yPred;
bool hasPred, hasSucc,
hasY = coll.Cut(y, out yPred, out hasPred, out ySucc, out hasSucc);

if (hasY)
ySucc = y;

return hasY || hasSucc;
}

Pattern 46 Using Cut to find the greatest item x less than or equal to y
This method returns true and assigns to yPred the greatest item in coll less than
or equal to y, if any; otherwise returns false.

public static bool WeakPredecessor<T>(ISorted<T> coll, T y, out T yPred)
where T : IComparable<T>

{
T ySucc;
bool hasPred, hasSucc,
hasY = coll.Cut(y, out yPred, out hasPred, out ySucc, out hasSucc);

if (hasY)
yPred = y;

return hasY || hasPred;
}

Pattern 47 Using Cut to find the least item x greater than y
This method returns true and assigns to ySucc the least item in coll greater than
y, if any; otherwise returns false.

public static bool Successor<T>(ISorted<T> coll, T y, out T ySucc)
where T : IComparable<T>

{
bool hasPred, hasSucc;
T yPred;
coll.Cut(y, out yPred, out hasPred, out ySucc, out hasSucc);
return hasSucc;

}

160 Patterns for subrange iteration §9.9

Pattern 48 Using Cut to find the greatest item x less than y
This method returns true and assigns to yPred the greatest item in coll less than y,
if any; otherwise returns false.

public static bool Predecessor<T>(ISorted<T> coll, T y, out T yPred)
where T : IComparable<T>

{
bool hasPred, hasSucc;
T ySucc;
coll.Cut(y, out yPred, out hasPred, out ySucc, out hasSucc);
return hasPred;

}

9.9 Patterns for subrange iteration
A sorted collection — one whose items are ordered by an item comparer — can be
enumerated in two ways: forwards (in ascending item order) and backwards (in
descending item order). In C5, sorted collections implement IDirectedEnumerable
and therefore easily support enumeration in either direction. Furthermore, enumer-
ation may start in three different ways: at the collection’s least item, at a specified
item x1 (inclusive), or at x1 (exclusive). Similarly, enumeration can end in three dif-
ferent ways: at the collection’s greatest item, at x2 (inclusive), or at x2 (exclusive).
Thus there are nine possible subranges and two directions. All nine forwards and
two of the backwards possibilities are illustrated by patterns below; an overview is
given in figure 9.1.

In the following patterns, let coll be an ISorted<T>, for instance a SortedAr-
ray<T> or a TreeSet<T> or TreeBag<T>.

Pattern 49 Iteration over sorted collection
Let coll be an ISorted<T>. To iterate forwards over all items of coll:

foreach (T x in coll) {
... use x ...

}

Pattern 50 Descending-order iteration over sorted collection
Let coll be an ISorted<T>. To iterate backwards over all items of coll:

foreach (T x in coll.Backwards()) {
... use x ...

}

§9.9 Patterns for subrange iteration 161

Least x1 x2 Greatest Pattern
u - u Pattern 49

u - u Pattern 53
e - u Pattern 58

u - e Pattern 54
u - u Pattern 56

u - e Pattern 51
u - u Pattern 55
e - e Pattern 57
e - u Pattern 59

u� u Pattern 50
u� e Pattern 52

Figure 9.1: All nine forwards and two examples of backwards iteration patterns for
sorted collections. The filled-in disk • means endpoint included, the open circle ◦
means endpoint excluded.

Pattern 51 Iteration from x1 (inclusive) to x2 (exclusive)
Let coll be an ISorted<T>. To iterate forwards over all items between x1 inclusive
and x2 exclusive, do as below. This does nothing if x1 is greater than or equal to x2,
that is, x1.CompareTo(x2) >= 0, or if x1 is greater than the greatest item or x2 less
than or equal to the least item in the collection.

foreach (T x in coll.RangeFromTo(x1, x2)) {
... use x ...

}

Pattern 52 Descending-order iteration from x2 (exclusive) to x1 (inclusive)
Let coll be an ISorted<T>. To iterate backwards over all items between x1 inclusive
and x2 exclusive, do as follows. Like pattern 51, this one does nothing if x1 is greater
than or equal to x2, or if x1 is greater than the greatest item or x2 less than or equal
to the least item in the collection.

foreach (T x in coll.RangeFromTo(x1, x2).Backwards()) {
... use x ...

}

Pattern 53 Iteration from x1 (inclusive) to end
Let coll be an ISorted<T>. Iterate forwards over all items between x1 (inclusive)
and the end of the collection. Does nothing if x1 is greater than the greatest item in
the collection.

162 Patterns for subrange iteration §9.9

foreach (T x in coll.RangeFrom(x1)) {
... use x ...

}

Pattern 54 Iteration from beginning to x2 (exclusive)
Let coll be an ISorted<T>. Iterate forwards over all items between the beginning
of the collection and x2 (exclusive). Does nothing if x2 is less than or equal to the
least item in the collection.

foreach (T x in coll.RangeTo(x2)) {
... use x ...

}

Pattern 55 Iteration from x1 (inclusive) to x2 (inclusive)
Let coll be an ISorted<T>. If x2 has a successor x2Succ, then iteration to x2 in-
clusive can be done by iteration to x2Succ exclusive. If x2 has no successor, then
iteration to x2 inclusive is just iteration to the end of the collection. The directed
enumerable range is determined according to these two cases. The x2Succ is com-
puted using method Successor from pattern 47. For descending-order iteration,
simply use range.Backwards() in the foreach statement.

T x2Succ;
bool x2HasSucc = Successor(coll, x2, out x2Succ);
IDirectedEnumerable<T> range =
x2HasSucc ? coll.RangeFromTo(x1, x2Succ) : coll.RangeFrom(x1);

foreach (T x in range) {
... use x ...

}

Pattern 56 Iteration from beginning to x2 (inclusive)
Let coll be an ISorted<T>. This is similar to the previous pattern, except that
iteration starts at the beginning of the collection.

T x2Succ;
bool x2HasSucc = Successor(coll, x2, out x2Succ);
IDirectedEnumerable<T> range =
x2HasSucc ? coll.RangeTo(x2Succ) : coll.RangeAll();

foreach (T x in range) {
... use x ...

}

Pattern 57 Iteration from x1 (exclusive) to x2 (exclusive)
Let coll be an ISorted<T>. If x1 has no successor, then the iteration is empty, and is
equivalent to an iteration over an ArrayList<T> containing no items. The successor
of x1, if any, is found by method Successor from pattern 47.

§9.10 Patterns for indexed iteration 163

T x1Succ;
bool x1HasSucc = Successor(coll, x1, out x1Succ);
IDirectedEnumerable<T> range =

x1HasSucc ? coll.RangeFromTo(x1Succ, x2) : new ArrayList<T>();
foreach (T x in range) {

... use x ...
}

Pattern 58 Iteration from x1 (exclusive) to end
Let coll be an ISorted<T>. This is similar to the previous pattern, except that
iteration ends at the end of the collection.

T x1Succ;
bool x1HasSucc = Successor(coll, x1, out x1Succ);
IDirectedEnumerable<T> range =

x1HasSucc ? coll.RangeFrom(x1Succ) : new ArrayList<T>();
foreach (T x in range) {

... use x ...
}

Pattern 59 Iteration from x1 (exclusive) to x2 (inclusive)
Let coll be an ISorted<T>. This is a combination of patterns 55 and 57.

T x1Succ, x2Succ;
bool x1HasSucc = Successor(coll, x1, out x1Succ),

x2HasSucc = Successor(coll, x2, out x2Succ);
IDirectedEnumerable<T> range =

x1HasSucc ? (x2HasSucc ? coll.RangeFromTo(x1Succ, x2Succ)
: coll.RangeFrom(x1Succ))

: new ArrayList<T>();
foreach (T x in range) {

... use x ...
}

9.10 Patterns for indexed iteration
An indexed collection — one whose items are indexed by consecutive integers — can
be enumerated in two ways: forwards (in ascending index order) and backwards
(in descending index order). In C5, indexed collections implement IDirectedEnume-
rable and therefore easily support enumeration in either direction. These patterns
show how to iterate forwards or backwards over an indexed collection, while keeping
track of the item’s index j.

In the patterns below, let list be an IList<T>, such as ArrayList<T>, HashedAr-
rayList<T>, LinkedList<T>, HashedLinkedList<T>, or WrappedArray<T>.

164 Patterns for indexed iteration §9.11

Pattern 60 Iterate forwards over the indexed list

int j = 0;
foreach (T x in list) {
... x ... at index j ...
j++;

}

Pattern 61 Iterate backwards over the indexed list

int j = list.Count;
foreach (T x in list.Backwards()) {
j--;
... x ... at index j ...

}

Pattern 62 Iterate forwards over a sublist, visiting items at indexes i...i+n-1

int j = i;
foreach (T x in list.View(i, n)) {
... x ... at index j ...
i++;

}

Pattern 63 Iterate backwards over a sublist, visiting indexes i+n-1...i

int j = i+n;
foreach (T x in list.View(i, n).Backwards()) {
j--;
... x ... at index j ...

}

Pattern 64 Iterate forwards over a sublist, visiting indexes from i to end of list

int j = i;
foreach (T x in list.View(i, list.Count-i)) {
... x ... at index j ...
j++;

}

Pattern 65 Iterate forwards from beginning of list to index i inclusive

int j = 0;
foreach (T x in list.View(0, i+1)) {
... x ... at index j ...
j++;

}

§9.12 Patterns for enumerating a tree snapshot 165

9.11 Patterns for enumerating a tree snapshot
It is illegal to modify a collection while enumerating it. For instance, execution of

foreach (T x in coll) {
... use x and modify coll ...

}

would throw CollectionModifiedException if coll were modified while the foreach
loop is being executed.

Pattern 66 Enumerating a collection while modifying it
If tree is an IPersistentSorted<T>, for instance a TreeSet<T> or TreeBag<T>, one
can take a snapshot of the tree and then enumerate the items of that snapshot,
while modifying the original tree at the same time:

using (ISorted<T> snap = tree.Snapshot()) {
foreach (T x in snap) {

... use x while possibly modifying tree ...
}
...

}

The snapshot is allocated in a using statement to ensure that its Dispose method
is called immediately after it is no longer needed. The iteration would be correct
also without this safeguard, but the snapshot might be kept alive longer and that
would cause a time and space overhead for subsequent updates to the tree. See
section 12.6.

9.12 Patterns for segment reversal and swapping
Let list be an IList<T>, such as ArrayList<T>, HashedArrayList<T>, LinkedList<T>,
HashedLinkedList<T>, or WrappedArray<T>.

Pattern 67 Reverse all items in the list

list.Reverse()

Pattern 68 Reverse the list segment list[i...i+n-1]
The list segment i...i+n-1 is reversed by reversing a list view covering that seg-
ment. Throws ArgumentOutOfRangeException if i < 0 or n > 0 i+n > list.Count.

public static void ReverseInterval<T>(IList<T> list, int i, int n) {
list.View(i,n).Reverse();

}

166 Pattern for making a stream of item lumps §9.13

Pattern 69 Swap initial segment list[0..i-1] with list[i..Count-1]
An initial segment list[0..i-1] and the corresponding final segment list[i..n-1],
where n is the length of the list, can be swapped without using any auxiliary space
by first reversing the segments separately and then reversing the whole list. This
procedure moves each list item twice; using a far more intricate scheme it is possi-
ble to use only one move per item, but that is not faster in practice. Throws Argu-
mentOutOfRangeException if i < 0 or i >= Count.

public static void SwapInitialFinal<T>(IList<T> list, int i) {
list.View(0,i).Reverse();
list.View(i,list.Count-i).Reverse();
list.Reverse();

}

9.13 Pattern for making a stream of item lumps
Pattern 70 Make a stram of n-item lumps
Given an SCG.IEnumerable<T>, create an SCG.IEnumerable<IQueue<T>> that
contains all the (possibly overlapping) n-item lumps or subsequences of items.

public static SCGIEnumerable<IQueue<T>> Lump<T>(SCG.IEnumerable<T> xs, int n) {
if (n <= 0)

throw new ArgumentException("must be positive", "n");
else {

IQueue<T> res = new CircularQueue<T>();
int i=0;
foreach (T x in xs) {
res.Enqueue(x);
i++;
if (i>=n) {

yield return res;
res.Dequeue();

}
}

}
}

The Lump method returns an empty sequence of lumps if xs.Count < n. The method
can be used as follows:

int n = ...;
foreach (IQueue<T> lump in Lump<T>(coll, n)) {
for (int i=0; i<n; i++) {

... lump[i] ...
}

}

§9.14 Patterns for arbitrary and random items 167

Note that modifications to a lump returned by method Lump will affect subsequent
lumps returned by the method. In fact, the res.Dequeue operation may throw an
exception in case the consumer has emptied lump res. To prevent the consumer
from modifying the lumps, one can wrap the returned lump in a GuardedQueue<T>
when yielding it from method Lump:

if (i>=n) {
yield return new GuardedQueue<T>(res);
res.Dequeue(); // Succeeds because n>0 and so res nonempty

}

A note on efficiency: Getting all lumps from the sequence generated by Lump(xs,n)
takes time O(|xs|) when res is a CircularQueue<T> and the same if res were a
LinkedList, but takes time O(n|xs|) if res were an ArrayList. Random indexing
into one of the lumps takes time O(1) when res is a CircularQueue<T> and the
same if res were an ArrayList, but takes time O(n|xs|) if res were a LinkedList. So
CircularQueue<T> is the only choice that offers fast lump creation as well as fast
lump indexing.

9.14 Patterns for arbitrary and random items
Let coll be an ICollectionValue<T> for which coll.IsEmpty is false.

Pattern 71 Get an arbitrary item x from a collection coll

T x = coll.Choose();

Note that x is an arbitrary item, not a randomly chosen one, so the Choose() method
cannot be used to generate a random sequence of items from coll. With some collec-
tion classes, subsequent calls to Choose() will return the same item x, with others it
will not. To choose a random item, use pattern 73.

Pattern 72 Iterate over a collection in an undetermined order
When coll is a C5 collection class, it is guaranteed that an item x newly returned by
coll.Choose() can be efficiently removed from coll, so that a sequence of n Choose
and Remove operations as implemented below takes time O(n). (This would not be
the case if x were chosen at random).

while (!coll.IsEmpty) {
T x = coll.Choose();
coll.Remove(x);
... process x, possibly adding further items to coll ...

}

168 Patterns for set operations on collections §9.15

Pattern 73 Get a random item x from an indexed collection
Let coll be an IIndexed<T>, preferably one that permits fast indexing, such as Ar-
rayList<T>, HashedArrayList<T>, SortedArray<T>, TreeSet<T>, TreeBag<T>, or
WrappedArray<T>. Let rnd be a random number generator of class System.Random
or C5Random. To get a random item from the collection, choose a random index and
return the item at that index. To draw multiple random items with or without re-
placement, see section 9.18.

T x = coll[rnd.Next(coll.Count)];

9.15 Patterns for set operations on collections
Sets s1 and s2 of items of type T can be represented by HashSet<T> or TreeSet<T>
objects. Destructive set operations, that is, operations that modify one of the sets
involved in the operation, are easily implemented using collection operations as
shown below. Functional or versions of these operations, that is, operations that
return a new set instead of modifying any of the given ones, can be implemented
using overloaded operators in a subclass of HashSet<T> or TreeSet<T> as shown in
section 11.11.

In all cases, the exact same code can be used to implement operations on bags
(multisets). Only one must use HashBag<T> and TreeBag<T> instead of Hash-
Set<T> and TreeSet<T> to represent bags.

For set operations using TreeSet<T> or TreeBag<T> it would make sense to
check that their Comparers are identical (same object). This check can usually
be implemented as s1.Comparer == s2.Comparer because the default comparers cre-
ated by Comparer<T>.Default are singletons; see section 2.6.

Pattern 74 Determine whether s1 is the empty set

s1.IsEmpty

Pattern 75 Determine whether s1 is a subset of s2

s2.ContainsAll(s1);

Pattern 76 Compute the intersection of sets s1 and s2 in s1

s1.RetainAll(s2);

Pattern 77 Compute the union of sets s1 and s2 in s1

s1.AddAll(s2);

§9.16 Patterns for removing duplicates 169

Pattern 78 Compute the difference between sets s1 and s2 in s1

s1.RemoveAll(s2);

Pattern 79 Compute the symmetric difference between sets s1 and s2
The symmetric difference is the set of elements in one set but not in the other; it
equals (s1∪s2)\(s1∩s2) and equals (s1\s2)∪(s2\s1). This computes the symmetric
difference in a new set su.

HashSet<T> su = new HashSet<T>();
su.AddAll(s1);
su.AddAll(s2);
HashSet<T> si = new HashSet<T>();
si.AddAll(s1);
si.RetainAll(s2);
su.RemoveAll(si);

For sorted sets the symmetric difference can be computed more efficiently by travers-
ing the ordered sets in synchrony, in a way similar to a list merge.

9.16 Patterns for removing duplicates
Pattern 80 Keep only the first occurrence in an enumerable
This method takes an enumerable and returns an array list with the items in the
same order, but keeping only the first occurrence of each item. Pattern 81 shows
how to keep only the last occurrence of each item.

public static IList<T> RemoveLateDuplicates<T>(SCG.IEnumerable<T> enm) {
IList<T> res = new HashedArrayList<T>();
res.AddAll(enm);
return res;

}

Pattern 81 Keep only the last occurrence in a directed enumerable
This method takes a directed enumerable and returns an array list with the items
in the same order, but keeping only the last occurrence of each item. Pattern 80
shows how to keep only the first occurrence of each item.

public static IList<T> RemoveEarlyDuplicates<T>(IDirectedEnumerable<T> enm) {
IList<T> res = new HashedArrayList<T>();
res.AddAll(enm.Backwards());
res.Reverse();
return res;

}

If the given enumerable enm is not directed, then one can create an ArrayList<T> of
its items and obtain a directed enumerable from that.

170 Patterns for collections of collections §9.17

9.17 Patterns for collections of collections
Here are some patterns for creating a collection whose items are themselves collec-
tions. See also section 8.3.

Pattern 82 Create a hash set of lists with default (sequenced) equality
The default equality comparer created for an “outer” collection of “inner” collections
is a sequenced collection equality comparer or an unsequenced collection equality
comparer, depending on the type of the inner collection; see section 2.3. For lists,
the default is a sequenced equality comparer, which takes item order into account.

HashSet<IList<int>> hs1 = new HashSet<IList<int>>();

Hence the default equality comparer hs1.EqualityComparer created for the hash set
hs1 above would consider the two lists coll1 and coll2 equal because they have
the same items in the same order, whereas coll3 is not equal to any of the others:
although it contains the same items, they do not appear in the same order. The
result is that hs1 contains two items (list objects): one of coll1 and coll2, as well as
coll3:

IList<int> coll1 = new LinkedList<int>(),
coll2 = new LinkedList<int>(),
coll3 = new LinkedList<int>();

coll1.AddAll(new int[] { 7, 9, 13 });
coll2.AddAll(new int[] { 7, 9, 13 });
coll3.AddAll(new int[] { 9, 7, 13 });
hs1.Add(coll1); hs1.Add(coll2); hs1.Add(coll3); // hs1.Count is 2

Pattern 83 Explicitly create a hash set of lists with sequenced equality
If desired, one can explicitly create a sequenced collection equality comparer seqc
(section 2.3) and pass it to the constructor when creating the hash set. In fact, this
is exactly what happens implicitly in pattern 82.

SCG.IEqualityComparer<IList<int>> seqc
= new SequencedCollectionEqualityComparer<IList<int>,int>();

HashSet<IList<int>> hs2 = new HashSet<IList<int>>(seqc);
Equalities("Sequenced equality", hs2.EqualityComparer);
hs2.Add(coll1); hs2.Add(coll2); hs2.Add(coll3);

To avoid taking list item order into account, one could create an UnsequencedCollec-
tionEqualityComparer<IList<int>,int> object and pass it to the constructor when
creating the hash set. But this is a bad idea, as the equality function will be very
slow except for short lists; see anti-pattern 124.

§9.17 Patterns for collections of collections 171

Pattern 84 Create a hash set of lists using reference equality
To use reference equality and a corresponding hash function for a collection of col-
lections, one must explicitly create a reference equality comparer (section 2.3) and
pass it to the outer collection when it is created.

SCG.IEqualityComparer<IList<int>> reqc
= new ReferenceEqualityComparer<IList<int>>();

HashSet<IList<int>> hs4 = new HashSet<IList<int>>(reqc);

The equality comparer hs4.EqualityComparerused by the hash set hs4 created above
would consider the three lists coll1, coll2 and coll3 below unequal: they are dis-
tinct objects, created by distinct applications of new. The result is that hs4 contains
three items: the three list objects:

hs4.Add(coll1); hs4.Add(coll2); hs4.Add(coll3);

Pattern 85 Check that all inner collections use the same equality comparer
When using a collection of collections it is crucial that the inner collections all
use the same equality comparer. Provided all equality comparers are obtained
from EqualityComparer<T>.Default, one can just check that the EqualityComparer
property for all the inner collections are the same object. The two generic type
parameters and the type parameter constraint permits this method to work on
any collection whose items are extensible collections (and which therefore have the
EqualityComparer property); it introduces a measure of co-variant subtyping other-
wise not available in C#.

public static bool HasherSanity<T,U>(ICollectionValue<U> colls)
where U : IExtensible<T>

{
SCG.IEqualityComparer<T> hasher = null;
foreach (IExtensible<T> coll in colls) {
if (hasher == null)
hasher = coll.EqualityComparer;

if (hasher != coll.EqualityComparer)
return false;

}
return true;

}

Pattern 86 Adding snapshot of inner collection to an outer collection
An inner collection should never be modified after it has been added to an outer
collection. One way to ensure this is to create a copy of the inner collection and wrap
it as a guarded collection (to prevent modification of an inner collection retrieved
from an outer collection) before adding it to the outer collection. Snapshots of tree
sets and tree bags are read-only lightweight copies of the tree set and therefore ideal
for this purpose; see sections 4.9 and 8.5.

172 Patterns for collections of collections §9.17

ICollection<ISequenced<int>> outer = new HashSet<ISequenced<int>>();
IPersistentSorted<int> inner1 = new TreeSet<int>();
inner1.AddAll(new int[] { 2, 3, 5, 7, 11 });
// Take a snapshot and add it to outer:
outer.Add(inner1.Snapshot());
// Modify inner1, but not the snapshot contained in outer:
inner1.Add(13);

Pattern 87 Create a set of sets of integers
After this piece of code, the set bound to outer contains five sets of integers, namely
the sets {} and {2} and {2,3} and {2,3,5} and {2,3,5,7}. In cases like this where the
inner sets being added are modifications of each other, it is absolutely essential that
only snapshots of the collection bound to inner, not that collection itself, are added
to the outer collection.

ICollection<ISequenced<int>> outer = new HashSet<ISequenced<int>>();
int[] ss = { 2, 3, 5, 7 };
TreeSet<int> inner = new TreeSet<int>();
outer.Add(inner.Snapshot());
foreach (int i in ss) {
inner.Add(i);
outer.Add(inner.Snapshot());

}

Pattern 88 Create a set of bags of characters
It is straightforward to create a set of bags of characters as a hash set of hash bags
of characters. As further elaborated in the section 11.4 example, this can be used
to find anagrams. Note that a new bag object is created for each word added to the
set of bags; hence there is no need to create a copy For defensive programming, one
might wrap each hash bag as a GuardedCollection<char> before storing it in the set
of bags.

String text =
@"three sorted streams aligned by leading masters ... algorithm.";

String[] words = text.Split(’ ’, ’\n’, ’\r’, ’;’, ’,’, ’.’);
ICollection<ICollection<char>> anagrams = new HashSet<ICollection<char>>();
int count = 0;
foreach (String word in words) {
if (word != "") {

count++;
HashBag<char> anagram = new HashBag<char>();
anagram.AddAll(word.ToCharArray());
anagrams.Add(anagram);

}
}
Console.WriteLine("Found {0} anagrams", count - anagrams.Count);

§9.18 Patterns for creating a random selection 173

9.18 Patterns for creating a random selection
Pattern 89 Create random selection with replacement
Let coll be an efficiently indexable indexed collection, such as ArrayList<T>, and
let N ≥ 0 be an integer. Then this code obtains N random items from coll, with
replacement.

public static SCG.IEnumerable<T> RandomWith<T>(IIndexed<T> coll, int N) {
for (int i=N; i>0; i--) {
T x = coll[rnd.Next(coll.Count)];
yield return x;

}
}

Pattern 90 Create a (large) random selection without replacement
Let list be a list collection, and let N where 0 ≤ N < list.Count be an integer. Then
N random items from coll may be selected, without replacement, as shown below.
Note that this modifies the given list.

public static SCG.IEnumerable<T> RandomWithout1<T>(IList<T> list, int N) {
list.Shuffle(rnd);
foreach (T x in list.View(0, N))
yield return x;

}

Pattern 91 Create a (small) random selection without replacement
Pattern 90 is simple and quite efficient when N and list.Count are of the same order
of magnitude. When N is much smaller than list.Count, the following is faster but
requires the list to be an ArrayList<T> so that it supports fast indexing. Note that
this too modifies the given list.

public static SCG.IEnumerable<T> RandomWithout2<T>(ArrayList<T> list, int N) {
for (int i=N; i>0; i--) {
int j = rnd.Next(list.Count);
T x = list[j], replacement = list.RemoveLast();
if (j < list.Count)
list[j] = replacement;

yield return x;
}

}

174 Patterns for sorting §9.19

9.19 Patterns for sorting
9.19.1 Quicksort for array lists
Let enm be an SCG.IEnumerable<T> and cmp an SCG.IComparer<T>. An array list
containing enm’s items sorted according to cmp can be obtained as follows, preserving
duplicates of items that compare equal:

IList<T> result = new ArrayList<T>();
result.AddAll(enm);
result.Sort(cmp);

9.19.2 Merge sort for linked lists
Let enm be an SCG.IEnumerable<T> and cmp an SCG.IComparer<T>. A linked list
containing enm’s items sorted according to cmp can be obtained as follows:

IList<T> result = new LinkedList<T>();
result.AddAll(enm);
result.Sort(cmp);

This operation preserves duplicates of items that compare equal, and preserves the
order of equal items: two items that compare equal will appear in the same order in
the result as in enm. This takes time O(n logn), but is likely to be somewhat slower
than creating a sorted array list above.

9.19.3 Heap sort using a priority queue
Let enm be an SCG.IEnumerable<T>, cmp an SCG.IComparer<T> and N an integer.
A sequence of the N least items of enm (in increasing order) can be created as follows:

IPriorityQueue<T> queue = new IntervalHeap<T>(enm);
queue.AddAll(enm);
IList<T> result = new ArrayList<T>();
int k = N;
while (!queue.IsEmpty && k-- > 0)
result.Add(queue.DeleteMin());

Using queue.DeleteMax() instead of queue.DeleteMin() gives a list (in descending
order) of the N greatest items of enm.

When N equals the initial queue.Count, this will implement heapsort, but al-
though it will have guaranteed worst-case execution time O(n logn) it will be slower
than the introspective quicksort implemented in C5. When N is much smaller than
the initial queue.Count, the above procedure may be faster, but it is unlikely.

9.19.4 Sorting arrays
Class Sorting provides several methods for sorting a one-dimensional array or a of
segment of one; see section 8.6.

§9.19 Patterns for sorting 175

9.19.5 Sorting by bulk insertion into a SortedArray<T>
Let enm be an SCG.IEnumerable<T> and cmp an SCG.IComparer<T>. A sorted-array
list containing enm’s items sorted according to cmp can be obtained as follows:

IList<T> res = new SortedArray<T>(cmp);
res.AddAll(enm);

After this operation items are stored in increasing order in res, but duplicate items
(items that compare equal) have been discarded. The AddAll operation on SortedAr-
ray<T> is guaranteed efficient: the above operation takes time O(n logn). In partic-
ular, AddAll() does not insert the items of enm one by one into the sorted array.

9.19.6 Finding a permutation that would sort a list
Sometimes (1) the permutation that would sort a collection is more interesting than
the sorted collection itself; or (2) the items in the collection appear in some order
that should be preserved, while at the same time the must be accessed in sorted
order; or (3) the items to be sorted are very large structs, and it would be good to
avoid the copying of items implied by standard sorting algorithms.

Pattern 92 achieves goals (1), (2) and (3) and applies to collections with fast
indexing, such as array lists, whereas pattern 93 achieves only goals (1) and (2) but
applies also to collections without fast indexing, such as linked lists.

Pattern 92 Finding a permutation that would sort an array list
Given a list list of comparable items, this method creates and returns an array list
res of distinct integer indexes such that the functional composition of list and res
is sorted. In other words, whenever i<=j it holds that list[res[i]]<=list[res[j]].

It works by sorting the array list res of indexes using a comparer that compares
integers i and j by comparing the items list[i] and list[j] in the given list. That
is, it rearranges the indexes in res but does not move the items in list, which may
actually be a read-only list.

This method is fast when list is an array list and similar, but not stable. It is
slow for linked lists because it performs random access to list items by index.

public static ArrayList<int> GetPermutation1<T>(IList<T> list)
where T : IComparable<T>

{
ArrayList<int> res = new ArrayList<int>(list.Count);
for (int i = 0; i < list.Count; i++)
res.Add(i);

res.Sort(new DelegateComparer<int>
(delegate(int i, int j) { return list[i].CompareTo(list[j]); }));

return res;
}

176 Patterns for sorting §9.19

Pattern 93 Find the permutation that would stably sort a linked list
Like the preceding pattern 92 this method creates and returns an array list res
of distinct integer indexes such that the functional composition of list and res is
sorted. In other words, whenever i<=j it holds that list[res[i]]<=list[res[j]].

It works by creating a new linked list of pairs, each pair consisting of an item
from the given list and the index of that item. Then it sorts the list of pairs, based
on comparison of the items only. Finally it extracts the (now reordered) list of in-
dexes res. Note that the given list may be read-only, as only the items of the newly
constructed list of pairs are reordered.

This method performs a stable sort (which means that the indexes of equal items
will come in increasing order in the result) and is fairly fast both for array lists and
linked lists, but in contrast to pattern 92 it does copy the given list’s items.

public static ArrayList<int> GetPermutation2<T>(IList<T> list)
where T : IComparable<T>

{
int i = 0;
IList<KeyValuePair<T,int>> zipList =

list.Map<KeyValuePair<T,int>>
(delegate(T x) { return new KeyValuePair<T,int>(x, i++); });

zipList.Sort(new KeyValueComparer<T>(list));
ArrayList<int> res = new ArrayList<int>(list.Count);
foreach (KeyValuePair<T, int> p in zipList)

res.Add(p.value);
return res;

}

private class KeyValueComparer<T> : SCG.IComparer<KeyValuePair<T,int>>
where T : IComparable<T>

{
private readonly IList<T> list;
public KeyValueComparer(IList<T> list) {

this.list = list;
}
public int Compare(KeyValuePair<T,int> p1, KeyValuePair<T,int> p2) {

return p1.key.CompareTo(p2.key);
}

}

These methods to find the permutation that would sort a list can be used also to
efficiently find the quantile rank of all items in a list; see pattern 106.

§9.20 Patterns using priority queue handles 177

9.20 Patterns using priority queue handles
A priority queue is a collection that permits efficient retrieval of a minimal or max-
imal item from the collection. In addition, C5’s priority queue implementation per-
mits retrieval, deletion and updating of items using a so-called handle, which is a
unique identification of the item. The comparer of the items cannot be used for this
purpose because the priority queue may contain multiple items that have the same
priority, so they compare equal by the comparer used in the priority queue.

These patterns show typical uses of priority queue handles. Let pq be an IPriori-
tyQueue<T>, such as IntervalHeap<T>, and let h be an IPriorityQueueHandle<T>.

Pattern 94 Add item x into a priority queue, getting a new handle for it in h

h = null;
pq.Add(ref h, x)

Pattern 95 Add item x into a priority queue, reusing handle h for it

pq.Add(ref h, x)

Pattern 96 Check whether the item with handle h is (still) in the priority queue,
and if so, get it in variable x

bool isInPq = pq.Find(h, out x)

Pattern 97 Get and delete the item x with handle h

T x = pq.Delete(h)

Pattern 98 Two ways to replace the item having handle h with item x

pq[h] = x pq.Replace(h, x)

Pattern 99 Get the current least (greatest) item into min and its handle into h

T min = pq.FindMin(out h)
T max = pq.FindMax(out h)

Pattern 100 Get and delete the current least (greatest) item and its handle

T min = pq.DeleteMin(out h)
T max = pq.DeleteMax(out h)

178 Patterns using priority queue handles §9.21

Pattern 101 Decrease key and increase key
An item in a priority queue often consists of some data of type D and an associated
updatable number representing a priority, an completion time, a weight, or similar.
If we assume that the data type D is a reference type, we may define a struct type
Prio<D> that holds a D reference and the priority, and so that implements ICompa-
rable<Prio<D>> by comparing the item priorities:

struct Prio<D> : IComparable<Prio<D>> where D : class {
public readonly D data;
private int priority;
public Prio(D data, int priority) {

this.data = data; this.priority = priority;
}
public int CompareTo(Prio<D> that) {

return this.priority.CompareTo(that.priority);
}
public bool Equals(Prio<D> that) {

return this.priority == that.priority;
}
... more, see below ...

}

Now one can overload the operators (+) and (-) in struct Prio<D> to allow expres-
sions such as prio+7 and prio-3 where prio has type Prio<D>:

public static Prio<D> operator+(Prio<D> prio, int delta) {
return new Prio<D>(prio.data, prio.priority + delta);

}
public static Prio<D> operator-(Prio<D> prio, int delta) {
return new Prio<D>(prio.data, prio.priority - delta);

}

This gives an elegant way of adjusting priorities using priority queue handles:

IPriorityQueue<Prio<String>> pq = new IntervalHeap<Prio<String>>();
IPriorityQueueHandle<Prio<String>> h1 = null, h2 = null;
pq.Add(ref h1, new Prio<String>("surfing", 10));
pq.Add(ref h2, new Prio<String>("cleaning", 6));
pq[h1] += 7;
pq[h2] -= 3;

The last two statements are equivalent to the following more explicit statements:

pq.Replace(h1, pq[h1] + 7);
pq.Replace(h2, pq[h2] - 3);

These operators on priority queues are known as increase key and decrease key. With
the implementation shown above these operations have time complexity O(logn).

§9.21 Patterns for finding quantiles 179

9.21 Patterns for finding quantiles
Assume we have a non-empty ordered data set B of observations, possibly with du-
plicates (so B is a bag), from some stochastic process in nature. For instance, we
may have observed the following 10 = |B| grades awarded to students in a class:

0,3,5,6,6,7,8,8,9,11

This example uses the Danish grading scale which has the grades 00, 03, 4, 5, 6,
7, 8, 9, 10, 11, 13, with 5 and below being failed, 8 being the average grade, and
13 exceptional. Such a set of observations can be represented by a TreeBag<int>
which implements IIndexedSorted<int>.

The quantile rank of x in such a data set is defined as the ratio p of observations
that are less than or equal to x. For instance, the quantile rank of 5 is 30%, the
quantile rank of 6 is 50%, the quantile rank of 8 is 80%, and the quantile rank of
13 is 100%. Conversely, the p-quantile is the least observation x ∈ B whose quantile
rank is at least p. In other words, the p-quantile is the first observation in the
ordered data set if p = 0 or and it is the observation at position dp · |B|e, counting
from 1, when p > 0.

The first, second and third quartile are the 25%-quantile, the 50%-quantile and
the 75%-quantile. The median is the 50%-quantile. In the example above, the first
quartile is 5, the median is 6, and the third quartile is 8.

In the following patterns, let obs be a non-empty IIndexedSorted<T>, such as a
TreeBag<T>, representing a collection of observations of some ordered type T.

Pattern 102 Quantile rank in observations with duplicates
This computes the quantile rank as a number between 0 and 1 (inclusive). The
quantile rank is also called the empirical cumulative distribution function.

double rank = (obs.FindMax().CompareTo(x) <= 0) ? 1
: (obs.CountTo(obs.Successor(x)))/(double)(obs.Count);

Pattern 103 The observation at a given quantile
Given a floating-point number p between 0 and 1 (inclusive), this finds the p-quantile.

double quantile = p==0 ? B[0] : B[(int)(Math.ceiling(p*B.Count))-1];

The above works whether or not duplicate observations are allowed.
If there are no duplicates in the data set B, then it can be represented as a sorted

array, and IndexOf(x), which performs a binary search, can be used to find the rank.
This does not work when duplicates are allowed, as the search will just find one of
the duplicate items, not necessarily the last one.

Pattern 104 Percentile rank in observations with no duplicates
This computes the quantile rank as a number between 0 and 1 (inclusive) when the
data set has no duplicates and is stored in a non-empty sorted array sarr. When x

180 Patterns for stacks and queues §9.22

is not sarr, then sarr.IndexOf(x) returns the one’s complement j of the index i at
which x belongs. This is position 0 if all items in sarr are greater than x, or else the
least position whose left neighbor is smaller than x.

int j = sarr.IndexOf(x);
double rank = (j >= 0 ? j : ~j)/(double)(obs.Count);

Pattern 105 The observation at a given quantile
Given a floating-point number p between 0 and 1 (inclusive), this finds the p-quantile
in sorted array sarr:

double quantile = p==0 ? sarr[0] : sarr[(int)(Math.ceiling(p*sarr.Count))-1];

Pattern 106 Finding the rank of every item in a list x
Given a list of ordered observations, one can find the rank within the data set of
each item by first finding a permutation that would sort the list, and then finding
the permutation that would sort that permutation. More precisely, let the resulting
array list be res; then the item list[i] at position i in the given list ranks as
number res[i] among all the list items (counting from 0). Equal items will be
assigned consecutive ranks in the order in which they appear in the list. The
methods GetPermutation1 and GetPermutation2 are from patterns 92 and 93.

ArrayList<int> res = MySort.GetPermutation1(MySort.GetPermutation2(list));
foreach (int i in res)
Console.Write("{0} ", i);

9.22 Patterns for stacks and queues
The classes ArrayList<T>, CircularQueue<T> and LinkedList<T> implement inter-
face IList<T> and hence the methods Add and Remove. The Add method always adds
the new item as the last one in the a sequenced collection.

On ArrayList<T>, the Remove method removes the last item, so the pair Add/Remove
behaves like Push/Pop on a stack, and the FIFO property of an ArrayList<T> is false
by default. In fact, ArrayList<T> implements IStack<T> and hence Push and Pop
methods that make it behave like a stack. Although ArrayList<T> implements also
IQueue<T>, its Dequeue operation is inefficient so ArrayList<T> should not be used
to implement a queue; use CircularQueue<T> or LinkedList<T> instead.

On LinkedList<T>, the Remove method removes the first item from the sequenced
collection, so the pair Add/Remove behaves like Enqueue/Dequeue on a queue: the FIFO
property of a LinkedList<T> is true by default. In fact, LinkedList<T> implements
IQueue<T> and hence Enqueue and Dequeue methods that make it behave like a
queue.

§9.22 Patterns for stacks and queues 181

Class CircularQueue<T> implements a queue (first in, first out) using an array
as a circular buffer, so in addition to efficient queue operations it permits efficient
indexing relative to the queue’s first item (which is its oldest item).

The characteristics of the three classes ArrayList<T>, LinkedList<T> and Cir-
cularQueue<T> as stacks and queues are summarized in figure 9.2.

IE
xt

en
si

bl
e<

T
>

IL
is

t<
T

>

IS
ta

ck
<T

>

IQ
ue

ue
<T

>

Class Add Remove this[i] Push Pop Enqueue Dequeue
ArrayList<T> last last O(1) last last last first†
LinkedList<T> last first O(i)† last last last first
CircularQueue<T> − − O(1) − − last first

Figure 9.2: Stack and queue operations implemented by the classes ArrayList<T>,
LinkedList<T> and CircularQueue<T>. Avoid operations marked (†); they are slow.

In practice, stack operations on ArrayList<T> and queue operations on Circular-
Queue<T> are probably somewhat faster than on LinkedList<T>. Hence these rec-
ommendations:

• To implement a pure stack, use ArrayList<T> as in pattern 108.

• To implement a pure queue, use CircularQueue<T> as in pattern 107.

• If you need to sometimes pass a stack and sometimes a queue to a method,
then declare the method to accept an IList<T> and then pass either an Ar-
rayList<T> or a LinkedList<T>, as shown in pattern 109.

9.22.1 Breadth-first and depth-first traversal
There are two main orders in which to traverse the nodes of a tree or graph: breadth-
first and depth-first. In the former, all nodes near the root are traversed before
nodes far from the root. In the latter, complete paths from root to leaves are visited
before visiting other nodes near the root of the tree. Using the queue, stack and list
interfaces one can write clear, efficient and flexible tree traversal code. For graph
traversal one in addition needs to keep track of the which nodes have been visited
already; a hashset of nodes references (with reference equality) may be used for that
purpose.

Binary trees with node contents of type T can be represented by class Tree<T>
like this:

class Tree<T> {

182 Patterns for stacks and queues §9.22

private T val;
private Tree<T> t1, t2;
public Tree(T val) : this(val, null, null) { }
public Tree(T val, Tree<T> t1, Tree<T> t2) {

this.val = val; this.t1 = t1; this.t2 = t2;
}

}

The expression new Tree<T>(x) produces a leaf node that carries value x; the ex-
pression new Tree<T>(x, t1, t2), where t1 or t2 is non-null, produces an internal
that carries value x and has subtrees t1 and t2.

Pattern 107 Breadth-first traversal of a binary tree
This method uses a queue (a first-in-first-out data structure) to hold those tree nodes
that still need to be visited. A node removed from the queue will be the oldest one on
the queue, that is, the one closest to the tree root. This gives breadth-first traversal.
The queue implementation used here is a circular queue. A linked list would do fine
as well, but might be slightly slower in practice.

At each tree node, the function act is applied to the value val in the node.

public static void BreadthFirst(Tree<T> t, Act<T> act) {
IQueue<Tree<T>> work = new CircularQueue<Tree<T>>();
work.EnQueue(t);
while (!work.IsEmpty) {

Tree<T> cur = work.DeQueue();
if (cur != null) {
work.EnQueue(cur.t1);
work.EnQueue(cur.t2);
act(cur.val);

}
}

}

Pattern 108 Depth-first traversal of a binary tree
This method uses a stack (a last-in-first-out data structure) to hold those tree nodes
that still need to be visited. A node removed from the stack will be newest one
in the stack, that is, the one furthest from the tree root. This gives depth-first
traversal. Note that to obtain left-right traversal order, the right subtree must be
pushed before the the left subtree. The stack implementation is an array list. A
linked list whose FIFO property had been set to false could be used instead, but
would be slightly slower.

public static void DepthFirst(Tree<T> t, Act<T> act) {
IStack<Tree<T>> work = new ArrayList<Tree<T>>();
work.Push(t);
while (!work.IsEmpty) {

Tree<T> cur = work.Pop();

§9.22 Patterns for stacks and queues 183

if (cur != null) {
work.Push(cur.t2);
work.Push(cur.t1);
act(cur.val);

}
}

}

Pattern 109 Parametrized depth-first/breadth-first traversal of a binary tree
This method uses a list work to hold those tree nodes that still need to be visited.
If work is a linked list (whose FIFO property is true), then the method performs a
breadth-first traversal. If work is an array list (whose FIFO property is false), then
the method performs a depth-first traversal. Hence this method can do the work of
those shown in the previous two patterns.

public static void Traverse(Tree<T> t, Act<T> act, IList<Tree<T>> work) {
work.Clear();
work.Add(t);
while (!work.IsEmpty) {
Tree<T> cur = work.Remove();
if (cur != null) {
if (work.FIFO) {

work.Add(cur.t1);
work.Add(cur.t2);

} else {
work.Add(cur.t2);
work.Add(cur.t1);

}
act(cur.val);

}
}

}

9.22.2 Double-ended queues

For a double-ended queue or dequeue — one in which insertions and removal can
be done efficiently at either end — use a LinkedList. In particular, use the meth-
ods InsertFirst(x), InsertLast(x) for inserting items into the dequeue, the methods
RemoveFirst() and RemoveLast() for extracting items from the dequeue, and the
properties First and Last to inspect the items at either end.

Assume deq is LinkedList<T>, then:

184 Patterns for collection change events §9.23

Operation Method call
enqueue at end deq.InsertLast(x)
dequeue from beginning deq.RemoveFirst()
enqueue at beginning deq.InsertLast(x)
dequeue from end deq.RemoveLast()
look at beginning deq.First
look at end deq.Last

By LinkedList<T> default, InsertLast(x) is the same as Add(x) and RemoveFirst()
is the same as Remove().

9.23 Patterns for collection change events
Recall that in C# terminology, an event on a class is a field of delegate type. An event
handler h, which is a delegate, can be attached to an event e on collection coll by
executing coll.e += h and it can be detached again by executing coll.e -= h.

The event and handler mechanisms of C5 are described on section 8.8. Here we
show some standard usage patterns for events and event handlers. Note that some
modifications to a collection causes several events; for instance coll.InsertFirst(x)
will raise three events: ItemInserted, ItemsAdded, and CollectionChanged.

Pattern 110 Observing when a collection has been changed
The collection object c affected is passed to the event handler, but not used here.

coll.CollectionChanged
+= delegate(Object c) {

Console.WriteLine("Collection changed");
};

Pattern 111 Observing when a collection has been cleared

coll.CollectionCleared
+= delegate(Object c, ClearedEventArgs args) {

Console.WriteLine("Collection cleared");
};

Pattern 112 Observing when an item has been added to a collection
The event argument also contains the multiplicity args.Count, which is 1 if the col-
lection has set semantics but may be greater if it has bag semantics; see pattern 113.

coll.ItemsAdded
+= delegate(Object c, ItemCountEventArgs<int> args) {

Console.WriteLine("Item {0} added", args.Item);
};

§9.23 Patterns for collection change events 185

Pattern 113 Observing the number of items being added to a collection
A call to AddAll or similar methods results in a sequence of ItemsAdded events
followed by a CollectionChanged event (if anything was added). Note that a Collec-
tionChanged event is raised also after remove operations; hence the event handler
attached to CollectionChanged should test whether any ItemsAdded event preceded
the CollectionChanged event.

private static void AddItemsAddedCounter<T>(ICollection<T> coll) {
int addedCount = 0;
coll.ItemsAdded
+= delegate(Object c, ItemCountEventArgs<T> args) {

addedCount += args.Count;
};

coll.CollectionChanged
+= delegate(Object c) {

if (addedCount > 0)
Console.WriteLine("{0} items were added", addedCount);

addedCount = 0;
};

}

A call to AddAll that actually adds no items will not cause a CollectionChanged
event. Note that there will be an instance of the addedCount local variable for each
call to the AddItemsAddedCounter method, so the method can be used to attach a
counting handler for any number of collections.

Pattern 114 Observing the number of items being removed from a collection
This is the removal count pattern corresponding to the add count in pattern 113.

private static void AddItemsRemovedCounter<T>(ICollection<T> coll) {
int removedCount = 0;
coll.ItemsRemoved
+= delegate(Object c, ItemCountEventArgs<T> args) {

removedCount += args.Count;
};

coll.CollectionChanged
+= delegate(Object c) {

if (removedCount > 0)
Console.WriteLine("{0} items were removed", removedCount);

removedCount = 0;
};

}

Pattern 115 Observing when an item has been added to an indexed collection

coll.ItemInserted
+= delegate(Object c, ItemAtEventArgs<int> args) {

Console.WriteLine("Item {0} inserted at {1}", args.Item, args.Index);
};

186 Patterns for collection change events §9.23

Pattern 116 Observing when an item has been removed from an indexed collection

coll.ItemRemovedAt
+= delegate(Object c, ItemAtEventArgs<int> args) {

Console.WriteLine("Item {0} removed at {1}",
args.Item, args.Index);

};

Pattern 117 Observing when items (with multiplicity) have been added to a bag

bag.ItemsAdded
+= delegate(Object c, ItemCountEventArgs<int> args) {

Console.WriteLine("{0} copies of {1} added", args.Count, args.Item);
};

Pattern 118 Observing when items (with multiplicity) have been removed

bag.ItemsRemoved
+= delegate(Object c, ItemCountEventArgs<int> args) {

Console.WriteLine("{0} copies of {1} removed",
args.Count, args.Item);

};

Pattern 119 Observing when a collection has been updated
There is no specific event associated with an item update, as performed for instance
by the methods Update (see page 47) and UpdateOrAdd (see page 47), or by index-
ers coll[i] = x. Hence an update must be recognized as an ItemsRemoved event
followed by an ItemsAdded event followed by a CollectionChanged event, without
other intervening CollectionChanged events. This can be done using a small au-
tomaton with three states as shown below. The CollectionChanged event is raised
at the end of every change precisely to enable this kind of composite-event discovery.

private static void AddItemUpdatedHandler<T>(ICollection<T> coll) {
State state = State.Before;
T removed = default(T), added = default(T);
coll.ItemsRemoved

+= delegate(Object c, ItemCountEventArgs<T> args) {
if (state==State.Before) {
state = State.Removed;
removed = args.Item;

} else
state = State.Before;

};
coll.ItemsAdded

+= delegate(Object c, ItemCountEventArgs<T> args) {
if (state==State.Removed) {

§9.24 Patterns for comparers 187

state = State.Updated;
added = args.Item;

} else
state = State.Before;

};
coll.CollectionChanged
+= delegate(Object c) {

if (state==State.Updated)
Console.WriteLine("Item {0} was updated to {1}",

removed, added);
state = State.Before;

};
}

9.24 Patterns for comparers
Pattern 120 Lexicographic comparison of two-element records
Assume we have a collection of pairs, each consisting of a string and an integer, that
we want to order lexicographically. To do this, we define a lexicographic comparer
class as follows:

class Lexico : SCG.IComparer<Rec<String,int>> {
public int Compare(Rec<String,int> item1, Rec<String,int> item2) {
int major = item1.X1.CompareTo(item2.X1);
return major != 0 ? major : item1.X2.CompareTo(item2.X2);
}

}

Alternatively, one can create a comparer instance directly from a comparison dele-
gate of type Comparison<Rec<String,int>>:

SCG.IComparer<Rec<string,int>> lexico2 =
new DelegateComparer<Rec<string,int>>(

delegate(Rec<string,int> item1, Rec<string,int> item2) {
int major = item1.X1.CompareTo(item2.X1);
return major != 0 ? major : item1.X2.CompareTo(item2.X2);

});

Pattern 121 Reverse comparer
This method takes a comparer of type IComparer<T> and creates the reverse com-
parer:

public static SCG.IComparer<T> ReverseComparer<T>(SCG.IComparer<T> cmp) {
return new DelegateComparer<T>(

delegate(T item1, T item2) { return cmp.Compare(item2, item1); });
}

188 Patterns for comparers §9.24

A comparer for reverse alphabetical ordering of strings can be obtained like this:

SCG.IComparer<String> rev
= ReverseComparer<String>(Comparer<String>.Default);

Chapter 10

Anti-patterns in C5

10.1 Efficiency anti-patterns
The C5 library supports efficient implementation of a large number of common op-
erations in advanced software. Unfortunately it is also possible to use the library in
ways that are far from optimal.

This chapter lists some common performance mistakes: solutions that appar-
ently work for small data sets but are far less efficient for large data sets than they
could be. We call these common mistakes performance anti-patterns: what not to do
if you want to write fast programs.

The chapter also mentions a single correctness anti-pattern, namely the updating
of an inner collection (or other item) after it has been added to an outer collection.

Anti-pattern 122 Many insertions into or deletions from a sorted array
It is very inefficient to insert many items into a sorted array: at each insertion, all
items at higher indexes must be moved. Hence n random insertions will take time
O(n2).

SortedArray<double> sarr = new SortedArray<double>();
foreach (double d in randomDoubles)

sarr.Add(d);

Instead, use a sorted tree (TreeSet<T>, section 6.8) which like SortedArray<T> im-
plements interface IIndexedSorted<T>; then n random insertions will take only time
O(n logn).

189

190 Efficiency anti-patterns §10.1

Anti-pattern 123 Using bulk operations RemoveAll and RetainAll on lists
The bulk operations RemoveAll and RetainAll are inefficient on non-hashed array
lists and non-hashed linked lists; removing m items from an n-item list takes time
O(mn).

ArrayList<double> list1 = ..., list2 = ...;
list1.RemoveAll(list2);

If item order need not be preserved, use hash sets or hash bags instead of lists. If
item order must be preserved and all items have multiplicity at most one (so the
collection has set semantics), use hashed linked lists instead on non-hashed lists.

Anti-pattern 124 Using an unsequenced collection equality comparer on lists
An unsequenced collection equality comparer determines equality (whether two col-
lections contain the same items) by disregarding the order in which the items ap-
pear. Using an unsequenced equality comparer on a non-hashed array list or non-
hashed linked list is slow because there is no efficient way to check whether a par-
ticular item is in a list. So performing unsequenced comparison of two lists of length
n will take O(n2).

SCG.IEqualityComparer<IList<int>> unseqEqualityComparer
= new UnsequencedCollectionEqualityComparer<IList<int>,int>();

HashSet<IList<int>> hs3 = new HashSet<IList<int>>(unseqEqualityComparer);
hs3.Add(coll1); hs3.Add(coll2); hs3.Add(coll3);

If item order need not be preserved, use hash sets or hash bags instead of lists. If
item order must be preserved but all items have multiplicity at most one (so the
collection has set semantics), use hashed linked lists instead on non-hashed lists. If
item order must be preserved and items may have multiplicity higher than one (so
the collection has bag semantics), create hash bags from the lists and perform unse-
quenced comparison on them. Any of these approaches should reduce the execution
time to O(n).

§10.1 Efficiency anti-patterns 191

Anti-pattern 125 Using a loop that indexes into a linked list

for (int i=0; i<list.Count; i++)
... list[i] ...

Instead, if you need to update at position i but need not insert into or delete from
the list, use an ArrayList<T> which has efficient indexing:

int i=0;
foreach (T x in list) {

... x ...
i++;

}

Or, if you need not update at position i, use foreach with an explicit counter i:

int i=0;
foreach (T x in list) {

... x ...
i++;

}

Or, if you need to update at position i and need to insert into or delete from the list,
use a linked list and a view (as in pattern 30):

IList<T> view = list.View(0,0);
while (view.TrySlide(0, 1))) {

... view[0] ...
view.Slide(+1, 0);

}

Anti-pattern 126 Using IndexOf repeatedly on array list or linked list
If list is an ArrayList<T> or LinkedList<T> or WrappedArray<T>, then
list.IndexOf(x) and list.ViewOf(x) and the corresponding Last-prefixed methods
must perform a linear search of the lists. Hence this is likely to be very slow unless
list is short:

// list is a LinkedList<T> or ArrayList<T>
foreach (T x in ...) {

int i = list.IndexOf(x);
... i ...

}

Instead, if the list has set semantics, use a hashed array list or hashed linked list,
which gives constant-time item lookup:

// list is a HashedLinkedList<T> or ArrayList<T>
foreach (T x in ...) {

int i = list.IndexOf(x);
... i ...

}

192 Efficiency anti-patterns §10.1

Anti-pattern 127 Using IndexOf and then indexing into hashed linked list
If list is a hashed linked list, then list.IndexOf(x) is fast, but indexing remains
slow. Hence this way of updating items equal to x is likely to be very slow:

// list is a HashedLinkedList<T>
foreach (T x in ...) {
int i = list.IndexOf(x);
if (i >= 0) {

T y = list[i];
list[i] = ... y ...;

}
...

}

Instead use list.ViewOf(x) to get a one-item view, and work on the item through
that view, for constant-time indexing:

// list is a HashedLinkedList<T>
foreach (T x in ...) {
using (IList<T> view = list.ViewOf(x)) {

if (view != null) {
T y = view[0];
view[0] = ... y ...;

}
}
...

}

Or, if you do not need to insert or delete items, use a hashed array list and IndexOf,
instead of a hashed linked list and ViewOf, to avoid creating the view objects.

Anti-pattern 128 Using an array list as a FIFO queue
An array list list can be used as a FIFO queue by enqueueing (adding) items at the
end of the list and dequeueing (removing) items from the beginning of the list. But
the latter operation is slow if there are more than a few items in the array list, so
this can be very slow:

// list is an ArrayList<T>
while (!list.IsEmpty) {
T next = list.Dequeue();
... list.Enqueue(...) ...

}

Instead use a CircularQueue (or a linked list, see section 9.22) which has constant-
time enqueueing and dequeueing operations:

// queue is a CircularQueue<T> or LinkedList<T>
while (!list.IsEmpty) {
T next = queue.Dequeue();
... queue.Enqueue(...) ...

}

§10.1 Efficiency anti-patterns 193

Anti-pattern 129 Using a sorted array as priority queue
A sorted array sarr of type SortedArray<T> can be used as a priority queue by
enqueueing items using Add and by retrieving minimal or maximal items using
sarr.DeleteMin() or sarr.DeleteMax(). But insertion into and deletion from a sorted
array are slow (linear time) if there are more than a few items in the array, so this
can be very slow:

// sarr is a SortedArray<T>
while (!sarr.IsEmpty) {

T min = sarr.DeleteMin();
... sarr.Add(...) ...

}

Instead, use an IntervalHeap<T> in which insertion and deletion are fast (logarith-
mic time) operations. Moreover, in contrast to a sorted array, an interval heap can
contain multiple occurrences of items that have the same priority (that is, are equal
by the item comparer):

// pq is an IntervalHeap<T>
while (!pq.IsEmpty) {

T min = sarr.DeleteMin();
... pq.Add(...) ...

}

Anti-pattern 130 Using lists to represent sets or bags
An array list or linked list may be used to represent a set or bag (multiset) of items.
This may be tempting if you have seen examples in Lisp or Scheme or another
functional language, but should be avoided except for very small sets. So these
implementations of set operations may be very slow, except for small sets s0, s1, s2
and s3:

// s0, s1, s2, s3 are LinkedList<T> or ArrayList<T>
s1.AddAll(s0); // s1 = s1 union s0
s2.RemoveAll(s0); // s2 = s2 minus s0
s3.RetainAll(s0); // s3 = s3 intersect s0

Instead use hash sets, hash bags, tree sets or tree bags, as shown by the patterns in
section 9.15 and by the example in section 11.11; or use hashed array lists or hashed
linked lists (for sets) if you need to maintain item insertion order.

194 Efficiency anti-patterns §10.1

Anti-pattern 131 Using a bad hash function
This is an artificial example of a bad hash function GetHashCode. It maps all items
(which themselves happen to be integers) to just seven different integers: 0, 1, 2, 3,
4, 5 and 6.

private class BadIntegerEqualityComparer : SCG.IEqualityComparer<int> {
public bool Equals(int i1, int i2) { return i1 == i2; }
public int GetHashCode(int i) { return i % 7; } // BAD

}

Here are some statistics from inserting 50000 random items into a hashset using
the bad hash function. The time per inserted item is 104 microseconds. The bucket
cost distribution (see section 6.10) shows that there are 7 buckets — one for each of
the hash codes 0, 1, 2, 3, 4, 5 and 6 — with a very high cost, and 131065 buckets
that are empty. The average non-empty bucket cost is 6968.

Bad hash function: (5.1974736 sec, 48779 items)
131065 bucket(s) with cost 0

1 bucket(s) with cost 6808
1 bucket(s) with cost 6891
1 bucket(s) with cost 6903
1 bucket(s) with cost 6950
1 bucket(s) with cost 7027
1 bucket(s) with cost 7068
1 bucket(s) with cost 7132

Instead of a bad one, one should of course use a good hash function: one that maps
items to hash codes that are evenly distributed over all int values. For items that
are integers, that is easy:

private class GoodIntegerEqualityComparer : SCG.IEqualityComparer<int> {
public bool Equals(int i1, int i2) { return i1 == i2; }
public int GetHashCode(int i) { return i; }

}

The statistics from inserting 50000 items into a hash set using the good hash func-
tion show that the time per insertion is insertion is 1.0 microsecond, or 100 times
better than with the bad hash function. The average non-empty bucket cost is 1.17,
so the average lookup time is very low. Moreover, no bucket has cost higher than 5,
so the worst-case lookup time is low too.

Good hash function: (0.050072 sec, 48771 items)
89515 bucket(s) with cost 0
35003 bucket(s) with cost 1
5938 bucket(s) with cost 2
573 bucket(s) with cost 3
42 bucket(s) with cost 4
1 bucket(s) with cost 5

§10.2 Correctness anti-patterns 195

10.2 Correctness anti-patterns
Anti-pattern 132 Modifying a collection that is an item in another collection
As shown by the examples in section 11.4 and 11.5, it is often useful to work with
collections of collections. It is easy to get this wrong by creating an inner collection,
adding it to the outer collection and then modifying the inner collection. Most likely
this will cause it to be “lost” from the outer collection and therefore may produce
strange results. What is worse, code like this may accidentally work when the outer
collection contains only a few items, then fail as more items are added:

ICollection<ISequenced<int>> outer = new HashSet<ISequenced<int>>();
ISequenced<int>

inner1 = new TreeSet<int>(),
inner2 = new TreeSet<int>(),
inner3 = new TreeSet<int>();

inner1.AddAll(new int[] { 2, 3, 5, 7, 11 });
inner2.AddAll(inner1); inner2.Add(13);
inner3.AddAll(inner1);
outer.Add(inner1);
// Now inner1 equals inner3 but not inner2
// and outer contains inner1 and inner3 but not inner2
inner1.Add(13); // BAD IDEA
// Now inner1 equals inner2 but not inner3
// and we would expect inner1 or inner3 to be in outer
// but outer apparently contains none of inner1, inner2 and inner3!

It is immaterial that the inner collection is a tree set; the same problems appear
when it is a hash set (or a bag). The morale is: Never modify an inner collection after
it has been added to an outer collection. One way to guard against such modification
is to create a read-only copy of the inner collection and then adding that copy to the
outer collection. Snapshots of tree sets and tree bags are ideal for this purpose; see
sections 4.9 and 8.5 and pattern 86. It is not sufficient to wrap the inner collection
as a guarded collection and then adding it; it could still be modified via the original
reference.

196 Correctness anti-patterns §10.2

Chapter 11

Application examples

Here we present a number of larger applications of the C5 library, each with some
background explanation, code fragments, and discussion. The examples are:

• Recognition of keywords. This example uses a hashset of strings.
• Building a concordance: a sorted listing of words and the line numbers on

which they occur. This example uses a tree dictionary and tree-based sets.
• Computing the convex hull of a set of points in the plane. This example uses

linked-lists and list views.
• Finding anagram classes in a set of words. This example uses a dictionary

from strings to bags of characters.
• Constructing a deterministic finite automaton from a regular expression. This

example uses, among other things: sets of sets of integers, and a dictionary
from sets of integers to a dictionary from strings to sets of integers.

• Topological sort. This example uses hashed linked lists and list views.
• Graph copying. This example hash dictionaries with custom equality compar-

ers, and stacks.
• A library of general graph algorithms. This example uses hash sets, linked

lists, priority queues, and priority queue handles.
• Efficient point location in the plane. This example uses tree sets, tree set

snapshots, and tree-based dictionaries.
• A batch job queue simulation. This example uses priority queues, priority

queue handles, and hash dictionaries.
• A hash-based implementation of functional set operations.
• A multidictionary, in which a key can be associated with multiple values.
• Finding the k most common words in a file.

197

198 Recognizing keywords §11.1

11.1 Recognizing keywords
In many applications one needs to decide whether a given word (string) is a mem-
ber of a fixed collection of words. For instance, one wants to ignore frequent and
therefore insignificant words (so-called stop words) when automatically indexing
text, and one wants to ignore keywords (such as if, while) when building a cross-
reference of identifiers in a program text. In this example we consider the fixed set
of 77 keywords from C#:

abstract as base bool break byte case catch char checked class const
continue decimal default delegate do double else enum event explicit
extern false finally fixed float for foreach goto if implicit in int
interface internal is lock long namespace new null object operator out
override params private protected public readonly ref return sbyte sealed
short sizeof stackalloc static string struct switch this throw true try
typeof uint ulong unchecked unsafe ushort using virtual void volatile while

Such word recognition can be performed efficiently using at least three different
kinds of collections: Hash sets, tree sets, and sorted arrays. This example is in file
KeywordRecognition.cs.

To use a hash set, build it once and for all, then use it in a bool method. For
instance, it may be bound to a static read-only field kw1, initialized in a static con-
structor, and then used in a method IsKeyword1:

class KeywordRecognition {
static readonly String[] keywordArray = { "abstract", ..., "while" };
private static readonly ICollection<String> kw1;
static KeywordRecognition() {

kw1 = new HashSet<String>();
kw1.AddAll(keywordArray);

}
public static bool IsKeyword1(String s) {

return kw1.Contains(s);
}

}

In this code HashSet<String> could be replaced with TreeSet<String> or Sorted-
Array<String>. By far the fastest solution is to use a hash set. To a large extent
that is because the string comparison is quite slow (due to locales or cultures) so the
string comparer used by a tree set or sorted array is much slower than the string
hash function and equality predicate used by the hash set.

§11.2 Building a concordance for a text file 199

11.2 Building a concordance for a text file
This example builds and prints a concordance from a text file: for every word in
the file it finds the line numbers on which the word occurs. The example is in file
Fileindex.cs. We can use a dictionary to map each word to a set of the numbers
of lines on which it occurs; a set avoids duplicate line numbers for each word. The
dictionary is a tree dictionary to make sure the words come out sorted when the
dictionary is printed, and the set of line numbers is a tree set to make sure the
line numbers for each word are sorted. For each word the line numbers are rep-
resented by a TreeSet<int>, and hence the entire concordance is represented by a
TreeDictionary<String, TreeSet<int>>.

Method IndexFile builds the concordance for a given file name:

static IDictionary<String, TreeSet<int>> IndexFile(String filename) {
IDictionary<String, TreeSet<int>> index
= new TreeDictionary<String, TreeSet<int>>();

Regex delim = new Regex("[^a-zA-Z0-9]+");
using (TextReader rd = new StreamReader(filename)) {
int lineno = 0;
for (String line = rd.ReadLine(); line != null; line = rd.ReadLine()) {
String[] res = delim.Split(line);
lineno++;
foreach (String s in res)

if (s != "") {
if (!index.Contains(s))

index[s] = new TreeSet<int>();
index[s].Add(lineno);

}
}

}
return index;

}

Instead of a tree dictionary, one might have used a hash dictionary and then sort the
entries before printing them. Instead of a tree set of line numbers one might have
used a list (because the lines are scanned in order of increasing line numbers any-
way) and either eliminate duplicates afterwards (see pattern 80), or use a hashed
(array or linked) list to avoid duplicated during the construction. It is not clear that
these alternatives would have been any more efficient. Using a tree dictionary and
tree sets naturally achieves the absence of duplicates, and the result index returned
by method IndexFile above will print in alphabetical order without further ado:

foreach (String word in index.Keys) {
Console.Write("{0}: ", word);
foreach (int ln in index[word])
Console.Write("{0} ", ln);

Console.WriteLine();
}

200 Convex hull in the plane §11.3

11.3 Convex hull in the plane
The convex hull is the least convex set that encloses a given set of points. A point set
is convex if every point between to points that belong to the set also belongs to the
set: the set has no holes or inward dents. Figure 11.1 shows an example of several
points and their convex hull, enclosed by a solid line.

right

left

Figure 11.1: A point set and its convex hull in the plane.

Graham’s algorithm [16] for finding the convex hull in the plane, as modified by
Andrew [2], consists of four steps, implemented in file GConvexHull.cs:

1. Sort the points lexicographically by increasing (x,y), thus finding also a left-
most point left and a rightmost point right. Several points may have the
same minimal or maximal x coordinate; any such point will do.

2. Partition the point set into two lists, upper and lower, according as point is
above or below the line segment from left to right, shown by a dotted line in
figure 11.1. The upper list begins with point left and ends with right; the
lower list begins with point right and ends with left.

3. Traverse the point lists clockwise, eliminating all but the extreme points (thus
eliminating also duplicate points). This is Graham’s point elimination scan.

4. Join the point lists (in clockwise order) in an array, leaving out point left from
the lower list and point right from the upper list.

Using C5, these steps can be implemented as follows:

// 1. Sort points lexicographically by increasing (x, y)
int N = pts.Length;
Array.Sort(pts);
Point left = pts[0], right = pts[N - 1];
// 2. Partition into lower hull and upper hull
IList<Point> lower = new LinkedList<Point>(),
upper = new LinkedList<Point>();

lower.InsertFirst(left); upper.InsertLast(left);

§11.4 Convex hull in the plane 201

for (int i = 0; i < N; i++) {
double det = Point.Area2(left, right, pts[i]);
if (det < 0)
lower.InsertFirst(pts[i]);

else if (det > 0)
upper.InsertLast(pts[i]);

}
lower.InsertFirst(right);
upper.InsertLast(right);
// 3. Eliminate points not on the hull
Eliminate(lower);
Eliminate(upper);
// 4. Join the lower and upper hull, leaving out lower.Last and upper.Last
Point[] res = new Point[lower.Count + upper.Count - 2];
lower[0, lower.Count - 1].CopyTo(res, 0);
upper[0, upper.Count - 1].CopyTo(res, lower.Count - 1);

Graham’s point elimination scan, which is step (3) above, works as follows:

• Consider three consecutive points p0, p1, p2.

• If they make a right turn, then p1 is not in the convex set spanned by p0, p2

and other points; keep it.

• Otherwise eliminate p1 and go back to reconsider p0.

Using C5 list views, it can be implemented as follows:

public static void Eliminate(IList<Point> list) {
IList<Point> view = list.View(0, 0);
int slide = 0;
while (view.TrySlide(slide, 3))
if (Point.Area2(view[0], view[1], view[2]) < 0) // right turn
slide = 1;

else { // left or straight
view.RemoveAt(1);
slide = view.Offset != 0 ? -1 : 0;

}
}

}

In every iteration of the while loop, the view focuses on three consecutive points. If
they form a right turn, slide view to the right (by 1); else remove the middle point,
and slide view to the left (by −1) unless at the beginning of the list.

All the above operations, including RemoveAt(1), are efficient when list is a
linked list, and considerably clearer than implementations using explicit manip-
ulation of linked list nodes. Also note that the point deletion operation RemoveAt(1)
cannot be efficiently implemented when using array lists.

202 Finding anagram classes §11.4

11.4 Finding anagram classes
Two words are anagrams of each other if one can be obtained from the other by
rearranging its letters. For instance “generate” and “teenager” are anagrams of
each other. From a collection point of view, two words are anagrams of each other if
they contain the same bag of letters. For the above example, this bag is { a, e, e, e,
g, n, r, t }.

Clearly, a collection of words can be divided into disjoint anagram classes such
any two words in an anagram class are anagrams of each other, and no two words
from different anagram classes are anagrams of each other. Each anagram class
is characterized by a bag of letters (characters). An anagram class is trivial if it
contains only one word. This example is in file Anagrams.cs.

Consider the following task: Divide a given word list into anagram classes, for
each non-trivial anagram class, print the words it contains. The word list is pre-
sented as an enumerable of strings and may contain duplicates.

Given a word (string) we can find its anagram class (as a bag of characters)
straightforwardly like this:

public static HashBag<char> AnagramClass(String s) {
HashBag<char> anagram = new HashBag<char>();
foreach (char c in s)

anagram.Add(c);
return anagram;

}

The default item equality comparer used by the anagram hash bag is CharEquali-
tyComparer; see section 2.3. To manage the anagram classes and the words that
belong to them, we use a dictionary that maps an anagram class to the set of the
words in that class. Then we simply go through the given word list, find the ana-
gram class of each word, and check whether we have seen that anagram class before,
and if not, create a new entry for that anagram class in the dictionary and associate
it with a new empty set of words. Then add the word to the set associated with its
anagram class.

§11.4 Finding anagram classes 203

Method AnagramClasses below takes as argument a stream of words and re-
turns a stream of the non-trivial anagram classes, each being a stream of words.
A stream is represented as an enumerable of type SCG.IEnumerable<T>, where
SCG abbreviates the System.Collections.Generic namespace. The variable classes
holds the anagram classes found so far and has type IDictionary<HashBag<char>,
TreeSet<String>>.

public static SCG.IEnumerable<SCG.IEnumerable<String>>
AnagramClasses(SCG.IEnumerable<String> ss)

{
IDictionary<HashBag<char>, TreeSet<String>> classes
= new HashDictionary<HashBag<char>, TreeSet<String>>();

foreach (String s in ss) {
HashBag<char> anagram = AnagramClass(s);
TreeSet<String> anagramClass;
if (!classes.Find(anagram, out anagramClass))
classes[anagram] = anagramClass = new TreeSet<String>();

anagramClass.Add(s);
}
foreach (TreeSet<String> anagramClass in classes.Values)
if (anagramClass.Count > 1)
yield return anagramClass;

}

Note that we use collection types both for the key type (HashBag<char>) and the
value type (TreeSet<String>) in the dictionary. In particular, the HashBag<char>
key items must be compared by contents: two bags are equal if they contain the
same characters with the same multiplicity. The key equality comparer used by
the classes hash dictionary is the default equality comparer for the key type Hash-
Bag<char>: an unsequenced collection equality comparer; see section 2.3.

The words of each non-trivial anagram class found by method AnagramClasses(ss)
can be printed, one anagram class per line, as shown below. The parameter ss has
type SCG.IEnumerable<String>:

foreach (SCG.IEnumerable<String> anagramClass in AnagramClasses(ss)) {
foreach (String s in anagramClass)
Console.Write(s + " ");

Console.WriteLine();
}

The anagram class problem could also be solved by using a TreeBag<char> any-
where a HashBag<char> is used above. This solution has similar efficiency for
medium-size problems (100 000 anagram classes, of which 10 000 non-trivial), but
uses slightly more memory and so is slower on systems that do not have sufficient
RAM.

204 Finite automata §11.5

11.5 Finite automata
This example shows how to use sets, dictionaries and queues from the C5 library
to systematically construct a deterministic finite automaton from a given nondeter-
ministic finite automaton. The example is in file GNfaToDfa.cs.

A nondeterministic finite automaton (NFA) is a directed graph, as shown in fig-
ure 11.2, with states shown as ovals, and transitions shown as arrows from one state
to another. A transition is labelled with a letter or with the special symbol epsilon
(ε), written eps in the figure. An NFA has a single start state and one or more accept
states, the latter shown as double ovals.

start d6 d4
eps

d7

eps

d10

d0 d1
A

d5
eps

d3

eps

eps

eps

d2

eps

d8
A

d9
B

B

eps

Figure 11.2: A nondeterministic finite automaton for (A|B)∗AB.

A nondeterministic finite automaton is said to recognize a string such as AAABAB
if there is a sequence of transitions from the start state to an accept state, such that
the concatenation of the transitions’ labels equals the string, ignoring epsilons. The
NFA in figure 11.2 recognizes the strings AB, AAB, BAB, and infinitely many others;
in fact, exactly those strings of A’s and B’s that end in AB. On the other hand, it does
not recognize the strings AAA or BA or B or A.

A deterministic finite automaton (DFA) is an NFA that satisfies: (1) no state
has more than one transition with the same label, and (2) there are no epsilon
transitions. Figure 11.3 gives an example DFA.

start d1

d0
A

d2B

d3A
B

BA

A

B

Figure 11.3: A deterministic finite automaton equivalent to the NFA in figure 11.2.

From any NFA one can systematically construct an equivalent DFA; in fact the
DFA in figure 11.3 has been constructed from the NFA in figure 11.2. This construc-
tion is useful because there is a simple way to make an NFA from a given regular

§11.5 Finite automata 205

expression, and there is an efficient way to check whether a DFA recognizes a given
string. Together, this gives an efficient way to check whether a particular string
matches a given regular expression.

A nondeterministic finite automaton can be represented by a start state, an ac-
ceptance state (only one for simplicity), and its transition relation: a dictionary that
maps a state (an int) to an array list of Transitions, where a Transition is a pair
of a label lab and a target state. A label is a string, and we use the label null to
denote epsilon transitions.

class Nfa {
private readonly int startState;
private readonly int exitState; // This is the unique accept state
private readonly IDictionary<int, ArrayList<Transition>> trans;
...

}

public class Transition {
public readonly String lab;
public readonly int target;
public Transition(String lab, int target) {
this.lab = lab; this.target = target;

}
}

Given a nondeterministic finite automaton (NFA) we can construct a deterministic
finite automaton (DFA) in two main steps:

1. Construct a DFA each of whose states is composite, namely a set of NFA states.
This is done by methods CompositeDfaTrans and EpsilonClose below.

2. Replace each composite state (a Set<int>) by a simple state (an int). This
is done by method MkRenamer, which creates a renamer, and method Rename,
which applies the renamer to the composite-state DFA created in step 1.

The above steps can be implemented as follows:

// 1. Construct composite-state DFA
IDictionary<Set<int>, IDictionary<String, Set<int>>>

cDfaTrans = CompositeDfaTrans(startState, trans);
// 2. Replace composite states with simple (int) states
ICollectionValue<Set<int>> cDfaStates = cDfaTrans.Keys;
IDictionary<Set<int>, int> renamer = MkRenamer(cDfaStates);
IDictionary<int, IDictionary<String, int>> simpleDfaTrans =

Rename(renamer, cDfaTrans);

206 Finite automata §11.5

Method EpsilonClose, shown below, computes and returns the epsilon-closure of
a given NFA state s, that is, the set of all NFA states that are reachable from s by
epsilon transitions. This is done as follows: Let a set S of states be given. Put the
states of S on a worklist. Repeatedly choose and remove a state s from the worklist,
and consider all epsilon-transitions s

ε−→ s’ from s to some state s’. If s’ is in
S already, then do nothing; otherwise add s’ to S and to the worklist. When the
worklist is empty, S is epsilon-closed; return S.

static Set<int>
EpsilonClose(Set<int> S, IDictionary<int, ArrayList<Transition>> trans) {
// The worklist initially contains all S members
IQueue<int> worklist = new CircularQueue<int>();
S.Apply(worklist.Enqueue);
Set<int> res = new Set<int>(S);
while (!worklist.IsEmpty) {

int s = worklist.Dequeue();
foreach (Transition tr in trans[s]) {
if (tr.lab == null && !res.Contains(tr.target)) {

res.Add(tr.target);
worklist.Enqueue(tr.target);

}
}

}
return res;

}

Method CompositeDfaTrans, shown below, builds and returns the transition relation
of a composite-state DFA equivalent to transition relation of the given NFA. This is
done as follows: Create the epsilon-closure S0 (a Set<int>) of the NFA’s start state
s0, and put it in a worklist (an IQueue<Set<int>>). Create an empty DFA transition
relation res, which is a dictionary that maps a composite state (an epsilon-closed set
of ints) to a dictionary that maps a label (a non-null string) to a composite state.

Repeatedly choose a composite state S from the worklist. If S is not already in the
key set of the DFA transition relation, compute for every non-epsilon label lab the
set T of states reachable by that label from some state s in S. Compute the epsilon-
closure Tclose of every such state T and put it on the worklist. Then for every lab,
add the transition S

lab−→ Tclose to the DFA transition relation.

§11.5 Finite automata 207

static IDictionary<Set<int>, IDictionary<String, Set<int>>>
CompositeDfaTrans(int s0, IDictionary<int, ArrayList<Transition>> trans) {
Set<int> S0 = EpsilonClose(new Set<int>(s0), trans);
IQueue<Set<int>> worklist = new CircularQueue<Set<int>>();
worklist.Enqueue(S0);
// The transition relation of the DFA
IDictionary<Set<int>, IDictionary<String, Set<int>>> res =
new HashDictionary<Set<int>, IDictionary<String, Set<int>>>();

while (!worklist.IsEmpty) {
Set<int> S = worklist.Dequeue();
if (!res.Contains(S)) {
// The S -lab-> T transition relation being constructed for a given S
IDictionary<String, Set<int>> STrans =

new HashDictionary<String, Set<int>>();
// For all s in S, consider all transitions s -lab-> t
foreach (int s in S) {

// For all non-epsilon transitions s -lab-> t, add t to T
foreach (Transition tr in trans[s]) {
if (tr.lab != null) { // Non-epsilon transition

Set<int> toState;
if (STrans.Contains(tr.lab)) // Already a transition on lab
toState = STrans[tr.lab];

else { // No transitions on lab yet
toState = new Set<int>();
STrans.Add(tr.lab, toState);

}
toState.Add(tr.target);

}
}

}
// Epsilon-close all T such that S -lab-> T, and put on worklist
IDictionary<String, Set<int>> STransClosed =

new HashDictionary<String, Set<int>>();
foreach (KeyValuePair<String, Set<int>> entry in STrans) {

Set<int> Tclose = EpsilonClose(entry.Value, trans);
STransClosed.Add(entry.Key, Tclose);
worklist.Enqueue(Tclose);

}
res.Add(S, STransClosed);

}
}
return res;

}

208 Finite automata §11.5

Method MkRenamer, shown below, creates and returns a renamer, a dictionary
that maps Set<int> to int. This is done as follows: Given a collection of Set<int>,
create a new injective dictionary that maps from Set<int> to int, by choosing a
fresh int for every key in the given dictionary. The collection of Set<int> is actually
the key set of the composite-state DFA’s transition relation, as computed by method
CompositeDfaTrans above.

static IDictionary<Set<int>, int> MkRenamer(ICollectionValue<Set<int>> states) {
IDictionary<Set<int>, int> renamer = new HashDictionary<Set<int>, int>();
int count = 0;
foreach (Set<int> k in states)

renamer.Add(k, count++);
return renamer;

}

Method Rename, shown below, creates and returns a DFA whose states are simple
ints. This is done as follows: Given a renamer as constructed by method MkRenamer,
and given the composite-state DFA’s transition relation, create and return a new
transition relation as a dictionary in which every Set<int> has been replaced by an
int, as dictated by the renamer.

static IDictionary<int, IDictionary<String, int>>
Rename(IDictionary<Set<int>, int> renamer,

IDictionary<Set<int>, IDictionary<String, Set<int>>> trans)
{
IDictionary<int, IDictionary<String, int>> newtrans =

new HashDictionary<int, IDictionary<String, int>>();
foreach (KeyValuePair<Set<int>, IDictionary<String, Set<int>>> entry

in trans) {
Set<int> k = entry.Key;
IDictionary<String, int> newktrans = new HashDictionary<String, int>();
foreach (KeyValuePair<String, Set<int>> tr in entry.Value)
newktrans.Add(tr.Key, renamer[tr.Value]);

newtrans.Add(renamer[k], newktrans);
}
return newtrans;

}

§11.6 Topological sort 209

11.6 Topological sort
This example concerns topological sorting; it is in file Toposort.cs. A topological
sort of a directed acyclic graph is a linear ordering of the graph’s nodes, such that if
node a points to node b in the graph, noted a → b, then a < b in the linear ordering.
Note that there may be many different such linear orderings for a given graph. For
instance, consider the graph in figure 11.4.

b

c

e

a d

Figure 11.4: A directed acyclic graph with nodes a, b, c, d and e.

The graph has linear orderings a < b < c < d < e but also a < b < c < e < d and
a < c < b < d < e and a < c < b < e < d and a < c < e < b < d.

Topological sort may be used in a spreadsheet implementation. Each cell formula
in the spreadsheet is a node, and its children are the cells that the formula refers to,
that is, the cells on which its value depends. A topological sort of the cell formulas
can be used to determine the order in which to evaluate the cell formulas after a
change.

11.6.1 Representation of graph nodes
Assume that a graph node has a name id and zero or more child nodes. A graph
consists of a set of such nodes, together with a set of some of the nodes called the
start set. More concretely, let a node with id of type T be represented in C# by an
object of type Node<T>:

public class Node<T> {
public readonly T id;
public readonly Node<T>[] children; // All non-null
public Node(T id, params Node<T>[] children) {
this.id = id; this.children = children;

}
public Node(Node<T> node) : this(node.id, new Node<T>[node.children.Length])
{ }

}

Thus new Node(id, n1, ..., nk) creates a node with name id and children n1, . . . ,nk.
For instance, if node names are represented as strings, the graph in figure 11.4 can
be created using this C# declaration:

210 Topological sort §11.6

Node<String>
d = new Node<String>("d"),
e = new Node<String>("e"),
c = new Node<String>("c", d, e),
b = new Node<String>("b", d),
a = new Node<String>("a", b, c, d);

11.6.2 Standard depth-first topological sort

The standard algorithm for topological sort places the graph nodes in the order of
increasing finish time in a depth-first search of the graph from the nodes in the start
set [9, section 22.4].

This is easily implemented using the HashedLinkedList<T> class of the C5 li-
brary. We need two methods, Toposort0 and AddNode0, where method Toposort0
takes as argument the start set, creates a new empty list of sorted nodes, and then
for each start node adds all its descendants:

public static IList<Node<T>> Toposort0<T>(params Node<T>[] starts) {
HashedLinkedList<Node<T>> sorted = new HashedLinkedList<Node<T>>();
foreach (Node<T> start in starts)

if (!sorted.Contains(start))
AddNode0(sorted, start);

return sorted;
}

Method AddNode0 takes as argument a node which is not yet in the sorted list. For
each child of the given node it adds all the child’s descendants by calling itself re-
cursively, and finally adds the node:

private static void AddNode0<T>(IList<Node<T>> sorted, Node<T> node) {
SDD.Assert(!sorted.Contains(node));
foreach (Node<T> child in node.children)

if (!sorted.Contains(child))
AddNode0(sorted, child);

sorted.InsertLast(node);
}

Provided the graph contains no cycles, method Toposort0 returns a sorted list of
nodes with the following property: every node appears strictly after all its descen-
dants. If the algorithm terminates, it takes time linear in the number of nodes in
the graph. However, if the graph contains a cycle, then there will be an infinite
sequence of calls to AddNode0 and the program will fail with stack overflow.

The call SDD.Assert(...) is to method Assert in class System.Diagnostics.Debug.
It is used to assert a precondition for method AddNode0, and has no effect at runtime
unless the example is compiled with option /d:DEBUG.

§11.6 Topological sort 211

11.6.3 Improved depth-first algorithm for topological sort
The implementation of topological sort shown above exploits that in a hashed linked
list, it is very fast to determine (using Contains) whether a node is in the list. By
exploiting also that a hashed linked list knows where a node is in the list, we get
a slightly better non-standard algorithm for topological sort: one that terminates
even if the graph contains cycles. The main difference is that the above standard
algorithm adds a node after adding its descendants, whereas the non-standard al-
gorithm below adds a node before addings its descendants.

Method Toposort1 that takes as argument the set of start nodes, creates a new
empty list of sorted graph nodes, and then adds each start node and its descendants:

public static IList<Node<T>> Toposort1<T>(params Node<T>[] starts) {
HashedLinkedList<Node<T>> sorted = new HashedLinkedList<Node<T>>();
foreach (Node<T> start in starts)
if (!sorted.Contains(start)) {
sorted.InsertLast(start);
AddNode1(sorted, start);

}
return sorted;

}

Method AddNode1 takes as argument a node which is already in the sorted list. For
each child of the given node it adds that child just before the given node, and then
adds all the child’s descendants by calling itself recursively.

private static void AddNode1<T>(IList<Node<T>> sorted, Node<T> node) {
SDD.Assert(sorted.Contains(node));
foreach (Node<T> child in node.children)
if (!sorted.Contains(child)) {
sorted.ViewOf(node).InsertFirst(child);
AddNode1(sorted, child);

}
}

Provided the graph contains no cycles, method Toposort1 returns a sorted list of
nodes in which every node appears strictly after all its descendants. Also, it termi-
nates even in case the graph contains cycles, but in that case, there will be at least
one node in the sorted list that does not appear strictly after all its descendants.
The algorithm takes time linear in the number of nodes in the graph.

Note that the precondition of AddNode1 is the logical negation of that of AddNode0.
The main shortcoming of the above depth-first algorithms is that they may per-

form long chains of recursive method calls, and thus may overflow the method call
stack. Namely, if the graph contains a chain of the form a1 → a2 → a3 → ··· → an

where a1 has child a2, and a2 and child a3 so on, then there may be a chain of calls
of the AddNode methods that has depth n.

This shortcoming can be addressed by keeping an explicit stack (using an array
list, for instance) of node children yet to visit. Alternatively, one may consider the

212 Topological sort §11.6

sorted list itself as a “worklist” of nodes whose children should be considered, using
a list view as a cursor. This is at the expense of some extra work, especially if some
nodes may have many children.

11.6.4 Topological sort by rescanning the sorted list
The last version of topological sort considered here uses a one-item list view as a
cursor to scan the sorted list. When a new node is inserted into the list, the cursor
points at that node. If the node under the cursor has a pending child — a child not
yet on the sorted list — that child is inserted in at the left end of the cursor, the
cursor is moved left by Slide(0,1), and the same process is repeated. Otherwise,
the cursor is moved right by TrySlide(+1) until a node is found that has a pending
child, or until the right end of the list is reached. The loop invariant is that no node
strictly to the left of the cursor has a pending child.

public static IList<Node<T>> Toposort2<T>(params Node<T>[] starts) {
HashedLinkedList<Node<T>> sorted = new HashedLinkedList<Node<T>>();
foreach (Node<T> start in starts)

if (!sorted.Contains(start)) {
sorted.InsertLast(start);
using (IList<Node<T>> cursor = sorted.View(sorted.Count-1,1)) {

do {
Node<T> child;
while (null != (child = PendingChild(sorted, cursor.First))) {

cursor.InsertFirst(child);
cursor.Slide(0,1);

}
} while (cursor.TrySlide(+1));

}
}

return sorted;
}
static Node<T> PendingChild<T>(IList<Node<T>> sorted, Node<T> node) {
foreach (Node<T> child in node.children)

if (!sorted.Contains(child))
return child;

return null;
}

The main drawback of this procedure is that the child list of a node may be scanned
repeatedly, which means that the running time for each node is quadratic in its
number of children. If the maximal number of children for a node is bounded (say,
3), then this is not a cause for concern.

§11.7 Copying a graph 213

11.7 Copying a graph
Assume we have an arbitrary graph represented as in section 11.6.1, and that we
want to make an exact shallow copy of that graph. The new copy must consist of
fresh Node<T> objects, and its structure, as expressed by the children references,
must be the same as that of the given old graph, preserving sharing and cycles. This
example is in file Graphcopy.cs.

11.7.1 Graph copying using a recursive helper method

One way to create such a copy is to build a dictionary that maps each old node to a
new node, using a reference equality comparer to distinguish nodes by their object
identity. In fact, the resulting dictionary is an isomorphism between the old and the
new graph. Initially the dictionary is empty, and new graph’s start is the copy of the
old graph’s start node.

public static Node<T> CopyGraph0<T>(Node<T> start) {
IDictionary<Node<T>,Node<T>> iso
= new HashDictionary<Node<T>,Node<T>>

(ReferenceEqualityComparer<Node<T>>.Default);
return CopyNode0(iso, start);

}

The real work is done in method CopyNode0, which returns the new node correspond-
ing to a given old node. If the old node is already in the dictionary’s key set, then
the corresponding new node is obtained from the dictionary. Otherwise a new node
is created as a copy of the old node, the dictionary is extended to map the old node
to the new one, and the new node’s children are set to be the copies of the old node’s
children:

private static Node<T> CopyNode0<T>(IDictionary<Node<T>,Node<T>> iso,
Node<T> old) {

Node<T> copy;
if (!iso.Find(old, out copy)) {
copy = new Node<T>(old);
iso[old] = copy;
for (int i=0; i<copy.children.Length; i++)
copy.children[i] = CopyNode0(iso, old.children[i]);

}
return copy;

}

It is important that dictionary is updated before the children of the old node is
considered; otherwise the copying could fail on cyclic graphs while attempting to
unroll a cycle.

214 Copying a graph §11.7

11.7.2 Graph copying using an explicit stack
The straightforward recursive algorithm above may fail with a stack overflow ex-
ception if applied to a graph that has a very long path. To avoid that, one may use a
stack or queue of pending nodes: nodes whose children still need to be copied, as in
the following algorithm:

public static Node<T> CopyGraph1<T>(Node<T> start) {
IDictionary<Node<T>,Node<T>> iso

= new HashDictionary<Node<T>,Node<T>>
(ReferenceEqualityComparer<Node<T>>.Default);

IStack<Node<T>> work = new ArrayList<Node<T>>();
iso[start] = new Node<T>(start);
work.Push(start);
while (!work.IsEmpty) {

Node<T> node = work.Pop(), copy = iso[node];
for (int i=0; i<node.children.Length; i++) {
Node<T> child = node.children[i];
Node<T> childCopy;
if (!iso.Find(child, out childCopy)) {

iso[child] = childCopy = new Node<T>(child);
work.Push(child);

}
copy.children[i] = childCopy;

}
}
return iso[start];

}

As before, the dictionary maps an old node to its new copy. The work stack holds
nodes that have already been copied, but whose children may still need to be copied.
Every node in the stack is also in the key set of the dictionary.

§11.8 General graph algorithms 215

11.8 General graph algorithms
This section gives a rudimentary description of a more general graph library, imple-
mented in file Graph.cs. The graph library consists of an interface for edge-weighted
graphs, an implementation based on an adjacency list representation using hash
dictionaries, and these example algorithms:

• Breadth-First-Search and Depth-First-Search, with an interface based on ac-
tions to be taken as edges are traversed. Applications are: checking for con-
nectedness, and counting components. This illustrates the use of hash sets and
of LinkedList<Edge<V,E>> to determine breadt-first or depth-first search.

• Priority-First-Search, where edges are traversed according to either weight or
accumulated weight from the start of the search. An application of the non-
accumulating version is the construction of a minimal spanning tree, used in
the approximate algorithm for the Traveling Salesman Problem below. Ap-
plications of the accumulating version are: the construction of a shortest path
and the computation of the distance from one vertex to another one. This illus-
trates the use of hash dictionaries, priority queues and priority queue handles.

• An approximation algorithm for the Traveling Salesman Problem, when the
edge weights satisfies the triangle inequality [32].

The interfaces and classes of the graph library uses these generic parameters:

• Generic parameter V stands for the type of a vertex in a graph. Vertices are
identified by the Equals method inherited from object (or overridden in the
vertex class).

• Generic parameter E stands for the type of additional data associated with
edges in a graph.

• Generic parameter W stands for the type of weights on edges in a weighted
graph, in practice usually int or double. Values of type W must be comparable,
that is, W : IComparable<W>, and there must be given a compatible way to add
values of type W.

Interface IGraph<V,E,W> is the interface for a graph implementation with vertex
type V, edge data type E and edge weight values of type W.

Interface IWeight<E,W> describes a weight function that maps an edge data
value of type E to a weight value of type W, and an operation to add two weight
values of type W giving a value of type W.

Class HashGraph<V,E,W> provides an implementation of IGraph<V,E,W> based
on adjacency lists represented as hash dictionaries.

Class CountWeight<E> implements IWeight<E,int>, class IntWeight implements
IWeight<int,int>, and class DoubleWeight implements IWeight<double,double>,
and they are used to represent commonly occurring types of edge weights.

216 Point location in the plane §11.9

Struct type Edge<V,E> is the type of an edge in a graph with vertices of type V
and edge data of type E.

Delegate type EdgeAction<V,E,U> is the type of an action to perform on each
edge when traversing a graph with edges of type Edge<V,E> and with additional
edge information (e.g. weight data) of type U.

11.9 Point location in the plane
Assume that the plane is divided into cells, delimited by edges (straight line seg-
ments) such as the solid lines in figure 11.5. For instance, such a division may
represent plots of land, the fields of a farm, or the rooms and corridors of a complex
building.

(x,y)

x

y

Figure 11.5: Dividing the plane into slices for efficient point location.

Then one can ask the question of any given point (x,y) in the plane: which cell
does this point belong to? This question can be answered efficiently by using tree-
based collections and taking snapshots (sections 6.8 and 8.5). This is a classical
example of using persistent trees by Sarnak and Tarjan [25]. The example is in file
PointLocation.cs.

The solution is to use an outer sorted dictionary that maps each x coordinate of
an edge endpoint to an inner sorted set of the edges that cross or touch the vertical
line at that x coordinate. The edges contained in the inner sorted set are ordered
by their y coordinates to the immediate right of x. In the figure, the positions of the
inner sorted sets are shown as vertical dashed lines. Note that there is an inner
sorted set for each edge endpoint in the plane.

§11.9 Point location in the plane 217

To look up a point (x,y) one first finds the predecessor of x in the outer sorted
dictionary, searching on x only. The result is an inner sorted set, in which one then
locates the edges above and below (x,y) by searching on the y coordinate only. The
complete lookup takes time O(logn) where n is the number of edges.

The whole data structure can be built efficiently by letting the inner sorted sets
be snapshots of the same sorted set, created in order of increasing x coordinate.
These snapshots are created by maintaining a sorted tree set of edges, inserting and
deleting edges during a horizontal (x axis) sweep, taking a snapshot of the inner tree
set and saving it in the outer sorted dictionary at each x coordinate that causes one
or more edges to be added or deleted. Thus snapshots are taken exactly at the edge
endpoints.

If there are n edges, there will be 2n updates to the inner sorted tree, and in
the worst case, the inner tree will have size Ω(n) for Ω(n) snapshots. We will use
O(n logn) time and O(n) space for sorting the endpoints. Since C5 uses node copy
persistence (section 13.10) for snapshots of the inner sorted trees, we will use O(n)
space and O(n) time to build the data structure. This is far better than the naive
approach of making full copies of non-persistent inner trees, which would use up to
O(n2) space and time to build the datastructure.

Lookup will take O(logn) time in any case, but taking the memory hierarchy into
consideration, a low space use is very beneficial for large problems.

The code for this example present demonstrates the use of snapshots as well as
the Cut method from interface ISorted<T> (section 4.13).

218 A batch job queue §11.10

11.10 A batch job queue
This example concerns management of computer batch jobs using priority queues.
The example is in file Jobqueue.cs.

The Blast server at the National Center for Biotechnology Information in Mary-
land, USA, can search a gene database for DNA sequences that are similar to a
given DNA sequence. Such searches are performed from a batch job queue. To pre-
vent a single user from stealing all cpu power, a search job submitted at time t is
scheduled to be executed at time t + 60n where n is the number of search jobs from
that uses already in the job queue. Hence a single search job will be allowed to run
immediately (if there is a processor available), but if a second search job is submit-
ted immediately after the first one, it will have to wait at least 60 seconds before it
gets executed (if there is other work to do with an earlier scheduled execution time).
Submitted jobs are identified unique by a request id (RID), and here we assume
users are identified by the submitting machine’s IP address. Submitted jobs can be
retracted (deleted) using their RID.

Let Ip be the type of IP numbers, let Rid be the type of request ids, and let Job
be the type of search jobs. A Job object should contain at least an Ip, a Rid, and the
job’s scheduled execution time and should implement IComparable<Job> based on
scheduled time. We can implement the policy described above by maintaining three
data structures:

• An IPriorityQueue<Job> called jobQueue that contains the jobs, ordered ac-
cording to scheduled execution time.

• An IDictionary<Rid,IPriorityQueueHandle<Job>> called jobs that maps a re-
quest id to the associated handle in the priority queue.

• A HashBag<Ip> called userJobs containing the IP numbers of users, with the
same multiplicity that that user’s jobs appear in the priority queue. There is
no efficient way to find this number using only the priority queue.

The following operations can be performed on the batch job system:

• Submit(ip, t) should find the number of existing jobs from the same user ip
by userJobs.ContainsCount(ip), compute the scheduled execution time, create
a Rid object rid, create a Job object job and insert it into the priority queue
obtaining a handle h in return by jobQueue.Add(job, out h); add the ip to the
hash bag by userJobs.Add(ip); and insert the rid-to-handle mapping in the
dictionary by jobs[rid] = h. Total time: O(log(n)) where n is the number of
pending jobs.

• ExecuteOne() should find a job with minimal scheduled execution time and
remove it from the priority queue by job = jobQueue.DeleteMin(), remove the
job’s IP once from the hash bag by userJobs.Remove(job.ip), and remove the
job’s RID from the dictionary by jobs.Remove(job.rid). Total time: O(log(n))
where n is the number of pending jobs.

§11.10 A batch job queue 219

• Cancel(rid) should find the handle corresponding to rid in the dictionary
and remove it (if it is present) by present = jobs.Find(rid, out h); find the
job corresponding to the handle in the priority queue and remove it by job
= jobQueue.Delete(h); and remove the job’s IP once from the hash bag by
jobs.Remove(job.ip). Total time: O(log(n)) where n is the number of pend-
ing jobs.

In reality these three operations are likely to happen asynchronously, since new
search jobs (and possibly cancellation requests) come in via the web while at the
same time several processors are removing jobs from the job queue to execute them.

Clearly some form of synchronization is needed to keep the three data struc-
tures consistent with each other. One way is for each of the three above operations
to lock on some object (for instance, jobQueue) for the duration of the operation.
This avoids scenarios such as overlapped execution of scheduling and cancelling:
ExecuteOne might remove a job from the job queue (but not get to remove one from
the dictionary) and at the same time Cancel gets and removes the same job from the
dictionary. When subsequently ExecuteOne tries to remove the job from the dictio-
nary, it fails; and so does Cancel when it tries to remove the job from the job queue.
For simplicity this synchronization has been left out of the example.

Here are the auxiliary classes for representing Jobs, Rids and Ip numbers:

class Job : IComparable<Job> {
public readonly Rid rid;
public readonly Ip ip;
public readonly int time;
public Job(Rid rid, Ip ip, int time) { ... }
public int CompareTo(Job that) {
return this.time - that.time;

}
public override String ToString() { ... }

}
class Rid {

private readonly int ridNumber;
private static int nextRid = 1;
public Rid() { ... }
public override String ToString() { ... }

}
class Ip {

public readonly String ipString;
public Ip(String ipString) { ... }
public override int GetHashCode() {
return ipString.GetHashCode();

}
public override bool Equals(Object that) {
return that != null

&& that is Ip
&& this.ipString.Equals(((Ip)that).ipString);

}
}

220 A batch job queue §11.10

The job queue class and its operations can be implemented like this:

class JobQueue {
private readonly IPriorityQueue<Job> jobQueue;
private readonly IDictionary<Rid,IPriorityQueueHandle<Job>> jobs;
private readonly HashBag<Ip> userJobs;

public JobQueue() {
this.jobQueue = new IntervalHeap<Job>();
this.jobs = new HashDictionary<Rid,IPriorityQueueHandle<Job>>();
this.userJobs = new HashBag<Ip>();

}

public Rid Submit(Ip ip, int time) {
int jobCount = userJobs.ContainsCount(ip);
Rid rid = new Rid();
Job job = new Job(rid, ip, time + 60 * jobCount);
IPriorityQueueHandle<Job> h = null;
jobQueue.Add(ref h, job);
userJobs.Add(ip);
jobs.Add(rid, h);
Console.WriteLine("Submitted {0}", job);
return rid;

}

public Job ExecuteOne() {
if (!jobQueue.IsEmpty) {
Job job = jobQueue.DeleteMin();
userJobs.Remove(job.ip);
jobs.Remove(job.rid);
Console.WriteLine("Executed {0}", job);
return job;

} else
return null;

}

public void Cancel(Rid rid) {
IPriorityQueueHandle<Job> h;
if (jobs.Remove(rid, out h)) {
Job job = jobQueue.Delete(h);
userJobs.Remove(job.ip);
Console.WriteLine("Cancelled {0}", job);

}
}

}

§11.10 A batch job queue 221

A possible sequence of operations is:

JobQueue jq = new JobQueue();
// One user submits three jobs at time=27
Rid rid1 = jq.Submit(new Ip("62.150.83.11"), 27),

rid2 = jq.Submit(new Ip("62.150.83.11"), 27),
rid3 = jq.Submit(new Ip("62.150.83.11"), 27);

// One job is executed
jq.ExecuteOne();
// Another user submits two jobs at time=55
Rid rid4 = jq.Submit(new Ip("130.225.17.5"), 55),

rid5 = jq.Submit(new Ip("130.225.17.5"), 55);
// One more job is executed
jq.ExecuteOne();
// The first user tries to cancel his first and last job
jq.Cancel(rid1);
jq.Cancel(rid3);
// The remaining jobs are executed
while (jq.ExecuteOne() != null) { }

This will produce the following output:

Submitted rid=1
Submitted rid=2
Submitted rid=3
Executed rid=1
Submitted rid=4
Submitted rid=5
Executed rid=4
Cancelled rid=3
Executed rid=2
Executed rid=5

222 A functional hash-based set implementation §11.11

11.11 A functional hash-based set implementation
This section shows how to declare a class Set<T> with functional or declarative set
operations as a simple subclass of HashSet<T>. This approach has the advantage
that the set implements ICollectionValue<T> and hence SCG.IEnumerable<T>, but
it has the disadvantage that a Set<T> object is not protected against destructive
modification. The example is in file Sets.cs.

The operators +, - and * are overloaded to implement set union (A∪B), set differ-
ence (A\B) and set intersection (A∩B).

public class Set<T> : HashSet<T> {
public static Set<T> operator +(Set<T> s1, Set<T> s2) {

if (s1 == null || s2 == null)
throw new ArgumentNullException("Set+Set");

else {
Set<T> res = new Set<T>(s1);
res.AddAll(s2);
return res;

}
}
public static Set<T> operator -(Set<T> s1, Set<T> s2) {

if (s1 == null || s2 == null)
throw new ArgumentNullException("Set-Set");

else {
Set<T> res = new Set<T>(s1);
res.RemoveAll(s2);
return res;

}
}
public static Set<T> operator *(Set<T> s1, Set<T> s2) {

if (s1 == null || s2 == null)
throw new ArgumentNullException("Set*Set");

else {
Set<T> res = new Set<T>(s1);
res.RetainAll(s2);
return res;

}
}
...
public Set(SCG.IEnumerable<T> enm) : base() {

AddAll(enm);
}
public Set(params T[] elems) : this((SCG.IEnumerable<T>)elems) { }

}

The Set<T> class has a constructor that creates a set from an enumerable (which
may be another set) and a variable-arity constructor that creates a set from a list of
items.

§11.11 A functional hash-based set implementation 223

The subset and superset relations can be defined quite efficiently as follows:

public static bool operator <=(Set<T> s1, Set<T> s2) {
if (s1 == null || s2 == null)
throw new ArgumentNullException("Set<=Set");

else
return s1.ContainsAll(s2);

}
public static bool operator >=(Set<T> s1, Set<T> s2) {

if (s1 == null || s2 == null)
throw new ArgumentNullException("Set>=Set");

else
return s2.ContainsAll(s1);

}

The equality operator (==) could be defined as inclusion both ways, but another and
more efficient version is obtained by using the Equals(Set<T>,Set<T>) method from
the default equality on the Set<T> collection. Since the default equality comparer
correctly handles null values, it can be called directly to compare the sets s1 and s2:

public static bool operator ==(Set<T> s1, Set<T> s2) {
return EqualityComparer<Set<T>>.Default.Equals(s1, s2);

}
public static bool operator !=(Set<T> s1, Set<T> s2) {

return !(s1 == s2);
}

One would expect that if s1<=s2 and s2<=s1 then s1==s2. In fact, the default equal-
ity comparer in question is UnsequencedCollectionEqualityComparer<T,Set<T>>,
whose equality works by checking that s1 and s2 have equally many items and that
every item in one set is also in the other. Hence this expected property holds.

Also, once one has overloaded the operators (==) and (!=) one should also over-
ride the Equals(Object) and GetHashCode() methods. These can simply call the
Equals(Set<T>,Set<T>) and GetHashCode(Set<T>) methods of the default equality
comparer.

public override bool Equals(Object that) {
return this == (that as Set<T>);

}
public override int GetHashCode() {

return EqualityComparer<Set<T>>.Default.GetHashCode(this);
}

To illustrate the use of Set<T>, consider some simple computations on sets of inte-
gers, and sets of sets of integers:

Set<int> s1 = new Set<int>(2, 3, 5, 7, 11);
Set<int> s2 = new Set<int>(2, 4, 6, 8, 10);
Console.WriteLine("s1 + s2 = {0}", s1 + s2);

224 A functional hash-based set implementation §11.12

Console.WriteLine("s1 * s2 = {0}", s1 * s2);
Console.WriteLine("s1 - s2 = {0}", s1 - s2);
Console.WriteLine("s1 - s1 = {0}", s1 - s1);
Console.WriteLine("s1 + s1 == s1 is {0}", s1 + s1 == s1);
Console.WriteLine("s1 * s1 == s1 is {0}", s1 * s1 == s1);
Set<Set<int>> ss1 = new Set<Set<int>>(s1, s2, s1 + s2);
Console.WriteLine("ss1 = {0}", ss1);

As a more advanced application of the Set<T> class, consider computing the inter-
section closure of a finite set ss of finite sets. The intersection closure of ss is the
smallest set tt containing ss such that whenever two sets s and t are in tt, then
their intersection s ∩ t is in tt also.

The intersection closure can be computed by maintaining a worklist of sets, ini-
tially containing the sets from ss. Then one repeatedly selects a set s from the
worklist, adds it to tt, and for each t in tt adds the set s ∩ t to the worklist unless
it is already in tt. When the worklist is empty, tt is the intersection closure of ss.

The intersection closure is computed by the generic method IntersectionClose
below. The input and output sets are represented as objects of type Set<Set<T>>,
but internally in the method a HashSet<Set<T>> is used to hold the result tt while
it is being computed. This is because the intermediate sets of sets are not of interest;
it suffices to build up the result set by creating and modifying a single set object tt.
In the end, a new declarative set is created that contains all the sets from tt, and
that set is returned.

static Set<Set<T>> IntersectionClose<T>(Set<Set<T>> ss) {
IQueue<Set<T>> worklist = new CircularQueue<Set<T>>();
foreach (Set<T> s in ss)

worklist.Enqueue(s);
HashSet<Set<T>> tt = new HashSet<Set<T>>();
while (worklist.Count != 0) {

Set<T> s = worklist.Dequeue();
foreach (Set<T> t in tt) {
Set<T> ts = t * s;
if (!tt.Contains(ts))

worklist.Enqueue(ts);
}
tt.Add(s);

}
return new Set<Set<T>>((SCG.IEnumerable<Set<T>>)tt);

}

Here are two example computations of intersection-closed sets:

ss1 = {{6,4,10,2,8},{3,6,4,7,10,2,5,8,11},{3,7,2,5,11}}
IntersectionClose(ss1) = {{6,4,10,2,8},{3,6,4,7,10,2,5,8,11},{3,7,2,5,11},{2}}
ss2 = {{3,2},{3,1},{1,2}}
IntersectionClose(ss2) = {{},{3,2},{1},{3},{2},{3,1},{1,2}}

§11.12 Implementing multidictionaries 225

11.12 Implementing multidictionaries
A multidictionary or multi-valued dictionary is a dictionary in which each key can
be associated with a (non-empty) collection of values rather than just a single value.
The example implementations of a multidictionary below are in example file MultiDictionary.cs.

11.12.1 Basic implementation
A class MultiHashDictionary<K,V> of hash-based multidictionaries with keys of
type K and values of type V can be based on a HashDictionary<K,ICollection<V>>:

public class MultiHashDictionary<K,V> : HashDictionary<K, ICollection<V>> {
public virtual void Add(K k, V v) {
ICollection<V> values;
if (!base.Find(k, out values) || values == null) {
values = new HashSet<V>();
Add(k, values);

}
values.Add(v);

}

public virtual bool Remove(K k, V v) {
ICollection<V> values;
if (base.Find(k, out values) && values != null) {
if (values.Remove(v)) {

if (values.IsEmpty)
base.Remove(k);

return true;
}

}
return false;

}

public override bool Contains(K k) {
ICollection<V> values;
return base.Find(k, out values) && values != null && !values.IsEmpty;

}

public override ICollection<V> this[K k] {
get {
ICollection<V> values;
return base.Find(k, out values) && values!=null ? values : new HashSet<V>();

}
set { base[k] = value; }

}

... implement property Count, see below ...
}

226 Implementing multidictionaries §11.12

The new method Add(k, v) just adds v to the value collection associated with k, if
there is one; otherwise it creates a new collection containing only v and associates
it with k.

The new method Remove(k, v) removes the single (key,value) pair consisting of
k and v, if any, from the multidictionary. To do so, it must first check that any
value collection is associated with k, and if so, remove v from it; then if the resulting
collection becomes empty, it removes that collection from the base hash dictionary.

The override of method Contains(k) must not only check whether the base hash
dictionary associates a value collection with key k, but also that the value collection
is non-null and non-empty. Namely, a client could use methods inherited from the
base dictionary to associate a null or empty collection with a key.

The get accessor of the indexer this[k] returns the value collection associated
with k, if any, or else a fresh empty collection.

What is missing at this point is an implementation of the Count property, which
should return the total number of (key,value) pairs in the multidictionary; the one
inherited from the base class returns just the number of keys. The simplest ap-
proach is to sum the number of items in all the value collections at each use of
Count, but that makes it a linear-time operation:

public new virtual int Count {
get {

int count = 0;
foreach (KeyValuePair<K,ICollection<V>> entry in this)
if (entry.Value != null)

count += entry.Value.Count;
return count;

}
}

public override Speed CountSpeed {
get { return Speed.Linear; }

}

To do better than this, we need to track all changes to the base dictionary and to
the value collections. We cannot rely on the multidictionary methods to do that,
because the individual value collections may be modified directly, without involving
the multidictionary.

11.12.2 Making Count a constant-time operation
Fortunately, in the C5 collection library one can add event listeners to dictionaries
and collections, and thus track modifications. The idea is to add a private field count
to the multidictionary, define event listeners that maintain the value of this field by
incrementing and decrementing it, and associate these event listeners with each
value collection.

private int count = 0; // Cached value count, updated by events only

§11.12 Implementing multidictionaries 227

private void IncrementCount(Object sender, ItemCountEventArgs<V> args) {
count += args.Count;

}
private void DecrementCount(Object sender, ItemCountEventArgs<V> args) {
count -= args.Count;

}
private void ClearedCount(Object sender, ClearedEventArgs args) {
count -= args.Count;

}

In turn, to make sure that each value collection gets the appropriate event listeners,
we add two event listeners to the base dictionary in the multidictionary’s construc-
tor:

public MultiHashDictionary() {
ItemsAdded +=

delegate(Object sender, ItemCountEventArgs<KeyValuePair<K,ICollection<V>>> args) {
ICollection<V> values = args.Item.Value;
if (values != null) {

count += values.Count;
values.ItemsAdded += IncrementCount;
values.ItemsRemoved += DecrementCount;
values.CollectionCleared += ClearedCount;

}
};

ItemsRemoved +=
delegate(Object sender, ItemCountEventArgs<KeyValuePair<K,ICollection<V>>> args) {
ICollection<V> values = args.Item.Value;
if (values != null) {

count -= values.Count;
values.ItemsAdded -= IncrementCount;
values.ItemsRemoved -= DecrementCount;
values.CollectionCleared -= ClearedCount;

}
};

}

With this machinery in place, an addition to a value collection will raise an Items-
Added event, which will invoke the IncrementCount method and adjust the count
field of the multidictionary correctly; and analogously for ItemsRemoved events and
CollectionCleared events. This works even if the value collection is associated with
more than one multidictionary, or associated multiple times with the same multi-
dictionary (through multiple keys).

The implementations of Add, Remove, this[k] and so on are unaffected by these
changes, but the implementation of Count is now a trivial constant-time operation:

public new virtual int Count {
get { return count; }

}

228 Implementing multidictionaries §11.12

Also, the multidictionary’s Clear() method must be overridden so that it decrements
the multidictionary’s count field and removes the event listeners from value collec-
tions. Otherwise updates to value collections would continue to affect the multidic-
tionary after its was cleared, which would be wrong:

public override void Clear() {
foreach (ICollection<V> values in Values)

if (values != null) {
count -= values.Count;
values.ItemsAdded -= IncrementCount;
values.ItemsRemoved -= DecrementCount;
values.CollectionCleared -= ClearedCount;

}
base.Clear();

}

11.12.3 Using the multidictionary
To illustrate the use of the multidictionary, we create a multidictionary mdict that
maps an integer key to one or more strings — the names of that integer in various
languages.

MultiHashDictionary<int,String> mdict = new MultiHashDictionary<int,String>();
mdict.Add(2, "to");
mdict.Add(2, "deux");
mdict.Add(2, "two");
mdict.Add(20, "tyve"); // #1
mdict.Add(20, "twenty");
mdict.Remove(20, "tyve");
mdict.Remove(20, "twenty"); // #2
ICollection<String> zwei = new HashSet<String>();
zwei.Add("zwei");
mdict[2] = zwei;
mdict[-2] = zwei; // #3
zwei.Add("kaksi"); // #4
ICollection<String> empty = new HashSet<String>();
mdict[0] = empty; // #5
mdict.Remove(-2); // #6
zwei.Remove("kaksi"); // #7
zwei.Clear(); // #8

The contents and Count of the multidictionary at the indicated program points are:

#1 { 20 => { tyve, twenty }, 2 => { two, deux, to } }
mdict.Count is 5
mdict[2].Count is 3

#2 { 2 => { two, deux, to } }
mdict.Count is 3

§11.12 Implementing multidictionaries 229

#3 { -2 => { zwei }, 2 => { zwei } }
mdict.Count is 2

#4 { -2 => { zwei, kaksi }, 2 => { zwei, kaksi } }
mdict.Count is 4

#5 { 0 => { }, -2 => { zwei, kaksi }, 2 => { zwei, kaksi } }
mdict.Count is 4
mdict contains key 0: False

#6 { 0 => { }, 2 => { zwei, kaksi } }
mdict.Count is 2

#7 { 0 => { }, 2 => { zwei } }
mdict.Count is 1

#8 { 0 => { }, 2 => { } }
mdict.Count is 0

11.12.4 Choosing the value set representation
The multidictionary class in section 11.12.1 used hash sets for the value collections,
but it might as well have used hash bags, tree sets, tree bags, hashed array lists,
hashed linked lists, or some other collection. Moreover, the underlying dictionary
might have been a tree dictionary instead of a hash dictionary, so one can image at
least 12 possible multidictionary implementations; clearly too many to provide all
of them explicitly.

Fortunately, one can use an additional type parameter VC to generalize the mul-
tidictionary so that two implementations suffice: one based on a hash dictionary
(shown below) and one based on a tree dictionary.

The additional type parameter VC stands for the desired type of value collection,
and therefore has a constraint that requires it to be a collection with item type V,
and to have an argumentless constructor:

public class MultiHashDictionary<K,V,VC> : HashDictionary<K, VC>
where VC : ICollection<V>, new()

{ ... }

In the body { ... } of the multidictionary we just need to replace new HashSet<V>()
with new VC(), and voilà, we have a typesafe and general multidictionary implemen-
tation that works for any collection type VC. In particular, multidictionary created
in section 11.12.3, which maps an integer to a hash set of strings, can be obtained
as follows:

MultiHashDictionary<int,string,HashSet<string>> mdict
= new MultiHashDictionary<int,string,HashSet<string>>();

Actually there are at least two other ways in which the hard-coding of the value
collection type as HashSet<V> can be avoided. That gives a total of three ways to
present general typesafe multidictionaries with flexible value set type:

Our first MultiDictionary implementation hardcoded the use of HashSet<V> for
the value collections. This hardcoding can be avoided in three ways:

230 Implementing multidictionaries §11.12

(1) The one shown above, where the value collection type VC is exposed to the
client of the dictionary:

public class MultiHashDictionary<K,V,VC>
: HashDictionary<K, VC>

where VC : ICollection<V>, new()
{ ... }

(2) A variant of this that exposes the ICollection<V> interface to the client:

public class MultiHashDictionary<K,V,VC>
: HashDictionary<K, ICollection<V>>

where VC : ICollection<V>, new()
{ ... }

(3) A third possibility is to use a delegate of type Fun<ICollection<V>> to create
new value collections. This delegate must be passed to the multidictionary
constructor when making a multidictionary instance:

public class MultiHashDictionary<K,V>
: HashDictionary<K, ICollection<V>>

{
private readonly Fun<ICollection<V>> vcFactory;
public MultiHashDictionary(Fun<ICollection<V>> vcFactory) {
this.vcFactory = vcFactory;

}
...

}

MultiHashDictionary<int, String> mdict
= new MultiHashDictionary<int,String>(

delegate{ return new HashSet<String>(); });

All three approaches provide equally good typesafety inside the multidictionary,
but (1) provides the best external typesafety, ensuring that only instances of VC
can be added to the multidictionary. With (2), this restriction is gone, but on the
other hand allows the created multidictionary to implement an interface IMultiDic-
tionary<K,V> that derives from IDictionary<K,ICollection<V>>:

public interface IMultiDictionary<K,V> : IDictionary<K,ICollection<V>>
{ ... }

The main shortcoming of (1) and (2) is that only the collection’s default constructor
can be used. No parameters can be passed to the constructor to specify a particular
hash function or comparer to use. That can be done with method (3), which on the
other hand requires some redundant type specifications when creating a multidic-
tionary object.

§11.13 Common words in a text file 231

11.12.5 An attempt to avoid slow value collections
Note that some multidictionary operations will be rather slow if one instantiates
VC with a collection class, such as LinkedList<V>, whose Contains operation is slow.
If desirable, one can use the static constructor reject construction of types whose
ContainsSpeed (see page 44) is not Constant or Log; see section 3.3:

public class MultiHashDictionary<K,V,VC> : HashDictionary<K, VC>
where VC : ICollection<V>, new()

{
static MultiHashDictionary() {

Speed speed = new VC().ContainsSpeed;
if (speed != Speed.Constant && speed != Speed.Log)
throw new ArgumentException("Attempt to use slow value collection");

}
...

}

It is not obvious that this is a desirable improvement. First, a fast ContainsSpeed
does not guarantee fast insertion or deletion; consider ArrayList<T>. Secondly, the
user of the multidictionary may know that there are never more than 20 items in
each value collection, so that linear-time operations are perfectly acceptable.

11.13 Common words in a text file
Jon Bentley proposed the task of finding the k most common words in a text file
and printing them (along with their frequencies) in order of decreasing frequency.
Don Knuth presented his solution as a programming pearl in Communications of
the ACM in 1986 [5]. Below is a much shorter and clearer solution using several
features of C5. Of course, it is shorter and clearer chiefly because it exploits a pre-
existing library and is less concerned with saving memory than was required two
decades ago.

Method PrintMostCommon(maxWords, filename) reads words from the text file
called filename, and then prints the maxWords most common of these words, along
with the frequency of each word:

static void PrintMostCommon(int maxWords, String filename) {
ICollection<String> wordbag = new HashBag<String>();
Regex delim = new Regex("[^a-zA-Z0-9]+");
using (TextReader rd = new StreamReader(filename)) {
for (String line = rd.ReadLine(); line != null; line = rd.ReadLine())
foreach (String s in delim.Split(line))

if (s != "")
wordbag.Add(s);

}

232 Common words in a text file §11.13

KeyValuePair<String,int>[] frequency
= wordbag.ItemMultiplicities().ToArray();

Sorting.IntroSort(frequency, 0, frequency.Length, new FreqOrder());
int stop = Math.Min(frequency.Length, maxWords);
for (int i=0; i<stop; i++) {

KeyValuePair<String,int> p = frequency[i];
Console.WriteLine("{0,4} occurrences of {1}", p.Value, p.Key);

}
}

The method builds a hashbag wordbag of all the words in the file, creates a dictionary
that maps each word to the number of times it appears, creates an array frequency
of (word, frequency) pairs from the dictionary, sorts the array, and prints the (at
most) maxWords words with the highest frequency.

Sorting the array orders the (word, frequency) pairs lexicographically, first by
decreasing frequency, then by increasing order of the words. The required lexico-
graphic comparer can be implemented by a private nested class FreqOrder as fol-
lows:

class FreqOrder : SCG.IComparer<KeyValuePair<String,int>> {
public int Compare(KeyValuePair<String,int> p1,

KeyValuePair<String,int> p2) {
int major = p2.Value.CompareTo(p1.Value);
return major != 0 ? major : p1.Key.CompareTo(p2.Key);

}
}

Alternatively, one can can build the comparer inline from a suitable comparison
delegate:

Sorting.IntroSort(frequency, 0, frequency.Length,
new DelegateComparer<KeyValuePair<String,int>>

(delegate(KeyValuePair<String,int> p1,
KeyValuePair<String,int> p2)

{
int major = p2.Value.CompareTo(p1.Value);
return major != 0 ? major : p1.Key.CompareTo(p2.Key);

}));

Not much elegance is achieved by inlining the comparer, though, due to the heavy
syntax. Especially the verbose types on the constructor and the delegate parameters
are annoying. In C# 3.0 this can be much neater.

Chapter 12

Performance details

This chapter discusses the theoretical and practical performance of the collection
operations and dictionary operations implemented by C5.

12.1 Performance of collection implementations
For each method and implementing collection class, the tables in figures 12.1, 12.2,
12.3, and 12.4 show the time consumption or running time of the method on an
object of that class.

In the tables, n is the number of items in the given collection, m is the number
of items in a collection or enumerable argument given to the operation, and r is
the number of items affected (for instance, deleted) by an operation. For indexed
operations, i is an integer index, and for list operations |i| denotes the distance from
an index i to the nearest end of the given list, that is, min(i,n−i). For instance, the
Insert(i) line in figure 12.3 shows that adding an item to a LinkedList<T> is fast
near either end of the list, where |i| is small, but for an ArrayList<T> it is fast only
near the back end, where n−i is small.

The subscript a indicates amortized complexity: over a long sequence of opera-
tions, the average time per operation is O(1), although any single operation could
take time O(n).

The subscript e indicates expected complexity: execution time is not a guaranteed
upper bound, but an average over all possible (prior) input sequences. In practice,
the expected complexity is the one you will experience in an application. However,
there are some — very rare — input sequences for which the actual running time is
higher. In particular, for most operations on hash-based collections and dictionaries,
the time given is the expected complexity. When auxiliary hashsets are used in
other collection operations, the time complexity will be expected complexity also, as
indicated in the tables.

For the purpose of these tables, all user-supplied hash functions, comparers and
delegates are assumed to be constant-time operations, that is, to take time O(1).

233

23
4

Pe
rf

or
m

an
ce

of
co

ll
ec

ti
on

im
pl

em
en

ta
ti

on
s

§1
2.

1

Member H
as

hS
et

<T
>

H
as

hB
ag

<T
>

A
rr

ay
L

is
t<

T
>

L
in

ke
dL

is
t<

T
>

H
as

he
dA

rr
ay

L
is

t<
T

>

H
as

he
dL

in
ke

dL
is

t<
T

>

T
re

eS
et

<T
>

T
re

eB
ag

<T
>

So
rt

ed
A

rr
ay

<T
>

In
te

rv
al

H
ea

p<
T

>

C
ir

cu
la

rQ
ue

ue
<T

>

GetEnumerator() O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
Backwards() − − O(1) O(1) O(1) O(1) O(1) O(1) O(1) − O(1)
Direction − − O(1) O(1) O(1) O(1) O(1) O(1) O(1) − O(1)
ActiveEvents O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
All(p) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Apply(act) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Choose() O(1)e O(1)e O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
CopyTo(arr,i) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Count O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
CountSpeed O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
Exists(p) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Filter(p) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Find(p, out res) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
IsEmpty O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
ListenableEvents O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
ToArray() O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Backwards() − − O(1) O(1) O(1) O(1) O(1) O(1) O(1) − O(1)
FindLast(p, out res) − − O(n) O(n) O(n) O(n) O(n) O(n) O(n) − O(n)
Add(x) O(1)ae O(1)ae O(1) O(1) O(1) O(1) O(logn) O(logn) O(n) O(logn) −
AddAll(xs) O(m)ae O(m)ae O(m) O(m) O(m) O(m) O(m logn) O(m logn) O(m logm+n) O(m logn) −
AllowsDuplicates O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) −
DuplicatesByCounting O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) −
EqualityComparer O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) −
IsReadOnly O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) −

Figure 12.1: Performance of operations described by SCG.IEnumerable<T>, IDirectedEnumerable<T>, ICollectionVa-
lue<T>, IDirectedCollectionValue<T>, IExtensible<T>.

§12.1
Perform

ance
ofcollection

im
plem

entations
235

Member H
as

hS
et

<T
>

H
as

hB
ag

<T
>

A
rr

ay
L

is
t<

T
>

L
in

ke
dL

is
t<

T
>

H
as

he
dA

rr
ay

L
is

t<
T

>

H
as

he
dL

in
ke

dL
is

t<
T

>

T
re

eS
et

<T
>

T
re

eB
ag

<T
>

So
rt

ed
A

rr
ay

<T
>

In
te

rv
al

H
ea

p<
T

>

C
ir

cu
la

rQ
ue

ue
<T

>

Clear() O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) − −
Contains(x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
ContainsAll(xs) O(m) O(m) O(m+n) O(m+n) O(m) O(m) O(m logn) O(m logn) O(m logn) − −
ContainsCount(x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
ContainsSpeed O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) − −
Find(ref x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
FindOrAdd(ref x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
GetUnsequencedHashCode() O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a − −
ItemMultiplicities() O(1) O(1) O(n) O(n) O(1) O(1) O(1) O(1) O(1) − −
Remove(x) O(1)e O(1)e O(n) O(n) O(n) O(1)e O(logn) O(logn) O(logn) − −
Remove(x, out y) O(1)e O(1)e O(n) O(n) O(n) O(1)e O(logn) O(logn) O(logn) − −
RemoveAll(xs) O(m)e O(m)e O(m+n)e O(m+n)e O(m+n)e O(m)e O(m logn) O(m logn) O(m logn) − −
RemoveAllCopies(x) O(1)e O(1)e O(n) O(n) O(n) O(1)e O(logn) O(logn) O(logn) − −
RetainAll(xs) O(m)ae O(m)ae O(m+n)e O(m+n)e O(m+n)e O(m)e O(m logn) O(m logn) O(m logn) − −
UniqueItems() O(1) O(1) O(n) O(n) O(1) O(1) O(1) O(1) O(1) − −
UnsequencedEquals(coll) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) − −
Update(x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
Update(x, out y) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
UpdateOrAdd(x) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
UpdateOrAdd(x, out y) O(1)e O(1)e O(n) O(n) O(1)e O(1)e O(logn) O(logn) O(logn) − −
GetSequencedHashCode() − − O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a O(1)a − −
SequencedEquals(coll) − − O(n) O(n) O(n) O(n) O(n) O(n) O(n) − −
FindIndex(p) − − O(n) O(n) O(n) O(n) O(n) O(n) O(n) − −
FindLastIndex(p) − − O(n) O(n) O(n) O(n) O(n) O(n) O(n) − −
IndexingSpeed − − O(1) O(1) O(1) O(1) O(1) O(1) O(1) − −
IndexOf(x) − − O(n) O(n) O(1) O(n) O(logn) O(logn) O(logn) − −
LastIndexOf(x) − − O(n) O(n) O(1) O(n) O(logn) O(logn) O(logn) − −
RemoveAt(i) − − O(n− i) O(|i|) O(n− i) O(|i|) O(logn) O(logn) O(n) − −
RemoveInterval(i,m) − − O(n) O(n) O(n) O(n) O(n logn) O(n logn) O(n) − −
this[i] − − O(1) O(|i|) O(1) O(|i|) O(logn) O(logn) O(logn) − −
this[i,m] − − O(1) O(i+m) O(1) O(i+m) O(logn) O(logn) O(1) − −

Figure 12.2: Performance of operations described by ICollection<T>, ISequenced<T>, and IIndexed<T>.

236 Performance of collection implementations §12.1

Member H
as

hS
et

<T
>

H
as

hB
ag

<T
>

A
rr

ay
L

is
t<

T
>

L
in

ke
dL

is
t<

T
>

H
as

he
dA

rr
ay

L
is

t<
T

>

H
as

he
dL

in
ke

dL
is

t<
T

>

T
re

eS
et

<T
>

T
re

eB
ag

<T
>

So
rt

ed
A

rr
ay

<T
>

In
te

rv
al

H
ea

p<
T

>

C
ir

cu
la

rQ
ue

ue
<T

>

AllowsDuplicates − − O(1) O(1) − − − − − − O(1)
Dequeue() − − O(n) O(1) − − − − − − O(1)
Enqueue(x) − − O(1) O(1) − − − − − − O(1)
this[i] − − O(1) O(|i|) − − − − − − O(1)
AllowsDuplicates − − O(1) O(1) − − − − − − O(1)
Pop() − − O(1) O(1) − − − − − − O(1)
Push(x) − − O(1) O(1) − − − − − − O(1)
this[i] − − O(1) O(|i|) − − − − − − O(1)
FIFO − − O(1) O(1) O(1) O(1) − − − − −
First − − O(1) O(1) O(1) O(1) − − − − −
FindAll(p) − − O(n) O(n) O(n) O(n) − − − − −
Insert(i,x) − − O(n− i) O(|i|) O(n− i) O(|i|) − − − − −
Insert(w,x) − − O(n− i)* O(1) O(n− i)* O(1) − − − − −
InsertAll(i,xs) − − O(m+n) O(m+n) O(m+n) O(m+n) − − − − −
InsertFirst(x) − − O(n) O(1) O(n) O(1) − − − − −
InsertLast(x) − − O(1) O(1) O(1) O(1) − − − − −
IsSorted() − − O(n) O(n) O(n) O(n) − − − − −
IsSorted(cmp) − − O(n) O(n) O(n) O(n) − − − − −
IsValid − − O(1) O(1) O(1) O(1) − − − − −
Last − − O(1) O(1) O(1) O(1) − − − − −
LastViewOf(x) − − O(n) O(n) O(1) O(1) − − − − −
Map(f) − − O(n) O(n) O(n) O(n) − − − − −
Map(f, eqc) − − O(n) O(n) O(n) O(n) − − − − −
Offset − − O(1) O(1) O(1) O(1)a − − − − −
Remove() − − O(1)$ O(1) O(1)$ O(1) − − − − −
RemoveFirst() − − O(n) O(1) O(n) O(1) − − − − −
RemoveLast() − − O(1) O(1) O(1) O(1) − − − − −
Reverse() − − O(n) O(n) O(n) O(n) − − − − −
Shuffle() − − O(n) O(n) O(n) O(n) − − − − −
Shuffle(rnd) − − O(n) O(n) O(n) O(n) − − − − −
Slide(d) − − O(1) O(d) O(1) O(d) − − − − −
Slide(d,m) − − O(1) O(d +m) O(1) O(d +m) − − − − −
Sort() − − O(n logn) O(n logn) O(n logn) O(n logn) − − − − −
Sort(cmp) − − O(n logn) O(n logn) O(n logn) O(n logn) − − − − −
Span(w) − − O(1) O(1)† O(1) O(n) − − − − −
this[i] − − O(1) O(|i|) O(1) O(|i|) − − − − −
TrySlide(d) − − O(1) O(d) O(1) O(d) − − − − −
TrySlide(d,m) − − O(1) O(d +m) O(1) O(d +m) − − − − −
Underlying − − O(1) O(1) O(1) O(1) − − − − −
View(i,m) − − O(1) O(m) O(1) O(m) − − − − −
ViewOf(x) − − O(n) O(n) O(1) O(1) − − − − −

Figure 12.3: Performance of operations described by IQueue<T>, IStack<T>, and
IList<T>. Notes: ($) this becomes O(n) if property FIFO is changed from its default;
(*) i is the offset of w’s right endpoint; (†) actually O(n) in C5 release 0.9.

§12.1 Performance of collection implementations 237

Member H
as

hS
et

<T
>

H
as

hB
ag

<T
>

A
rr

ay
L

is
t<

T
>

L
in

ke
dL

is
t<

T
>

H
as

he
dA

rr
ay

L
is

t<
T

>

H
as

he
dL

in
ke

dL
is

t<
T

>

T
re

eS
et

<T
>

T
re

eB
ag

<T
>

So
rt

ed
A

rr
ay

<T
>

In
te

rv
al

H
ea

p<
T

>

C
ir

cu
la

rQ
ue

ue
<T

>

AddSorted(xs) − − − − − − O(n logn) O(n logn) O(m+n) − −
Comparer − − − − − − O(1) O(1) O(1) − −
Cut(cmp,,,,) − − − − − − O(logn) O(logn) O(logn) − −
DeleteMax() − − − − − − O(logn) O(logn) O(logn) − −
DeleteMin() − − − − − − O(logn) O(logn) O(logn) − −
FindMax() − − − − − − O(logn) O(logn) O(logn) − −
FindMin() − − − − − − O(logn) O(logn) O(logn) − −
Predecessor(x) − − − − − − O(logn) O(logn) O(logn) − −
RangeAll() − − − − − − O(1) O(1) O(1) − −
RangeFrom(x) − − − − − − O(logn) O(logn) O(logn) − −
RangeFromTo(x,y) − − − − − − O(logn) O(logn) O(logn) − −
RangeTo(y) − − − − − − O(logn) O(logn) O(logn) − −
RemoveRangeFrom(x) − − − − − − O(n logn)∗ O(n logn)∗ O(n) − −
RemoveRangeFromTo(x,y) − − − − − − O(n logn)∗ O(n logn)∗ O(n) − −
RemoveRangeTo(y) − − − − − − O(n logn)∗ O(n logn)∗ O(n) − −
Successor(x) − − − − − − O(logn) O(logn) O(logn) − −
TryPredecessor(x, out y) − − − − − − O(logn) O(logn) O(logn) − −
TrySuccessor(x, out y) − − − − − − O(logn) O(logn) O(logn) − −
TryWeakPredecessor(x,out y) − − − − − − O(logn) O(logn) O(logn) − −
TryWeakSuccessor(x, out y) − − − − − − O(logn) O(logn) O(logn) − −
WeakPredecessor(x) − − − − − − O(logn) O(logn) O(logn) − −
WeakSuccessor(x) − − − − − − O(logn) O(logn) O(logn) − −
CountFrom(x) − − − − − − O(logn) O(logn) O(logn) − −
CountFromTo(x,y) − − − − − − O(logn) O(logn) O(logn) − −
CountTo(y) − − − − − − O(logn) O(logn) O(logn) − −
FindAll(p) − − − − − − O(n) O(n) O(n) − −
Map(f, cmp) − − − − − − O(n) O(n) O(n) − −
RangeFrom(x) − − − − − − O(logn) O(logn) O(logn) − −
RangeFromTo(x,y) − − − − − − O(logn) O(logn) O(logn) − −
RangeTo(y) − − − − − − O(logn) O(logn) O(logn) − −
Snapshot() − − − − − − O(1) O(1) − − −
Add(ref h, x) − − − − − − − − − O(logn) −
Comparer − − − − − − − − − O(1) −
Delete(h) − − − − − − − − − O(logn) −
DeleteMax() − − − − − − − − − O(logn) −
DeleteMax(out h) − − − − − − − − − O(logn) −
DeleteMin() − − − − − − − − − O(logn) −
DeleteMin(out h) − − − − − − − − − O(logn) −
Find(h, out x) − − − − − − − − − O(1) −
FindMax() − − − − − − − − − O(1) −
FindMax(out h) − − − − − − − − − O(1) −
FindMin() − − − − − − − − − O(1) −
FindMin(out h) − − − − − − − − − O(1) −
Replace(h, x) − − − − − − − − − O(logn) −
this[h] get − − − − − − − − − O(1) −
this[h] set − − − − − − − − − O(logn) −

Figure 12.4: Performance of operations described by ISorted<T>, IIndexed-
Sorted<T>, IPersistentSorted, and IPriorityQueue<T>.

238 Performance of dictionary implementations §12.3

12.2 Performance of dictionary implementations
The tables below show the time consumption or running time of each method in
the dictionary implementations. The table in figure 12.5 shows methods from the
interfaces ICollectionValue<KeyValuePair<K,V>> and IDictionary<K,V>, and the
table in figure 12.6 shows the methods from interface ISortedDictionary<K,V>.

Note that the HashDictionary<K,V> operations described by the ICollectionVa-
lue<> interface have the same asymptotic performance as those of HashSet<K>, and
similarly the TreeDictionary<K,V> operations described by the ICollectionValue<>
interface have the same asymptotic performance as those of TreeSet<K>.

Member HashDictionary<K,V> TreeDictionary<K,V>
GetEnumerator O(1) O(1)
ActiveEvents O(1) O(1)
All(p) O(n) O(n)
Apply(act) O(n) O(n)
Choose() O(1)e O(1)
CopyTo(arr,i) O(n) O(n)
Count O(1) O(1)
CountSpeed O(1) O(1)
Exists(p) O(n) O(n)
Filter(p) O(n) O(n)
Find(p, out res) O(n) O(n)
IsEmpty O(1) O(1)
ListenableEvents O(1) O(1)
ToArray() O(n) O(n)
Add(k, v) O(1)e O(logn)
AddAll(kvs) O(m)e O(m logn)
Clear() O(1) O(1)
Contains(k) O(1)e O(logn)
ContainsAll(ks) O(m)e O(m logn)
ContainsSpeed O(1) O(1)
Count O(1) O(1)
EqualityComparer O(1) O(1)
Find(k, out v) O(1)e O(logn)
Find(ref k, out v) O(1)e O(logn)
FindOrAdd(k, out v) O(1)e O(logn)
Fun O(1) O(1)
IsReadOnly O(1) O(1)
Keys O(1) O(1)
Remove(k) O(1)e O(logn)
Remove(k, out v) O(1)e O(logn)
this[k] O(1)e O(logn)
Update(k, v) O(1)e O(logn)
Update(k, v, out vOld) O(1)e O(logn)
UpdateOrAdd(k, v) O(1)e O(logn)
UpdateOrAdd(k, v, out vOld) O(1)e O(logn)
Values O(1) O(1)

Figure 12.5: Performance of dictionary operations described by interfaces
SCG.IEnumerable<KeyValuePair<K,V>>, ICollectionValue<KeyValuePair<K,V>>
and IDictionary<K,V>.

§12.4 Performance of quicksort and merge sort 239

Member HashDictionary<K,V> TreeDictionary<K,V>
AddSorted(kvs) − O(m logn)
Comparer − O(1)
Cut(cmp,,,,) − O(logn)
DeleteMax() − O(logn)
DeleteMin() − O(logn)
FindMax() − O(logn)
FindMin() − O(logn)
Keys − O(1)
Predecessor(k) − O(logn)
RangeAll() − O(logn)
RangeFrom(k1) − O(logn)
RangeFromTo(k1, k2) − O(logn)
RangeTo(k2) − O(logn)
RemoveRangeFrom(k1) − O(r logn)
RemoveRangeFromTo(k1, k2) − O(r logn)
RemoveRangeTo(k2) − O(r logn)
Successor(k) − O(logn)
WeakPredecessor(k) − O(logn)
WeakSuccessor(k) − O(logn)

Figure 12.6: Performance of dictionary operations in ISortedDictionary<K,V>.

12.3 Performance of quicksort and merge sort
The sorting algorithm for array lists is introspective quicksort, whose implementa-
tion is described in section 13.2. It has the following performance properties:

• It is as fast as quicksort on random data.

• It is guaranteed fast: The worst-case running time is O(n logn), and therefore
much faster than plain quicksort on bad data sets.

• It requires only O(logn) extra space (in addition to the array list).

The sorting algorithm for linked lists is a stable in-place merge sort, whose imple-
mentation is described in section 13.3. It has the following performance properties:

• It is guaranteed fast: The worst-case running time is O(n logn). In practice, it
is slower than quicksort for arrays by a factor of two or so.

• It requires no extra space (in addition to the linked list).

12.4 Performance impact of list views
• Update overhead: Updates to a list may affect the Offset or Count of views

on the list. To implement this, every update must check for affected views, so
there is a runtime overhead that is proportional to the number of valid views
on the list; see section 13.9. For this reason, it is important to invalidate views
on lists as early as possible; see below.

240 Performance impact of tree snapshots §12.6

• Space leaks: A range view of a sorted collection or a sorted dictionary contains
a reference to the underlying collection or dictionary. This may cause a so-
called space leak if a small range view refers to a large underlying collection.
So long as the small range view is kept alive by the program, the underlying
collection is kept alive as well, and the space it occupies cannot be reclaimed
by the garbage collector. To avoid this, do not keep views alive unnecessarily.

• When a view is invalidated, it stops holding on to the underlying list, and
no longer affects the execution time of updates. Invalidation of a view u can
be requested by calling u.Dispose(). If a view variable u is allocated by C#’s
using statement, then u.Dispose() is called automatically when the variable
goes out of scope; see pattern 24.

12.5 Performance impact of event handlers
If each call to an event handler executes in constant time, then event handlers will
not change the asymptotic running time of collection operations. That is, an O(1)
operation does not suddenly become an O(n) operation just because an event handler
has been attached to the collection on which the operation is performed.

This is a conscious design decision, one consequence of which is that the Clear
method on a list view does not raise an ItemsRemoved event for each item removed.
Namely, without event handlers, list.View(i,n).Clear() can be performed in con-
stant time when list is a linked list, but if an ItemsRemoved event must be per-
formed for each item, then it would become an O(n) operation.

As described in section 13.12, the implementation of events is designed to mini-
mize the runtime overhead in the frequent case where no event handlers are asso-
ciated with a collection.

12.6 Performance impact of tree snapshots
Creating a tree snapshot itself takes constant time, independent of the size of the
tree. Each modification to the original tree may take extra time and space as long
as the snapshot is alive. For any single update to the original tree, the time and
space overhead may be O(logn), where n is the size of the tree, but the amortized
run-time and space cost is O(1) per update to the original tree. Over a long sequence
of updates, there is just a constant amount of extra work per update.

Once the snapshot has been deallocated by the garbage collector, further updates
to the tree does not incur extra time or space costs. Therefore snapshots should
preferably be allocated in a using statement so that they get released eagerly; see
section 9.11.

In the worst case, where a snapshot is kept alive indefinitely and the original
tree is updated aggressively, the snapshot will end up being a clone of the entire
original tree, after which further updates to the original tree will incur no further
overhead. See section 13.10 for more details on the implementation.

Chapter 13

Implementation details

13.1 Organization of source files
File or directory Contents
C5/AssemblyInfo.cs Version number and similar
C5/BuiltIn.cs IntComparer, DoubleComparer, . . .
C5/Collections.cs Collection base classes (see chapter 14)
C5/Comparer.cs Comparer<T>, NaturalComparer<T>, . . .
C5/Delegate.cs Delegates types Act<A1>, . . . , Fun<A1,R>, . . .
C5/Dictionaries.cs Dictionary base classes (see chapter 14)
C5/Enums.cs Enum types Speed, EnumerationDirection, . . .
C5/Events.cs Event handler types and event raising
C5/Exceptions.cs Exception classes
C5/Formatting.cs IShowable and formatting
C5/Hashers.cs EqualityComparer<T>, . . .
C5/Interfaces.cs Collection and dictionary interfaces
C5/Random.cs C5Random
C5/Records.cs Record struct types Rec<T1,T2>, . . .
C5/Sorting.cs Introspective quicksort, heapsort, . . .
C5/WrappedArray.cs WrappedArray<T>
C5/Wrappers.cs Guarded collections and dictionaries
C5/arrays/ArrayList.cs Arraylist<T> and ?HashedArrayList<T>
C5/arrays/CircularQueue.cs CircularQueue<T>
C5/arrays/SortedArray.cs SortedArray<T>
C5/hashing/HashBag.cs HashBag<T>
C5/hashing/HashDictionary.cs HashDictionary<K,V>
C5/hashing/HashTable.cs HashSet<T>
C5/heaps/IntervalHeap.cs IntervalHeap<T>
C5/linkedlist/LinkedList.cs LinkedList<T> and ?HashedLinkedList<T>
C5/trees/RedBlackTreeDictionary.cs TreeDictionary<K,V>
C5/trees/RedBlackTreeSet.cs TreeSet<T> and ?TreeBag<T>

The files above are found in the source distribution C5.src.zip. The source file for a

241

242 Implementation of merge sort for linked lists §13.3

class marked with an asterisk (?) is generated by a preprocessing tool found in file
PreProcess/Program.cs. The overall structure is the source distribution is this:

File or directory Contents
BUILD.txt Instructions for building from source
LICENSE.txt Library license, reproduced on page 3
RELEASE-NOTES.txt List of changes in current release
C5/ Library source code; see above
docNet/ Files to build online documentation
nunit/ Files to build unit tests, to be run with NUnit [1].
PreProcess/ Preprocessor to build source for classes marked (?) above
UserGuideExamples/ Source for examples in chapter 11

The C5 library can be built from source on Microsoft’s .NET 2.0 as well as Novell’s
Mono implementation. File BUILD.txt in the source distribution contains instruc-
tions for building the library, online documentation and unit tests.

13.2 Implementation of quicksort for array lists
This sorting algorithm works on array lists and is used in the implementation of
the Sort methods in class ArrayList<T> and the static IntroSort methods in class
Sorting. The algorithm has the following properties:

• It is as fast as quicksort on random data.

• It is guaranteed fast: The worst-case running time is O(n logn), and therefore
much faster than quicksort on bad data sets.

• It requires only O(logn) extra space in addition to the array being sorted.

• It is not stable: two items in the given array that compare equal may be
swapped in the sorted result. For a stable sorting algoritm, use merge sort
on linked lists (section 13.3).

The algorithm is due to Musser [23]. It is basically a quicksort that keeps track of
its own recursion depth. Then it switches to using heap sort when the recursion
depth becomes “too large”, which is a sign that the partitioning performed by the
quicksort has repeatedly turned out bad.

13.3 Implementation of merge sort for linked lists
This sorting algorithm works on linked lists and is used in the implementation of the
Sort methods in class LinkedList<T>. The algorithm has the following properties:

• It is stable: The order of equal items in the given list is preserved in the sorted
list. This permits multi-key (lexicographic) sorting to be performed in several
passes, starting with the least significant key in the lexicographic ordering
and ending with the most significant key.

§13.5 Implementation of hash-based collections 243

• It is in-place: It requires no extra space besides the linked list’s nodes.

• It is guaranteed fast: The worst-case running time is O(n logn).

In practice, merge sort is two to three times slower than introspective quicksort
(section 13.2). Our in-place merge sort algorithm builds an outer list of runs, where
a run is an inner list of nodes whose items appear in (weakly) increasing order. Then
the runs are repeatedly merged pairwise in order of appearance, creating longer and
longer runs, until all nodes make up a single run: the sorted list.

The inner lists and the outer lists are singly-linked, because they need to be tra-
versed in only one direction. The nodes of each inner list are linked together using
the next-node reference of the participating LinkedList<T> nodes, terminating with
a null next-node reference. The nodes of the outer list (which is a list of inner lists)
are linked together using the previous-node reference in the first node of each inner
list. Hence no extra space is required.

13.4 Implementation of hash-based collections
For experimental purposes the source code contains several variations of linear
hashing, namely linear probing and linear chaining [9] in combination with both
reference type bucket cells and value type bucket cells. The combination actually
used is determined by preprocessor flags LINEARPROBING, which determines whether
the code uses linear probing or linear chaining, and REFBUCKET which determines
whether the first bucket is of reference type (pointed to from the collection’s array)
or value type (stored directly in that array).

The choice of trying these variations of linear hashing was based on the findings
of Pagh and Rodler [24]. All implementations have the usual theoretical complex-
ities: O(1) expected time for lookups and O(1) expected amortized time for update
operations. There are other linear hashing strategies such as double hashing, but
we have not implemented those.

The current compilation default is to use linear chaining and reference type
buckets; over a range of experiments this seems to offer the best performance. A
hash-based collection is therefore implemented by an array, each item of which con-
tains null or a reference to a bucket. With linear chaining, a bucket contains an
item, the item’s cached hash code, and a reference that is null or refers to an over-
flow bucket.

The array size always is a power of two, and the index for an item (bucket) is
computed from the hash value using a universal hash function family mentioned by
Pagh and Rodler [24]:

index = (k * hashval) % tablesize

Here k is constant over at least the lifetime of a specific array. The preprocessor flags
INTERHASHER and RANDOMINTERHASHER determine whether k is a large odd compile
time constant or a random odd integer. The last choice should provide the good,
randomized expected complexity asymptotics.

244 Implementation of linked lists §13.8

13.5 Implementation of array lists
An array list consists of an underlying extensible array and an indication of the
number of items actually in the array list.

A view of an array list consists of a reference to its underlying array list, an
offset relative to that array list, an item count, and an indication whether the view
is valid. A view and its underlying array list have the same underlying extensible
array.

A proper array list (not a view) has a list all its views, so that it can update
any affected views whenever the array list is updated. For instance, insertions and
deletions may affect the offset and the count of a view, and sorting, shuffling and
subrange reversal may invalidate a view. The list contains weak references to the
views, so that the views are not kept alive longer than necessary.

13.6 Implementation of hashed array lists
Class HashedArrayList<T> is implemented as an arraylist that additionally has a
hash dictionary that maps an item to the unique index of that item in the list, if
any. The hash dictionary is shared between the hashed arraylist and all views of it.

Still, view.Contains(x), where view is a view on list list, can be implemented in
expected constant time, as follows. First the index of x is looked up in the hash dic-
tionary, and if it is there, then it is checked that the index is between the endpoints
of view, using two integer comparisons.

13.7 Implementation of linked lists
A linked list is implemented as a doubly linked list of nodes, each node holding an
item. A doubly linked list is preferred over a singly linked one because it permits
efficient insertion and deletion at either end, and efficient insertion and deletion at
views inside the list.

There is an artificial sentinel node at each end of the double linked list, and a
LinkedList<T> object always has non-null references to these sentinel nodes. This
significantly reduces the number of cases that must be considered in operations.

A view of a linked list consists of a reference to its underlying linked list, refer-
ences to start and end sentinel nodes (which are simply nodes in the underlying list),
an offset relative to the underlying list, an item count, and an indication whether
the view is valid. All nodes of a view, including the sentinel nodes, belong also to the
underlying linked list.

A proper linked list (not a view) further has a list all its views, so that it can up-
date any affected views whenever the linked list is updated. For instance, insertions
and deletions may affect the offset and the count of a view, and sorting, shuffling and
subrange reversal may invalidate a view. The list uses weak references to the views,
so that views are not kept alive longer than necessary.

§13.8 Implementation of hashed linked lists 245

13.8 Implementation of hashed linked lists
Class HashedLinkedList<T> is a linked list that additionally has a hash dictionary
that maps an item to the unique list node containing that item, if any. The hash
dictionary is shared between the hashed linked list and all views of it.

Obtaining the best asymptotic performance for the combination of list views and
hash indexing is rather challenging. Namely, if view is a view on a list list, then
view.Contains(x) should be fast and should return false if x is in the underlying list
but not inside the view. Therefore, when the hash dictionary maps x to a list node
we must be able to decide quickly whether that node is inside the view. For array
lists this was easy: simply check whether the node’s index is between the endpoints
of the view, using integer comparisons. For linked lists, computing the index of x’s
node, or traversing the view to see whether x’s node falls within the view would be
slow and would completely defeat the purpose of the hash dictionary.

Our solution uses a list-ordering algorithm of Sleator and Dietz [29] in the ver-
sion described by Bender et al. [4].

The basic idea is simple. We give each node an integer tag and make sure the
tags are always in increasing order. First, whenever we insert a node in the list we
give it a tag that is between its neighbors, say the mean of the two. If there is not
enough room to make the tags distinct, we redistribute the tags of part of the list
to make room. The only problem is how to choose the amount of renumbering to
balance with the frequency of renumbering. The answer of Bender et al. [4] is the
following. When we run out of room we follow the list both ways comparing binary
prefixes of tags, counting the segments of the list that have common prefixes of
length w−1,w−2, . . . ,w−b where w is the word size (here 32). Let k be a parameter
to be defined. For the least b where the segment is of size at most kb, we redistribute
the tags in that segment uniformly. We need n ≥ kw to be sure such a b is found,
and k < 2 to be sure there are sizable gaps after tag redistribution, so we choose
k = w

√
n < 2.

The cost of this redistribution is O(kb). Note that before this redistribution the
segment of common prefix length w− (b− 1) had at least kb−1 nodes, and after re-
distribution it has kb/2. Thus there must be at least kb−1 − kb/2 = kb(2− k)/(2k) in-
sertions before we need to redistribute this segment again, and the amortized cost
of redistributions of tags at a given b is O(k/(2− k)) per insertion into the list. As
long as n is not close to 2w, this is O(1) per distinct value of b and hence the total
amortized cost of redistributions of tags will be O(w) per insertion into the list. Note,
however, that the typical case of always inserting at the end of the list seems to be
close to the worst-case scenario for maintaining the tags.

The tagging scheme used for hashed linked lists is a further refinement of this
basic scheme. The reason is that although the basic scheme is simple and has low
overhead on those operations that do not cause tag redistributions, in the worst
case all tags must be redistributed and the complete list traversed, which is bad for
locality of memory references.

To get to O(1) amortized cost per list update of tag maintenance we use instead a
two-level grouping scheme: Use the above basic scheme to maintain tags on groups

246 Implementation of tree-based collections §13.10

of consecutive list nodes, and use a second tag inside each group. If the number
of groups are kept at O(n/w), say by making at least every other group be of size
Ω(w), then the amortized cost of maintaining the top level tags will be O(1). It is
not hard to see that putting an extra O(1) charge on insertions will pay for splitting
and renumbering groups when we miss room in the low level tags; and an extra
charge on deletions will pay for joining groups when a group that gets below the
Ω(w) threshold has a neighbor also below that threshold. In total we get an O(1)
amortized cost per list update of tag maintenance at the cost of a much more com-
plicated algorithm. Performance measurements indicated that this scheme never-
theless performs better at large list sizes, so this refined two-level grouping scheme
is the one used in the library.

Note that HashedLinkedList<T> is not a subclass of LinkedList<T>, as that
would require linked list nodes to carry fields used only in hashed linked list, in-
curring a considerable space overhead.

13.9 Implementation of list views
The implementation of views of array lists and of linked lists is described in sec-
tions 13.5 and 13.7 above. Here we describe how the Offset and Count properties of
a view are maintained when the underlying list is updated, possibly through one of
its views.

For this purpose, a proper list maintains a list of its views, in order of creation,
using weak references so as not to keep the views alive unnecessarily. Adding a
newly created view to this list, or removing the view when disposed, takes constant
time.

For ArrayList<T>, HashedArrayList<T> and LinkedList<T>, maintenance in
connection with an update is done by going through the list of all live views, and
determining from the each view’s Offset and Count whether it is affected by the up-
date, taking into account also whether the update was made through the view itself;
see section 8.1.5. This is done after insertions and before removals.

For HashedLinkedList<T>, the Offset field of a view is not necessarily known.
However, the tagging scheme described in section 13.8 can be used to determine
in constant time whether one node precedes another, and hence to determine for a
view whether it is affected by an update.

13.10 Implementation of tree-based collections
The tree-based collections TreeSet<T>, TreeBag<T> and TreeDictionary<K,V> are
implemented as red-black trees, following Tarjan [31]. The operations are done in
bottom-up style and there are no parent pointers in the tree nodes.

In contrast to tree-based collections from the standard libraries of C#, Java or
Smalltalk, ours have support for persistence, using techniques from Driscoll et al.

§13.10 Implementation of tree-based collections 247

[10]. Namely, the Snapshot method creates a read-only “snapshot” of a tree in con-
stant time, at the expense of making subsequent updates to the original tree some-
what slower.

Tree snapshots can be implemented in at least two ways, namely using node copy
persistence or path copy persistence. To illustrate the difference, assume we have a
tree, make a (read-only) snapshot of it, and then insert a new node in the tree.

• With path copy persistence, all nodes on the path from the root to the inserted
node would be copied. Thus only completely unchanged subtrees are shared
between a snapshot and the updated tree. This scheme is simple and has the
advantage that each node can keep an accurate node count for the subtree
of which it is a root. The main drawback is the aggressive copying of nodes;
an update to the tree will on average allocate a number of new nodes that is
logarithmic in the collection size.

• With node copy persistence, each node can have up to two left children or up
to two right children: an old one (oldref, see below) belonging to a snapshot,
and a new one belonging to the updated tree. Each node is created with an
extra child reference, initially unused. At an insertion into the tree, one must
consider the nodes on the path to the inserted node. A node that has an unused
child reference need not be copied; one only needs to copy a node if it extra child
reference is already in use. Thus a snapshot and the updated tree may share
a node even though its children have been updated. The main advantage of
this is efficiency: the amortized number of new nodes created per update is
constant. The main disadvantages are that the scheme is more complicated,
and that one cannot easily maintain subtree node counts in a snapshot. For
that reason, snapshots do not support efficient item access by index, and the
type of a snapshot is ISorted<T> even though the original collection was an
IIndexedSorted<T>.

We chose node copy persistence for the C5 library after extensive performance stud-
ies [18]. Our implementation is based on ideas from Driscoll et al. [10]. Remember
that we implement partial persistence; snapshots are read-only historic documents,
not mutable clones.

To support persistence, a tree collection has the following additional fields:

• bool isSnapShot is false for a proper tree collection, true for snapshots.

• int generation is initially 0, and is incremented every time a snapshot is made
from the tree. For a snapshot, this always equals the tree’s generation at the
time the snapshot was made; a snapshot cannot be made from a snapshot.

• SnapRef snapList for a tree registers all the tree’s non-disposed snapshots,
using weak references. For a snapshort, snapList refers to the snapshot’s entry
in the underlying tree’s snapList so the snapshot can be disposed in constant
time.

248 Implementation of tree-based collections §13.10

• int maxsnapid is the maximal generation number of any non-disposed snap-
shot of this tree, or −1 if there are no snapshots, so snapList is empty.

As in a standard red-black tree, a node has a color (red or black), an item, and
optional left and right child node references. To support persistence, each node has
the following additional fields:

• int generation, initialized from the tree’s generation number when the node
is created.

• int lastgeneration, initially −1, but updated to the current maxsnapid if the
node is snapshotted and subsequently updated. That is, this is the generation
of the most recent snapshot to which the node belongs.

• Node oldref, initially null, but non-null if the node has been snapshotted and
subsequently updated.

• bool leftnode indicates whether the oldref, if non-null, refers to an overwrit-
ten left node (true) or right node (false).

A snapshot object is a shallow clone of a tree object (but not its nodes) having the
tree’s old generation number, and with isSnapShot set to true. If more than 231

snapshots are made from a tree, the 32 bit signed generation number may wrap
around, which will not be handled gracefully by the library.

We will now describe how the additional node fields are used for defining a spe-
cific generation snapshot, that is, how to enumerate a specific generation of the tree.
Just after a node has been created, its generation number equals that of the tree,
and such a node will never be encountered during enumeration of an older snap-
shot. The item of a node encountered during enumeration of a snapshot will always
be valid, but the node’s red-black color field is not necessarily valid for the snapshot;
in fact, the color is only needed for updates, which do not happen for snapshots. If
a node with generation equal to g0, and lastgeneration equal to g1 is encountered
when enumerating a younger snapshot of generation g2 > g1, then both child refer-
ences in the node are valid. If the snapshot being enumerated is older, so g0 ≤ g2 ≤ g1,
then one of the child references in the node is not valid for that snapshot; instead
the valid child reference is in the oldref field, and the leftnode field tells which of
the child references is held in oldref.

Now we will explain how updates are affected by node copy persistence, assum-
ing that the reader is familiar with updates to non-persistent red-black trees. As-
sume we are about to update a node that belongs to a live snapshot, so its generation
field is less than or equal to the maxsnapid field of the tree. If the update is a color
change, just do it. If the update is a change of the item, make a copy of the node,
update the item in the new node and update the reference in the parent node to
point to the new node; this node will have the generation number of the tree we
are updating. If the update is a change of a child reference and the lastgeneration
field of the node is still −1, we update lastgeneration to maxsnapid, set the leftnode
field to true if it is the left child we are updating, copy the old child reference to the

§13.11 Implementation of tree-based collections 249

oldref field and finally update the live child reference. If, finally, we must update
a child reference in a node that has already had made one child reference update,
we copy the node to a new one with whose generation will be that of the tree, and
then update the child pointer in the parent node. In the last situation, if the child
reference we are updating is the child that was updated before and the result of the
old update cannot belong to any live snapshots because the tree’s maxsnapid is less
than or equal to the lastgeneration of the node, we just update the child reference
instead of copying the node.

It should be clear from this description that the procedure is correct and does not
influence enumerations and lookups in the tree and snapshots by more than O(1)
work per node encountered. Thus a single item operation will still use time O(logn).
We now explain the crucial fact that the procedure will only produce O(1) amortized
new nodes per update operation on the tree. Note that a single update operation on
the tree can result in cascading node copies all the way to the root. But since the
cascade will stop when we use an unfilled oldref slot or reach the root, the number
of oldref filled by each update operation is O(1) . Moreover, a node will only be
copied once: after the copy it will no longer be part of the live tree and no longer
subject to updates. Now, if we have performed m update operations on the tree since
its creation, there can be at most O(m) nodes with filled oldref slots. A node with
an unfilled oldref slot either has been created directly by an insert operation on
the tree or is the single copy of a Node with a filled oldref slot. In total we have at
most O(m) nodes of either kind, which means exactly that we will only produce O(1)
amortized new nodes per update operation on the tree.

The tree’s maxsnapid field that holds the newest live snapshot is maintained as
follows. When a snapshot is created, it is registered in the snapList of the original
tree, and its maxsnapid field is updated. The storage element in the SnapRef class
is a red-black tree itself. When a snapshot is disposed, either by an explicit call
to Dispose() or by the garbage collector calling the finalizer of the tree class, that
snapshot will be deregistered for the SnapRef object and maxsnapid will be updated if
relevant. In particular, maxsnapid may be reset to −1 if there are no live snapshots.
This means that if we take a single snapshot, keep it alive for some time, and then
dispose it, we may avoid copying the whole tree if we only make a few updates while
the snapshot is alive.

It would be possible, but expensive, to make a more thorough cleanup of nodes
that become unreachable when a snapshot is disposed. We do not consider that
worthwhile, because the typical usage scenarios would be:

• Make a snapshot, enumerate it while doing updates, and then dispose the
snapshot, as in section 9.11.

• Build a data structure where we need all the snapshots until we just forget
the whole thing, as in the example in section 11.9.

Both scenarios are handled well by the current implementation.

250 Implementation of events and handlers §13.12

13.11 Implementation of priority queue handles
In C5 a priority queue is implemented as an interval heap, which permits efficient
access to both least and greatest item. The choice of this data structure over Min-
Max heaps was based upon results [28] from the Copenhagen STL project [8]. Our
implementation of interval heaps is special in that a handle (at most one) can be
associated with an item in the heap, permitting the item to be efficiently retrieved,
updated or deleted.

An interval heap is represented as an array of intervals, where an interval is a
pair of a first item a and a last item b, with a ≤ b. The children (if any) of an interval
at array index i are at array indexes 2i and 2i + 1. The interval heap invariant
stipulates that an interval must contain the intervals of its children. This implies
that the first and last items of the root interval (at array index 0) are the least and
greatest items in the interval heap. At each item insertion, removal or update, at
most log(n) intervals need to be updated, where n is the number of items in the heap.

A handle h for an item is implemented as an object that contains the array index
i of the item, thus permitting constant time retrieval of the item. More precisely,
bi/2c is the array index of an interval, and the handle points to the interval’s last
item if i is even, otherwise to the interval’s last item.

Each of the first and last items of an interval may contain a reference to a handle.
If an item has an associated handle h, then whenever the item is moved (from one
array index to another or from first to last within an interval or vice versa), then the
item index i in h is updated accordingly. When the item is removed from the heap,
the handle is invalidated. These operations take constant time.

To prevent a handle h from being used to access a heap with which it is not
associated, we check that the item at h.i has a handle and that that handle is h.

13.12 Implementation of events and handlers
Event handlers are implemented using C# delegates and events. There are six dif-
ferent kinds of events in the C5 library; see figure 8.4. However, it is undesirable
to add six event handler fields to every collection object, especially since in the most
frequent case those fields will all be null. Similarly, it is inefficient to test all those
fields for being non-null after operations, such as update, that may raise up to five
events.

Therefore we have collected all event handlers in a reference type EventBlock,
so that one field suffices, and so that this field if null in the frequent case where
there are no event handlers at all. This also helps ensure consistency between the
ActiveEvents property (see page 49) and the event handlers actually associated with
a collection.

Chapter 14

Creating new classes

14.1 Implementing derived collection classes
A number of abstract base classes provide common functionality for the various
concrete collection classes. The abstract base classes can be used also to derive new
collection classes. Note: This chapter is currently incomplete.

14.1.1 ArrayBase<T>
Abstract base class for implementing sequenced collections that are represented
using an array, such as ArrayList<T>, HashedArrayList<T>, and SortedArray<T>.
The class has fields and methods from CollectionBase<T>, CollectionValueBase<T>,
DirectedCollectionBase<T>, EnumerableBase<T> and SequencedBase<T>.

Further has protected fields to hold underlying array and view offset.
Further methods to manage the underlying array, create an enumerator, insert

and remove items.

14.1.2 CollectionBase<T>
Abstract base class for implementing modifiable collection classes, such as most
classes in this library except for the read-only wrappers. The class has fields and
methods from CollectionValueBase<T> and EnumerableBase<T>.

Further has protected fields: read-only flag, size, item equality comparers, and
update stamp (for enumerators).

Further has methods for range check against current size, for computing collec-
tion hash codes, checks for modification during enumeration, and for creating an
enumerator.

Class CollectionBase<T> has a public static method:

• static bool StaticEquals<U>(ICollection<T> coll1, ICollection<T> coll2,
SCG.IEqualityComparer<T> eqc) performs an unsequenced comparison of col-

251

252 Implementing derived collection classes §14.1

lections coll1 and coll2, using the given item equality comparer eqc. Returns
true if the collections contain equal items with equal multiplicity, regardless of
their order; returns false otherwise. This method is efficient on all C5 collec-
tions; in the worst case builds an auxiliary hash set from one of the collections
and then traverses the other. Hence the expected time complexity is O(m + n)
where m and n are numbers of items of the two collections.

14.1.3 CollectionValueBase<T>
Abstract base class for implementing modifiable and unmodifiable collection classes.
The class has fields and methods from EnumerableBase<T>.

Further has events (fields of delegate type), and utilities for event firing.
Further has Count and CountSpeed properties.
Public methods All, Apply, Exists, Filter; CopyTo, ToArray.

14.1.4 DictionaryBase<K,V>
Abstract base class for implementing dictionary classes. The class has bases Collec-
tionValueBase<KeyValuePair<K,V>> and EnumerableBase<KeyValuePair<K,V>>.

14.1.5 DirectedCollectionBase<T>
Abstract base class for implementing directed collections. The class has fields and
methods from CollectionBase<T>, CollectionValueBase<T> and EnumerableBase<T>.

14.1.6 DirectedCollectionValueBase<T>
Abstract base class for implementing directed collection values, such as subranges
of indexed and sorted collections. The class has fields and methods from Collection-
ValueBase<T> and EnumerableBase<T>.

14.1.7 EnumerableBase<T>
Abstract base class for implementing enumerable classes. The class has a public
method GetEnumerator() and protected methods for counting (by enumeration) the
number of items.

14.1.8 SequencedBase<T>
Abstract base for implementing sequenced collections. The class has fields, events
and methods inherited from CollectionBase<T>, CollectionValueBase<T>, Directed-
CollectionBase<T> and EnumerableBase<T>. Further has methods for computing
the collection’s hash code and for determining collection equality, respecting the
item sequence.

§14.1 Implementing derived collection classes 253

14.1.9 SortedDictionaryBase<K,V>
Abstract base class for implementing sorted dictionary classes such as SortedDic-
tionaryBase<K,V>. The class has fields and methods from
CollectionValueBase<KeyValuePair<K,V>>, DictionaryBase<K,V>, and Enumerable-
Base<KeyValuePair<K,V>>.

14.1.10 Read-only wrappers for abstract base classes
The Guarded classes shown in figure 14.1 are mainly useful as base classes for
creating read-only wrappers of derived classes.

Abstract base class Read-only wrapper class
CollectionValueBase<T> GuardedCollectionValue<T>
DirectedCollectionBase<T> GuardedDirectedCollectionValue<T>

GuardedDirectedEnumerable<T>
EnumerableBase<T> GuardedEnumerable<T>

GuardedEnumerator<T>
SequencedBase<T> GuardedSequenced<T>

GuardedSorted<T>

Figure 14.1: Read-only wrappers for abstract base classes. Read-only wrappers for
non-abstract collection and dictionary classes are shown in figure 8.2.

254 Implementing derived collection classes

Bibliography

[1] Nunit. Web site. At http://www.nunit.org/.

[2] A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9:216–219, 1979.

[3] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language.
Addison-Wesley, fourth edition, 2005.

[4] M. Bender et al. Two simplified algorithms for maintaining order in a list. In 10th
Annual European Symposium on Algorithms (ESA 2002), Rome, Italy, September 2002.
Lecture Notes in Computer Science, vol. 2461, pages 152–164. Springer-Verlag, 2002.

[5] Jon Bentley, D. E. Knuth, and M. D. McIlroy. Programming pearls: A literate program.
Communications of the ACM, 29(6):471–483, June 1986.

[6] Joshua Bloch. Effective Java Programming Language Guide. Addison-Wesley, 2001.

[7] W.R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 1992). SIGPLAN Notices 27, 10, pages 1–15, 1992.

[8] Copenhagen STL. Homepage. Web site. At http://www.cphstl.dk/.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, second edition, 2001.

[10] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent.
Journal of Computer and Systems Sciences, 38(1):86–124, 1989.

[11] Ecma TC39 TG2. C# Language Specification. Standard ECMA-334, 3rd edition. June
2005. At http://www.ecma-international.org/publications/standards/Ecma-334.htm.

[12] Ecma TC39 TG3. Common Language Infrastructure (CLI). Standard ECMA-335, 3rd
edition. June 2005. At
http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[13] M. Evered and G. Menger. Eine Evaluierung des Java JDK 1.2 Collections Framework
aus Sicht der Softwaretechnik. In C.H. Cap, editor, Java-Informations-Tage 1998,
Frankfurt, Germany, November 1998, pages 11–12. Springer-Verlag, 1999. At
http://www.informatik.uni-ulm.de/rs/projekte/proglang/jdk.ps.

[14] A. Goldberg and D. Robson. Smalltalk 80: The Language. Addison-Wesley, 1989.

[15] P. Golde. Power Collections for .NET. Web site. At
http://www.wintellect.com/MemberOnly/PowerCollections.aspx.

255

256 Bibliography

[16] R. Graham. An efficient algorithm for determining the convex hull of a finite point set.
Information Processing Letters, 1:132–133, 1972.

[17] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming Language.
Addison-Wesley, 2003.

[18] Niels Jørgen Kokholm. An extended library of collection classes for .NET. Master’s
thesis, IT University of Copenhagen, Denmark, 2004.

[19] George Marsaglia. Re: New random generator. Posting to newsgroup comp.lang.c,
April 2003. Posted 2003-04-03.

[20] George Marsaglia. Seeds for random number generators. Communications of the ACM,
46(5):90–93, 2003.

[21] G. Menger et al. Collection types and implementations in object-oriented software
libraries. In Conference on Technology of Object-Oriented Languages and Systems,
Santa Barbara, 1998, pages 97–109, 1998.

[22] Microsoft. Microsoft .NET framework developer center. Web site. At
http://msdn.microsoft.com/netframework/.

[23] David R. Musser. Introspective sorting and selection algorithms. Software-Practice and
Experience, 27(8):983–993, 1997.

[24] Rasmus Pagh and Flemming Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[25] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679, 1986.

[26] Robert Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

[27] P. Sestoft and H. I. Hansen. C# Precisely. Cambridge, Massachusetts: The MIT Press,
October 2004.

[28] Søren Skov and Jesper Holm Olsen. A comparative analysis of three different priority
deques. CPH STL Report 2001-14, DIKU, University of Copenhagen, October 2001.

[29] D. Sleator and P. Dietz. Two algorithms for maintaining order in a list. In 19th ACM
Symposium on the Theory of Computing (STOC’87), pages 365–372. ACM Press, 1987.

[30] D. Syme. F#. Web site. At http://research.microsoft.com/projects/ilx/fsharp.aspx.

[31] R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

[32] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

Index 257

Index
Act<A1> delegate type, 38

source file, 241
Act<A1,A2> delegate type, 38
Act<A1,A2,A3> delegate type, 38
Act<A1,A2,A3,A4> delegate type, 38
action delegate, 38
Action<T> delegate type

corresponds to Act<T>, 38
ActiveEvents property

ICollectionValue<T>, 49
Add method

IDictionary<K,V>, 99
IExtensible<T>, 55
IPriorityQueue<T>, 80
SC.IList, 68
SCG.ICollection<T>, 44, 68

AddAll method
IDictionary<K,V>, 99
IExtensible<T>, 56

Added enum value (EventTypeEnum), 35
AddSorted method

ISorted<T>, 88
ISortedDictionary<K,V>, 102

All enum value (EventTypeEnum), 35
All method (ICollectionValue<T>), 49
AllowsDuplicates property

ArrayList<T>, 111
HashBag<T>, 117
HashedArrayList<T>, 112
HashedLinkedList<T>, 113
HashSet<T>, 116
IExtensible<T>, 55
IntervalHeap<T>, 118
IQueue<T>, 83
IStack<T>, 94
LinkedList<T>, 112
overview, 109
SortedArrayList<T>, 114
TreeBag<T>, 116
TreeSet<T>, 115
WrappedArray<T>, 114

amortized complexity, 233
anagram classes (example), 202–203
anti-pattern

array list as queue, 192
bad hash function, 194

collection of collections, 195
hashed linked list indexer, 192
IndexOf method on list, 191, 192
linked list, 191
list IndexOf, 191
list RemoveAll, RetainAll, 190
list as set, 193
priority queue in sorted array, 193
sorted array, 189
sorted array as priority queue, 193

anti-symmetric relation, 30, 31
Apply method (ICollectionValue<T>), 49
arbitrary item, 167
ArgumentException, 39
ArgumentOutOfRangeException, 39
array

sorted, 114–115
sorting, 134
wrapped, 113–114

array list, 111–112
hashed, 112–113
queue (anti-pattern), 192

ArrayBase<T> class, 251
ArrayList<T> class, 111

constructor, 111
listenable events, 139
source file, 241

associative array, 19

Backwards enum value
EnumerationDirection, 36

Backwards method
IDirectedCollectionValue<T>, 52
IDirectedEnumerable<T>, 54

bag
hash-based, 117–118
semantics, 55
tree-based, 116

base classes
collection, 251–253

Basic enum value (EventTypeEnum), 35
batch job queue (example), 218
Bentley, Jon, 231
BinaryFormatter class, 143
Bond, James, 2
breadth-first traversal, 182

258 Index

bucket in hash table, 117
BucketCostDistribution method

HashDictionary<K,V>, 120
HashSet<T>, 117, 194

building C5 from source, 242
ByteComparer class, 32
ByteEqualityComparer class, 28

C5Random class, 41
source file, 241

cached hash code, 45, 243
Changed enum value (EventTypeEnum),

35
CharComparer class, 32
CharEqualityComparer class, 28
Check method

IDictionary<K,V>, 99
IExtensible<T>, 56

Choose method (ICollectionValue<T>), 50
circular queue, 111
CircularQueue<T> class, 17, 111

constructor, 111
listenable events, 139
source file, 241

Clear method
ICollection<T>, 45
IDictionary<K,V>, 99
view, 128

Cleared enum value (EventTypeEnum),
35

ClearedEventArgs class, 141
constructor, 141

ClearedRangeEventArgs class, 141
constructor, 141

Clone method
ICloneable, 142
IDictionary<K,V>, 99
IExtensible<T>, 56
IList<T>, 68
ISortedDictionary<K,V>, 103

cloneable, 12, 142
cloning, 142

guarded collection, 142
list view, 142

co-variance, lack of, 133
collection, 14

base classes, 251–253
class hierarchy, 110
directed, 14

extensible, 14
guarded, 130
indexed, 15
indexed sorted, 16
inner, 132
interface hierarchy, 43
of collections, 132, 170–172

anti-pattern, 195
outer, 132
persistent sorted, 16
sequenced, 15
sorted, 16

CollectionBase<T> class, 251
CollectionChanged event

(ICollectionValue<T>), 51, 137
CollectionChangedHandler<T> delegate

type, 139
CollectionCleared event

(ICollectionValue<T>), 51, 137
CollectionClearedHandler<T> delegate

type, 139
CollectionModifiedException, 39
CollectionValueBase<T> class, 252
common words (example), 231–232
Compare method (IComparer<T>), 31
comparer

classes, 31–33
item, 25
lexicographic, 187
natural, 32
patterns, 187–188
reverse, 187

Comparer property
IComparer<T>, 88
IPriorityQueue<T>, 80
ISortedDictionary<K,V>, 102

Comparer<T> class, 32
source file, 241

CompareTo method
IComparable, 31
IComparable<T>, 30

comparison delegate, 33
example, 232

Comparison<T> delegate (System), 33
and DelegateComparer<T>, 33
example, 232

complexity
amortized, 233

concordance (example), 199

Index 259

Constant (Speed value), 36
constructor

ArrayList<T>, 111
CircularQueue<T>, 111
ClearedEventArgs, 141
ClearedRangeEventArgs, 141
DelegateComparer<T>, 33
HashBag<T>, 117
HashDictionary<K,V>, 120
HashedArrayList<T>, 112
HashedLinkedList<T>, 113
HashSet<T>, 116
IntervalHeap<T>, 118
ItemAtEventArgs<T>, 141
ItemCountEventArgs<T>, 142
KeyValuePairComparer<K,V>, 33
LinkedList<T>, 112
SortedArray<T>, 114
TreeBag<T>, 116
TreeDictionary<K,V>, 120
TreeSet<T>, 115
WrappedArray<T>, 114

Contains method
ICollection<T>, 45
IDictionary<K,V>, 99
SC.IList, 68

contains view, 124
ContainsAll method

IDictionary<K,V>, 99
ContainsAll<U> method (ICollection<T>),

45
ContainsCount method (ICollection<T>),

45
ContainsSpeed property

ICollection<T>, 44
overview, 109

ContainsView method (pattern), 153
Converter<A1,R> delegate type, 38

corresponds to Fun<A1,R>, 38
convex hull (example), 200
Copenhagen STL project, 250
copying a graph (example), 213–214
CopyTo method

SC.ICollection, 68
CopyTo method (ICollectionValue<T>), 50
Count field

ClearedEventArgs, 141
ItemCountEventArgs<T>, 142

Count property

ICollectionValue<T>, 49
view, 125

CountFrom method (IIndexedSorted<T>),
62

CountFromTo method
(IIndexedSorted<T>), 62

CountSpeed property
(ICollectionValue<T>), 49

CountTo method (IIndexedSorted<T>), 62
cursor

inter-item (zero-item view), 126
item (one-item view), 150

Cut method
example, 159, 160, 217
ISorted<T>, 89
ISortedDictionary<K,V>, 103

DecimalComparer class, 32
DecimalEqualityComparer class, 28
decrease key, 178
default equality comparer (example), 223
Default property

Comparer<T>, 32
EqualityComparer<T>, 28
ReferenceEqualityComparer<T>, 30

delegate
action, 38
comparison, 33
function, 38
predicate, 38

DelegateComparer<T> class, 33
constructor, 33

Delete method (IPriorityQueue<T>), 81
DeleteMax method

IPriorityQueue<T>, 81
ISorted<T>, 89
ISortedDictionary<K,V>, 103

DeleteMin method
IPriorityQueue<T>, 81
ISorted<T>, 89
ISortedDictionary<K,V>, 104

depth-first traversal, 182
Dequeue method (IQueue<T>), 83
DFA (example), 204–208
dictionary, 19

classes, 119
interface hierarchy, 97
sorted, 19

DictionaryBase<K,V> class, 252

260 Index

directed
collection, 14
enumerable, 14

DirectedCollectionBase<T> class, 252
DirectedCollectionValueBase<T> class,

252
Direction property

(IDirectedEnumerable<T>), 54
Dispose method

IList<T>, 69
IPersistentSorted<T>, 77

double-ended queue, 183
DoubleComparer class, 32
DoubleEqualityComparer class, 28
DuplicateNotAllowedException, 39
DuplicatesByCounting property

ArrayList<T>, 111
HashBag<T>, 117
IExtensible<T>, 55
IntervalHeap<T>, 118
LinkedList<T>, 112
overview, 109
TreeBag<T>, 116

empirical cumulative distribution
function, 179

empty view, 123
Enqueue method (IQueue<T>), 84
enumerable, 13

directed, 14
EnumerableBase<T> class, 252
enumerating and modifying, 39, 165
enumeration order, 13
EnumerationDirection enum type, 36

source file, 241
equality

sequenced, 29
unsequenced, 29

equality comparer
classes, 27–30
faster than comparer, 115
item, 25

EqualityComparer property
IDictionary<K,V>, 98
IExtensible<T>, 55
inner collections using same, 171

EqualityComparer<T> class, 28
source file, 241

Equals method

collection, 30
IEqualityComparer<T>, 27
IEquatable<T>, 27
sequenced equality comparer, 29
unsequenced equality comparer, 29

EquatableEqualityComparer<T> class, 29
event, 136–142

handler, 136–142
performance impact, 240

listenable (table), 139
on dictionary (example), 226–228
patterns, 184–187
sender, 138
view, 129

EventTypeEnum enum type, 35
exception, 39–40

C5-specific, 39–40
never in comparer, 31
never in equality comparer, 27, 28

Exists method (ICollectionValue<T>), 50
expected complexity, 233
extensible collection, 14

fail-early enumerator, 39
FIFO property

ArrayList<T>, 111
HashedArrayList<T>, 112
HashedLinkedList<T>, 113
IList<T>, 66
LinkedList<T>, 112
overview, 109

FIFO queue, 72
Filter method

ICollectionValue<T>, 50
Find method

ICollection<T>, 45
ICollectionValue<T>, 50
IDictionary<K,V>, 99, 100
IPriorityQueue<T>, 82

FindAll method
IIndexedSorted<T>, 62
IList<T>, 69

FindFirstIndex method
pattern, 154

FindIndex method
IIndexed<T>, 58

FindLast method
IDirectedCollectionValue<T>, 52

FindLastIndex method

Index 261

IIndexed<T>, 58
pattern, 155

FindMax method
IPriorityQueue<T>, 82
ISorted<T>, 91
ISortedDictionary<K,V>, 104

FindMin method
IPriorityQueue<T>, 82
ISorted<T>, 91
ISortedDictionary<K,V>, 104

FindOrAdd method
ICollection<T>, 45
IDictionary<K,V>, 100

finite automaton (example), 204–208
firing of event, 136
First property (IList<T>), 66
fixed-size list, 66

versus read-only list, 66
FixedSizeCollectionException, 39
FloatComparer class, 32
FloatEqualityComparer class, 28
formatting, 41, 135
Forwards enum value

EnumerationDirection, 36
Full field (ClearedEventArgs), 141
Fun property (IDictionary<K,V>), 98
Fun<A1,R> delegate type, 38

source file, 241
Fun<A1,A2,R> delegate type, 38
Fun<A1,A2,A3,R> delegate type, 38
Fun<A1,A2,A3,A4,R> delegate type, 38
function (Fun<A1,R> delegate type), 38
function delegate, 38
functional set operations, 222–224

generic method, 133
GetHashCode method

collection, 30
IEqualityComparer<T>, 27

GetSequencedHashCode method
(ISequenced<T>), 86

GetUnsequencedHashCode method
(ICollection<T>), 45

Golde, Peter, 1, 23
Graham’s point elimination, 200
graph algorithms (example), 215–216
graph copying (example), 213–214
guarded

collection, 130, 147

cloning, 142
view, 129

GuardedCollection<T> wrapper, 130
GuardedCollectionValue<T> base class,

253
GuardedDictionary<K,V> wrapper, 130
GuardedDirectedCollectionValue<T>

base class, 253
GuardedDirectedEnumerable<T> base

class, 253
GuardedEnumerable<T> base class, 253
GuardedEnumerator<T> base class, 253
GuardedIndexedSorted<T> wrapper, 130
GuardedList<T> wrapper, 130
GuardedQueue<T> wrapper, 130
GuardedSequenced<T> base class, 253
GuardedSorted<T> base class, 253
GuardedSortedDictionary<K,V> wrapper,

130

handle, priority queue, 18, 177–178
handler

for event, 136–142
hash

bag, 117–118
code caching, 45
dictionary, 119–120
function, bad, 194
set, 116–117
table

bucket, 117
HashBag<T> class, 117

constructor, 117
listenable events, 139
source file, 241

HashDictionary<K,V> class, 119
constructor, 120
listenable events, 139
source file, 241

hashed array list, 112–113
hashed linked list, 113

indexer (anti-pattern), 192
HashedArrayList<T> class, 112

constructor, 112
listenable events, 139
source file, 241

HashedLinkedList<T> class, 113
constructor, 113
listenable events, 139

262 Index

source file, 241
HashSet<T> class, 116

constructor, 116
listenable events, 139
source file, 241

heap sort
HeapSort method (Sorting), 134
example, 174

HeapSort method (Sorting), 134
hierarchy

collection classes, 110
collection interfaces, 43
dictionary interfaces, 97

ICloneable interface (System), 142
ICollection<T> interface, 14

detailed API, 44
ICollectionValue<T> interface, 14

detailed API, 49
IComparable interface (System), 31
IComparable<T> interface (System),

30–31
IComparer<T> interface (SCG), 31
IDictionary<K,V> interface, 19

detailed API, 98
IDirectedCollectionValue<T> interface,

14
detailed API, 52

IDirectedEnumerable<T> interface, 14
detailed API, 54

IEnumerable<T> interface (SCG), 13
IEqualityComparer<T> interface (SCG),

27–28
IEquatable<T> interface (System), 27
IExtensible<T> interface, 14

detailed API, 55
IFormattable interface (System), 41
IIndexed<T> interface, 15

detailed API, 57
IIndexedSorted<T> interface, 16

detailed API, 61
IList<T> interface, 17

detailed API, 66
IncompatibleViewException, 39
increase key, 178
Index field (ItemAtEventArgs<T>), 141
indexed

collection, 15
sorted collection, 16

IndexesOf method (pattern), 155
IndexingSpeed property

IIndexed<T>, 57
overview, 109

IndexOf method
anti-pattern, 191, 192
HashedArrayList<T>, 112
IIndexed<T>, 59
SC.IList, 69

IndexOutOfRangeException, 39
inner collection, 132
Insert method

SC.IList, 70
Insert method (IList<T>), 69, 70
InsertAfterFirst method (pattern), 151
InsertAll method (IList<T>), 70
InsertBeforeFirst method (pattern), 152
Inserted enum value (EventTypeEnum),

35
InsertFirst method (IList<T>), 70
insertion sort, 134
InsertionSort method (Sorting), 134
InsertLast method (IList<T>), 70
IntComparer class, 32
IntEqualityComparer class, 28
InternalException, 39
intersection closure, 224
interval heap (priority queue), 118
IntervalHeap.InvalidHandleException,

40
IntervalHeap<T> class, 118

constructor, 118
listenable events, 139
source file, 241

IntroSort method (Sorting), 134
introspective quicksort, 242

performance, 239
invalidated view, 67, 240
InvalidHandleException, 40
IPersistentSorted<T> interface, 16

detailed API, 76
IPriorityQueue<T> interface, 18

detailed API, 80
IPriorityQueueHandle<T> interface, 18
IQueue<T> interface, 16

detailed API, 83
IsEmpty property

ICollectionValue<T>, 49
ISequenced<T> interface, 15

Index 263

detailed API, 85
IsFixedSize property

ArrayList<T>, 111, 112
HashedArrayList<T>, 112
HashedLinkedList<T>, 113
IList<T>, 66
overview, 109
WrappedArray<T>, 114

IShowable interface, 41
source file, 241

ISorted<T> interface, 16
detailed API, 88

ISortedDictionary<K,V> interface, 19
detailed API, 102

IsReadOnly property
ICollection<T>, 55
IDictionary<K,V>, 98

IsSorted method (IList<T>), 70
IsSynchronized property (SC.ICollection),

67
IStack<T> interface, 16

detailed API, 94
IsValid property (IList<T>), 67
item

comparer, 25
definition, 12
equality comparer, 25

Item field
ItemAtEventArgs<T>, 141
ItemCountEventArgs<T>, 142

ItemAtEventArgs<T> class, 141
constructor, 141

ItemCountEventArgs<T> class, 142
constructor, 142

ItemInserted event
ICollectionValue<T>, 51, 137

ItemInsertedHandler<T> delegate type,
140

ItemMultiplicities method
ICollection<T>, 45

ItemRemovedAt event
ICollectionValue<T>, 51, 137

ItemRemovedAtHandler<T> delegate
type, 140

ItemsAdded event (ICollectionValue<T>),
51, 137

ItemsAddedHandler<T> delegate type,
140

ItemsRemoved event
(ICollectionValue<T>), 51, 137

ItemsRemovedHandler<T> delegate type,
140

iteration over list using view, 154

Java collection library, 11, 23

Keys property
IDictionary<K,V>, 98
ISortedDictionary<K,V>, 102

KeyValuePairComparer<K,V> class, 33
constructor, 33

KeyValuePairEqualityComparer<K,V>
class, 30

Knuth, Donald E., 231

Last property (IList<T>), 67
LastIndexOf method (IIndexed<T>), 59
LastViewOf method (IList<T>), 71, 126
left endpoint of view, 123
LeftEndIndex method (pattern), 153
LeftEndView method (pattern), 150
length

of view, 123
of view overlap, 124

example, 153
lexicographic comparison, 187
LIFO stack, 72
Linear (Speed value), 36
linked list, 112

anti-pattern, 191
hashed, 113

LinkedList<T> class, 112
constructor, 112
listenable events, 139
source file, 241

list, See also linked list, array list, 17
IndexOf (anti-pattern), 191
anti-pattern, 190
as set (anti-pattern), 193
inter-item cursor, 126
item cursor, 150
proper, 123
segment swap, 166
underlying, 123
view, 17, 123–129

listenable events (table), 139
ListenableEvents property

264 Index

ICollectionValue<T>, 49
locking, 144–145
Log (Speed value), 36

Map method
IIndexedSorted<T>, 63
IList<T>, 71

Marsaglia, George, 41
median, 179
merge sort

example, 174
implementation, 242
LinkedList<T>, 112
performance, 239

modifying and enumerating, 39, 165
multi-threaded use of collections, 144–145
multidictionary (example), 225–231
multiset, See bag

natural comparer, 32
NaturalComparer<T> class, 32

source file, 241
NaturalComparerO<T> class, 32
NaturalEqualityComparer<T> class, 29
Next method (C5Random), 41
NextBytes method (C5Random), 41
NextDouble method (C5Random), 41
NFA (example), 204–208
node copy persistence, 247
non-destructive set operations, 222–224
None enum value (EventTypeEnum), 35
NoSuchItemException, 40
NotAViewException, 40
NotComparableException, 40
NUnit, 242

offset of view, 123
Offset property

IList<T>, 67
view, 125

one’s complement, 59
one-item view, 126, 150–152

item cursor, 150
outer collection, 132
Overlap method (pattern), 153
OverlapLength method (pattern), 153
overlapping views, 124

pair type Rec<T1,T2>, 37

path copy persistence, 247
pattern, 147–188
performance, 233–240
permutation, sorting, 175–176
persistent sorted collection, 16
Pop method (IStack<T>), 95
PotentiallyInfinite (Speed value), 36
PowerCollections collection library, 1, 23
predecessor, 91, 92, 104, 105

example, 158
patterns, 158–160
weak, 92, 93, 105, 106
weak (example), 158

Predecessor method
ISorted<T>, 91
ISortedDictionary<K,V>, 104

predicate delegate (Fun<T, bool>), 38
Predicate<T> delegate type, 38
prettyprinting, 135
printing, 41, 135
priority queue, 18

decrease key, 178
handle, 18, 177–178
implementation, 118
increase key, 178
sorted array (anti-pattern), 193

proper list, 123
properties of collection classes, 109
pseudo-random number generator, 41
Push method (IStack<T>), 95

quadruple type Rec<T1,T2,T3,T4>, 37
quantile, 179

rank, 179
quartile, 179
queue, 16, 72, 180

circular, 111
double-ended, 183
priority, 18

quicksort
IntroSort method (Sorting), 134
ArrayList<T>, 111
example, 174
implementation, 242
performance, 239

random
item, 167
number generator, 41

Index 265

selection, 173
RangeAll method

ISorted<T>, 91
ISortedDictionary<K,V>, 104

RangeFrom method
IIndexedSorted<T>, 63
ISorted<T>, 91
ISortedDictionary<K,V>, 104

RangeFromTo method
IIndexedSorted<T>, 63
ISorted<T>, 91
ISortedDictionary<K,V>, 104

RangeTo method
IIndexedSorted<T>, 63
ISorted<T>, 91
ISortedDictionary<K,V>, 104

rank, 179, 180
read-only

collection, 55
list view, 130
versus fixed-size, 66
wrappers, 130–131, 253

for abstract base classes, 253
ReadOnlyCollectionException, 40
Rec<T1,T2> record type, 37

source file, 241
Rec<T1,T2,T3> record type, 37
Rec<T1,T2,T3,T4> record type, 37
record

lexicographic comparison, 187
record type, 37
ReferenceEqualityComparer<T> class, 30
reflexive relation, 27, 30, 31
Remove method

ICollection<T>, 46
IDictionary<K,V>, 100
IList<T>, 71
SC.IList, 71

RemoveAll method
ICollection<T>, 46

RemoveAllCopies method
(ICollection<T>), 46

RemoveAt method
IIndexed<T>, 59
SC.IList, 72
SCG.IList<T>, 72

Removed enum value (EventTypeEnum),
35

RemovedAt enum value (EventTypeEnum),
35

RemoveFirst method (IList<T>), 72
RemoveInterval method (IIndexed<T>),

59
RemoveLast method (IList<T>), 72
RemovePredecessor method (pattern), 152
RemoveRangeFrom method

ISorted<T>, 92
ISortedDictionary<K,V>, 105

RemoveRangeFromTo method
ISorted<T>, 92
ISortedDictionary<K,V>, 105

RemoveRangeTo method
ISorted<T>, 92
ISortedDictionary<K,V>, 105

RemoveSuccessor method (pattern), 152
removing duplicates, 169
Replace method (IPriorityQueue<T>), 82
RetainAll<U> method (ICollection<T>), 46
reverse comparison, 187
Reverse method

IList<T>, 72
views, 128

right endpoint of view, 123
RightEndIndex method (pattern), 153
RightEndView method (pattern), 150

SameUnderlying method (pattern), 154
SByteComparer class, 32
SByteEqualityComparer class, 28
SC (System.Collections), 4
SC.IList interface, 17, 66
SCG (System.Collections.Generic), 4
SCG.ICollection<T> interface, 14
SCG.IComparer<T> interface, 31
SCG.IEnumerable<T> interface, 13
SCG.IEqualityComparer<T> interface,

27–28
SCG.IList<T> interface, 17, 66
SDD (System.Diagnostics.Debug class),

210
segment swap, 166
sender of event, 138
sequenced

collection, 15
equality, 29

sequenced equality, 30
SequencedBase<T> class, 252

266 Index

SequencedCollectionEqualityComparer<T,W>
class, 29

SequencedEquals method
(ISequenced<T>), 86

SequencePredecessor method (pattern),
150

SequenceSuccessor method (pattern), 151
serializable, 12, 143
serialization, 143–144
set

difference (example), 222
hash-based, 116–117
intersection (example), 222
semantics, 55
tree-based, 115
union (example), 222

set operations
destructive, 168–169
functional, 222–224

ShortComparer class, 32
ShortEqualityComparer class, 28
Show method (IShowable), 41
Shuffle method (IList<T>), 73
Slide method

IList<T>, 73
view, 125

Smalltalk collection library, 11, 23
snapshot, 78, 115, 116, 134

enumerating, 165
example, 216–217
of inner collection (pattern), 171
performance impact, 240

Snapshot method (IPersistentSorted<T>),
78

Sort method (IList<T>), 73
sorted

array, 114–115
anti-pattern, 189
priority queue (anti-pattern), 193

collection, 16
dictionary, 19

SortedArray<T> class, 114
constructor, 114
listenable events, 139
source file, 241

SortedDictionaryBase<K,V> class, 253
sorting, 174–176

arrays, 134
permutation, 175–176

topological (example), 209–212
Sorting class, 134
source build of C5, 242
source file organization, 241–242
space leak, 240
Span method

IList<T>, 73
view, 125

Speed enum type, 36
source file, 241

stable sort, 242
stack, 16, 72, 180
Start field (ClearedRangeEventArgs),

141
StaticEquals method

(CollectionBase<T>), 251
stop word (example), 198
successor, 92, 105

example, 158
patterns, 158–160
weak, 92, 93, 106
weak (example), 158

Successor method
ISorted<T>, 92
ISortedDictionary<K,V>, 105

swapping list segments, 166
symmetric relation, 27
SyncRoot property

SC.ICollection, 67, 145
System.Collections (SC), 4

IList interface, 17, 66
System.Collections.Generic (SCG), 4

IComparer<T> interface, 31
IEnumerable<T> interface, 13
IEqualityComparer<T> interface,

27–28
IList<T> interface, 17, 66

System.Comparison<T> delegate, 33
and DelegateComparer<T>, 33
example, 232

System.Diagnostics.Debug class, 210
System.ICloneable interface, 142
System.Runtime.Serialization.Formatter.Binary

namespace, 143
System.Xml.Serialization namespace, 143

this[h] property
IPriorityQueue<T>, 80

this[i,n] property

Index 267

IIndexed<T>, 57
this[i] property

IIndexed<T>, 57
IList<T>, 67
IQueue<T>, 83
IStack<T>, 94
SC.IList, 67

this[k] property
IDictionary<K,V>, 98

thread safety, 144–145
ToArray method (ICollectionValue<T>), 50
topological sort (example), 209–212
total function, 27, 28
transitive relation, 27, 30, 31
traversal

breadth-first, 182
depth-first, 182

tree
bag, 116
dictionary, 120–121
set, 115

TreeBag<T> class, 116
constructor, 116
listenable events, 139
source file, 241

TreeDictionary<K,V> class, 120
constructor, 120
listenable events, 139
source file, 241

TreeSet<T> class, 115
constructor, 115
listenable events, 139
source file, 241

triple type Rec<T1,T2,T3>, 37
TryPredecessor method

ISorted<T>, 92
ISortedDictionary<K,V>, 105

TrySlide method
IList<T>, 74
view, 125, 126

TrySuccessor method
ISorted<T>, 92
ISortedDictionary<K,V>, 105

TryWeakPredecessor method
ISorted<T>, 92
ISortedDictionary<K,V>, 105

TryWeakSuccessor method
ISorted<T>, 92
ISortedDictionary<K,V>, 106

UIntComparer class, 32
UIntEqualityComparer class, 28
underlying list, 123
Underlying property (IList<T>), 67, 126
UniqueItems method (ICollection<T>), 46
unit tests, 242
UnlistenableEventException, 40
unsequenced

collection, 15
equality, 29, 30

UnsequencedCollectionEqualityComparer<T,W>
class, 29

UnsequencedEquals method
(ICollection<T>), 46

Update method
ICollection<T>, 47
IDictionary<K,V>, 100

UpdateOrAdd method
ICollection<T>, 47
IDictionary<K,V>, 100, 101

UShortComparer class, 32
UShortEqualityComparer class, 28

valid view, 127
value type items, equality of, 29
Values property (IDictionary<K,V>), 98
view

cloning, 142
contains view, 124
convex hull example, 200
empty, 123
endpoint, 123
event, 129
guarded, 129
invalidated, 67, 240
length, 123
list, 17, 123–129
of guarded list, 129
offset, 123
one-item, 126, 150–152
overlapping, 124
performance impact, 239
read-only, 130
valid, 127
zero-item, 126, 148–150

View method (IList<T>), 74, 126
ViewDisposedException, 40, 69
ViewOf method

HashedArrayList<T>, 112

268 Index

HashedLinkedList<T>, 113
IList<T>, 74, 126

weak predecessor, 92
weak successor, 92
weak predecessor, 93, 105, 106

example, 158
weak successor, 93, 106

example, 158
exception-free (example), 159

WeakPredecessor method
ISorted<T>, 93
ISortedDictionary<K,V>, 106

WeakSuccessor method
exception-free (example), 159
ISorted<T>, 93
ISortedDictionary<K,V>, 106

wrapped array, 113–114
WrappedArray<T> class, 113

constructor, 114
listenable events, 139
source file, 241

zero-item view, 126, 148–150
at left end of list or view, 150
at right end of list or view, 150
inter-item cursor, 126

Collections

ISequenced<T>

ICollection<T>

IExtensible<T>

ICollectionValue<T>

SCG.IEnumerable<T>

IIndexed<T>

IPersistentSorted<T>

IPriorityQueue<T>

HashSet<T>

HashBag<T>

TreeSet<T>

TreeBag<T>

IntervalHeap<T>SortedArray<T>

IList<T>

HashedArrayList<T>ArrayList<T>

LinkedList<T> HashedLinkedList<T>

CircularQueue<T>

IQueue<T> IStack<T>

WrappedArray<T>

SC.IList

SCG.ICollection<T>IDirectedCollectionValue<T>

IDirectedEnumerable<T>

SCG.IList<T>

IIndexedSorted<T>

ISorted<T>

ICloneable

IShowable

Dictionaries

IDictionary<K,V>

TreeDictionary<K,V>HashDictionary<K,V>

ISortedDictionary<K,V>

ICollectionValue<KeyValuePair<K,V>>

SCG.IEnumerable<KeyValuePair<K,V>>

