
UFPE, August 04, 2010 

Exercises on “Data-Flow Analysis” (UFPE, Recife, Brazil) 
  

1) Undecidability: 
Prove that the following problem is undecidable (using the “reduction principle”): 
 

- what are the possible outputs of a program ‘P’? 
 
Let’s assume output is done via a special statement (the syntax of which is): 
 

STM   ::=   output EXP1 “;” 
 
In addition to carrying out the reduction, you need to explain your reasoning. (Hint: it’s 
quite similar to the examples you saw on slides #18+#20 at the lecture.) :-) 
 
 

2) Control-Flow Diagrams: 
Give a control-flow template (as the ones on slides #35+#36) for the “&&”-construction 
(aka., “lazy conjunction”): 
 

EXP   ::=   EXP1 “&&” EXP2 
 
You need to strictly adhere to the conventions (of drawing)…: 

- statements as rectangles (with flow in and out); 
- expressions (of type non-boolean) as rectangles (with flow in and out); 
- expressions (of type boolean) as diamonds (with single flow in and with boolean 
   flow out as two distinct paths, one for “true” and one for “false”); and 
- confluence drawn explicitly as circles (collecting multiple flows of control). 

 
 

3) Control-Flow Graphs: 
Draw a control-flow graph for the following (silly) program fragment: 
 

 

 int N = 5; 
 int x=input(); 
 int y=input(); 
 for (int i=1; i<N; i++) { 
     if (y!=0 && x/y>2) x = x+1; 
     else { 
         y = y-1; 
         while (x>10) x = x/2; 
     } 
 } 
 output x; 
 

 
(Note: the program isn’t supposed to do anything remotely interesting.) 
 
 



 
4) Relations and Partial-Orders: 

Consider the subset-of relation over the set S = P ({ x+1, 2*y, z/3 }) of expressions in a 
program (written “X ⊆ Y” if X is a subset of Y, in short-hand notation). We’d need such a 
structure in an analysis that tracks “expressions” (e.g., “very busy expressions”-analysis 
that tracks which expressions have already been computed and haven’t changed since). 
Give: 

- its signature; 
- the relation (specify its members); 
- an example of a member of the relation (both w/ and w/o using short-hand); and 
- an example of a non-member of the relation (w/ and w/o using short-hand). 

 
Does the set S and relation form a partial-order? (why or why not?) 
 
Draw a Hasse diagram. 
 

5) Greatest-Lower-Bound: 
Define the greatest-lower-bound (binary operator) on sets ‘|_|‘ which is analogous to the 
“least-upper-bound” (binary operator): ‘∏’ (cf. slide #16 from the 2nd lecture). 
 
Note:   it must be: i) an lower bound   and   ii) the (i.e., unique) greatest lower bound. 
 
Given a lattice L = (S, ⊆); what do the elements ‘|_|S’ and ‘∏S’ correspond to? 
 

6) Lattices: 
  

 
 
 
Draw the lattice: 
 

  
 

×

 
  
We define the size of a lattice |L| as how many elements it has. 
In general; how many points will a lattice L1 x L2 have (assuming L1 has |L1| = n1 
elements and L2 has |L2| = n2 elements)? 
 

7) Monotone Functions and Fixed-Points: 
For each of the 3 recursive equations (over the power-lattice: P({a,b,c}): 
  

 

i) 
X = {a,b} 
Y = X ∪ Y 

 

ii) X = {a,b} ∪ Y 
Y = X \ {b} 

 

iii) X = {a,b} ∪ Z 
Y = {a,c} \ X 
Z = XC 

 

Rewrite the equations to bring them onto form: “x = f(x,y)” and ”y = g(x,y)”. 
Determine whether or not the functions (i.e., ‘f’ and ‘g’) involved are monotone.  
 
Then, solve the equations that only use monotone functions (i.e., find the [unique] least 
fixed point using the fixed-point theorem). 
 


