
UFPE, August 04, 2010

Exercises on “Data-Flow Analysis” (UFPE, Recife, Brazil)

1) Undecidability:
Prove that the following problem is undecidable (using the “reduction principle”):

- what are the possible outputs of a program ‘P’?

Let’s assume output is done via a special statement (the syntax of which is):

STM ::= output EXP1 “;”

In addition to carrying out the reduction, you need to explain your reasoning. (Hint: it’s
quite similar to the examples you saw on slides #18+#20 at the lecture.) :-)

2) Control-Flow Diagrams:
Give a control-flow template (as the ones on slides #35+#36) for the “&&”-construction
(aka., “lazy conjunction”):

EXP ::= EXP1 “&&” EXP2

You need to strictly adhere to the conventions (of drawing)…:

- statements as rectangles (with flow in and out);
- expressions (of type non-boolean) as rectangles (with flow in and out);
- expressions (of type boolean) as diamonds (with single flow in and with boolean
 flow out as two distinct paths, one for “true” and one for “false”); and
- confluence drawn explicitly as circles (collecting multiple flows of control).

3) Control-Flow Graphs:
Draw a control-flow graph for the following (silly) program fragment:

 int N = 5;
 int x=input();
 int y=input();
 for (int i=1; i<N; i++) {
 if (y!=0 && x/y>2) x = x+1;
 else {
 y = y-1;
 while (x>10) x = x/2;
 }
 }
 output x;

(Note: the program isn’t supposed to do anything remotely interesting.)

4) Relations and Partial-Orders:

Consider the subset-of relation over the set S = P ({ x+1, 2*y, z/3 }) of expressions in a
program (written “X ⊆ Y” if X is a subset of Y, in short-hand notation). We’d need such a
structure in an analysis that tracks “expressions” (e.g., “very busy expressions”-analysis
that tracks which expressions have already been computed and haven’t changed since).
Give:

- its signature;
- the relation (specify its members);
- an example of a member of the relation (both w/ and w/o using short-hand); and
- an example of a non-member of the relation (w/ and w/o using short-hand).

Does the set S and relation form a partial-order? (why or why not?)

Draw a Hasse diagram.

5) Greatest-Lower-Bound:
Define the greatest-lower-bound (binary operator) on sets ‘|_|‘ which is analogous to the
“least-upper-bound” (binary operator): ‘∏’ (cf. slide #16 from the 2nd lecture).

Note: it must be: i) an lower bound and ii) the (i.e., unique) greatest lower bound.

Given a lattice L = (S, ⊆); what do the elements ‘|_|S’ and ‘∏S’ correspond to?

6) Lattices:

Draw the lattice:

×

We define the size of a lattice |L| as how many elements it has.
In general; how many points will a lattice L1 x L2 have (assuming L1 has |L1| = n1
elements and L2 has |L2| = n2 elements)?

7) Monotone Functions and Fixed-Points:
For each of the 3 recursive equations (over the power-lattice: P({a,b,c}):

i)
X = {a,b}
Y = X ∪ Y

ii) X = {a,b} ∪ Y
Y = X \ {b}

iii) X = {a,b} ∪ Z
Y = {a,c} \ X
Z = XC

Rewrite the equations to bring them onto form: “x = f(x,y)” and ”y = g(x,y)”.
Determine whether or not the functions (i.e., ‘f’ and ‘g’) involved are monotone.

Then, solve the equations that only use monotone functions (i.e., find the [unique] least
fixed point using the fixed-point theorem).

