
Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Claus Brabrand
(((brabrand@itu.dk)))

Associate Professor, Ph.D.
(((Programming, Logic, and Semantics)))

IT University of Copenhagen

ANALYSIS
FLOW-DATA

[HOW TO ANALYZE LANGUAGES AUTOMATICALLY]

[2]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Abstract

"Data-Flow Analysis":
In this 3*3 hour mini course we will look at data-flow analysis. Rather
than just look at the classical "monotone framework" analyses (which are
usually synonymous with teaching data-flow analysis: reaching definitions,
live variables, available expressions, and very busy expressions), we will
instead take one step backwards and look at the general theory and
practice behind these analyses. The idea is that you will then learn how to
design your own customized data-flow analyses for automatically
analyzing whatever aspects of programming languages you want to. (From
this perspective, the monotone framework analyses are just special cases.)

Keywords:
- undecidability, approximation, control-flow graphs, partial-orders, lattices,
transfer functions, monotonicity, [how to solve] fixed-point equations – and
how all of these things combine to enable you to design data-flow analyses.

[3]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

[4]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Introduction:
Undecidability, Reduction, and Approximation

Data-flow Analysis:
Quick tour of everything & running example

Control-Flow Graphs:
Control-flow, data-flow, and confluence

”Science-Fiction Math”: (next monday)
Lattice theory, monotonicity, and fixed-points

Putting it all together…: (next wednesday)
Example revisited

[5]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Notes on Static Analysis
”Lecture Notes on Static Analysis”
by Michael I. Schwartzbach
(Aarhus University)

Chapter 1, 2, 4, 5, 6 (until p. 19)
(Excl. ”pointers”)

Claims to be "not overly formal", but
the math involved can be quite
challenging (at times)…

[6]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Quiz: Optimization?

If you want a fast C-program, should you use:
LOOP 1:

LOOP 2 (optimized by programmer):

i.e., ”array-version” or ”optimized pointer-version” ?

b = a;
for (i = 0; i < N; i++) {

*b = *b * 2000;
*b = *b / 10000;
b++;

}

for (i = 0; i < N; i++) {
a[i] = a[i] * 2000;
a[i] = a[i] / 10000;

}

?

?
…or…

[7]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Results (of running the programs):

Compilers use highly sophisticated static analyses
for optimization! (you'll learn how to do this!!!)

Recommendation: focus on writing clear code
for people (and compilers) to understand!

Answer:

[8]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Purpose (of Data-Flow Analysis):
Gather information (on running behavior of program)

”∀program points”

Usage (of static analysis):
Basis for subsequent…:

Error Detection

Data-Flow Analysis

Static Analysis

Optimization

information
∀program points

[9]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Analyses for Error Detection

Example Analyses:
”Symbol Checking”:

Catch (dynamic) symbol errors

”Type Checking”:
Catch (dynamic) type errors

”Initialized Variable Analysis”:
Catch unintialized variables

…
…
…
…

[10]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Analyses for Optimization

Example Analyses:
”Constant Propagation Analysis”:

Precompute constants (e.g., replace ’5*x+z’ by ’42’)

”Live Variables Analysis”:
Dead-code elimination (e.g., get rid of unused variable ’z’)

”Available Expressions Analysis”:
Avoid recomputing already computed exprs (cache results)

…
…
…
…

Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Conceptual Motivation

Undecidability
Reduction principle
Approximation

[12]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Rice’s Theorem (1953)

Examples:
does program ’P’ always halt when run?
is the value of integer variable ’x’ always positive?
does variable ’x’ always have the same value?
which variables can pointer ’p’ point to?
does expression ’E’ always evaluate to true?
what are the possible outputs of program ’P’?
…

“Any interesting problem about the runtime behavior of a program*
is undecidable”

-- Rice’s Theorem [paraphrased] (1953)

“Any interesting problem about the runtime behavior of a program*
is undecidable”

-- Rice’s Theorem [paraphrased] (1953)

*) written in a turing-complete language

[13]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Undecidability (self-referentiality)

Consider "The Book-of-all-Books":
This book contains the titles of all books
that do not have a self-reference
(i.e. don't contain their title inside)
Finitely many books; i.e.:

We can sit down & figure out whether to include or not...
Q: What about "The Book-of-all-Books";

Should it be included or not?

"Self-referential paradox" (many guises):
e.g. "This sentence is false"

"The Bible"

"War and Peace"

"Programming Languages,

An Interp.-Based Approach"

...

The Book-of-all-Books

☺

☺

[14]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Termination Undecidable!

Assume termination is decidable (in Java);
i.e. ∃ some program, halts: Program → bool

Q: Does P0 loop or terminate...? :)

Hence: halts cannot exist!
i.e., "Termination is undecidable"

Program p0 = read_program("P0.java");
if (halts(p0)) loop();
else halt();

-- P0.java --

bool halts(Program p) { ... }

*) for turing-complete languages

[15]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Rice’s Theorem (1953)

Examples:
does program ’P’ always halt?
is the value of integer variable ’x’ always positive?
does variable ’x’ always have the same value?
which variables can pointer ’p’ point to?
does expression ’E’ always evaluate to true?
what are the possible outputs of program ’P’?
…

“Any interesting problem about the runtime behavior program*
is undecidable”

-- Rice’s Theorem [paraphrased] (1953)

“Any interesting problem about the runtime behavior program*
is undecidable”

-- Rice’s Theorem [paraphrased] (1953)

re
du

ct
io

n

*) written in a turing-complete language

[16]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Reduction:
solve always-pos ⇒ solve halts

1) Assume ’x-is-always-pos(P)’ is decidable
2) Given P (here’s how we could solve ’halts(P)’):
3) Construct (veeeeery clever) reduction program R:

4) Run ”supposedly decidable” analysis:
res =

5) Deduce from result:
if (res) then P loops!; else P halts :-)

6) THUS: ’x-is-always-pos(P)’ must be undecidable!

-- R.java --
int x = 1;
P /* insert program P here :-) */
x = -1;

x-is-always-positive(R)

[17]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Reduction Principle

Reduction principle (in short):

Example:

Exercise:
Carry out reduction + whole explanation for:

”which variables can pointer ’q’ point to?”

φ(P) undecidable ∧ [solve ψ(P) ⇒ solve φ(P)]
ψ(P) undecidable

’halts(P)’ undecidable ∧ [solve ’x-is-always-pos(P)’ ⇒ solve ’halts(P)’]
’x-is-always-pos(P)’ undecidable

reduction

[18]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Answer
1) Assume ’which-var-q-points-to(P)’ is decidable:
2) Given P (here’s how to (cleverly) decide halts(P)):
3) Construct (veeeeery clever) reduction program R:

4) Run ’which-var-q-points-to(R)’ = res
5) If (null ∈ res) P halts! else; P loops! :-)
6) THUS:

’which-var-q-points-to(P)’ must be undecidable!

ptr q = 0xffff;
P /* insert program P (assume w/o 'q') */
q = null;

-- R.java --

[19]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Undecidability

Undecidability means that…:

…no-one can decide this line (for all programs)!

However(!)…

halts loops

?

[20]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

“Side-Stepping Undecidability”

Compilers use safe approximations
(computed via ”static analyses”) such that:

However, just because it’s undecidable, doesn’t mean there aren’t
(good) approximations! Indeed, the whole area of static analysis
works on “side-stepping undecidability”:

However, just because it’s undecidable, doesn’t mean there aren’t
(good) approximations! Indeed, the whole area of static analysis
works on “side-stepping undecidability”:

ok error ok error

Okay! Dunno? Dunno? Error!

[21]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

“Side-Stepping Undecidability”

Unsafe approximation:

For testing it may be okay to ”abandon”
safety and use unsafe approximations:

However, just because it’s undecidable, doesn’t mean there aren’t
(good) approximations! Indeed, the whole area of static analysis
works on “side-stepping undecidability”:

However, just because it’s undecidable, doesn’t mean there aren’t
(good) approximations! Indeed, the whole area of static analysis
works on “side-stepping undecidability”:

halts loops

unsafe approximation

Here are some programs for
you to (manually) consider !

ok error

[22]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

“Slack”

Undecidability means: “there’ll always be a slack”:

However, still useful:
(possible interpretations of “Dunno?”):

Treat as error (i.e., reject program):
“Sorry, program not accepted!”

Treat as warning (i.e., warn programmer):
“Here are some potential problems: …”

halts loops

Dunno?

. .
Okay!

.

[23]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Soundness & Completeness

Soundness:

Analysis reports no errors
⇒ Really are no errors

Completeness:

Analysis reports an error
⇒ Really is an error

ok error

Sound analysis

ok error

Complete analysis

…or alternative (equivalent) formulation, via ”contra-position”:

P ⇒ Q ¬Q ⇒ ¬P≡

Really no error(s)
⇒ Analysis reports no error(s)

Really are error(s)
⇒ Analysis reports error(s)

[24]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Example: Type Checking

Will this program have type error (when run)?

Undecidable (because of reduction):
Type error ⇔ <EXP> evaluates to true

void f() {
var b;
if (<EXP>) {

b = 42;
} else {

b = true;
}
...
if (b) ...; // error is b is '42'

}

[25]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Example: Type Checking

Hence, languages use static requirements:

All variables must be declared
And have only one type (throughout the program)
This is (very) easy to check (i.e., "type-checking")

void f() {
bool b; // instead of ”var b;”

if (<EXP>) {
b = 42;

} else {
b = true;

}
}

Static compiler error:
Regardless of what <EXP>

evaluates to when run

[26]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Introduction:
Undecidability, Reduction, and Approximation

Data-flow Analysis:
Quick tour & running example

Control-Flow Graphs:
Control-flow, data-flow, and confluence

”Science-Fiction Math”:
Lattice theory, monotonicity, and fixed-points

Putting it all together…:
Example revisited

Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

5’ Crash Course on
Data-Flow Analysis

Claus Brabrand
(((brabrand@itu.dk)))

Associate Professor, Ph.D.
(((Programming, Logic, and Semantics)))

IT University of Copenhagen

[28]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

IDEA:

We (only) need 3 things:
A control-flow graph
A lattice
Transfer functions

Example: “(integer) constant propagation”

“Simulate runtime execution
at compile-time

using abstract values”

Data-Flow Analysis

[29]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

int x = 1;
int y = 3;

if (...) {
x = x+2;

} else {
x <-> y;

}
print(x,y);

→

int x = 1;

int y = 3;

x = x+2; x <-> y;

print(x,y);

true false

Control-flow graph

...

We (only) need 3 things:
A control-flow graph
A lattice
Transfer functions

Given program:

[30]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

A Lattice

Lattice L of abstract values of interest
and their relationships (i.e. ordering “≤”):

Induces least-upper-bound operator:
for combining information

~ “I don't know
(could be anything)”

~ “we haven’t analyzed yet”

·· -3 -2 -1 0 1 2 3 ··

“top”

“bottom”

We (only) need 3 things:
A control-flow graph
A lattice
Transfer functions

[31]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Data-Flow Analysis

int x = 1;

int y = 3;

x = x+2; x <-> y;

print(x,y);

λE . E[x a 1]

λE . E[y a 3]

λE . E[x a E(x) ⊕ 2] λE . E[x a E(y),
y a E(x)]

[,] ∈ ENVL

[,]

[,]
[,]

[,]

[,] [,][,]

[,] [,][,]

x y

1

1

31

31

3131

33 3

31

13

...

We (only) need 3 things:
A control-flow graph
A lattice
Transfer functions

[32]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Introduction:
Undecidability, Reduction, and Approximation

Data-flow Analysis:
Quick tour & running example

Control-Flow Graphs:
Control-flow, data-flow, and confluence

”Science-Fiction Math”:
Lattice theory, monotonicity, and fixed-points

Putting it all together…:
Example revisited

[33]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control Structures

Control Structures:
Statements (or Expr’s) that affect ”flow of control”:

if-else:

if:

if (Exp) Stm1 else Stm2

if (Exp) Stm

Stm1

Exptrue false

Stm2

confluence

Stm

Exptrue false

confluence
The expression must be of type boolean;
if it evaluates to true, the given statement
is executed, otherwise not.

The expression must be of type boolean; if
it evaluates to true, Statement-1 is executed,
otherwise Statement-2 is executed.

[syntax]

[semantics]

[syntax]

[semantics]

[34]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control Structures (cont’d)

while:

for:

while (Exp) Stm

for (Exp1 ; Exp2 ; Exp3) Stm

Equivalent to:

The expression must be of type boolean;
if it evaluates to false, the given statement is
skipped, otherwise it is executed and
afterwards the expression is evaluated
again. If it is still true, the statement is
executed again. This is continued until the
expression evaluates to false.

{ Exp1;
while (Exp2) { Stm Exp3; }

}

Stm

Exp
true false

confluence

Exp1;

Exp2true false
Stm

confluence

Exp3;

[syntax]

[semantics]

[syntax]

[semantics]

[35]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

int x = 1;
int y = 3;

if (a>b) {
x = x+2;

} else {
x <-> y;

}
print(x,y);

→

int x = 1;

int y = 3;

x = x+2; x <-> y;

print(x,y);

true false

Control-flow graph

a>b

Given program:

[36]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Exercise: Draw a
Control-Flow Graph for:

public static void main (String[] args) {
int mi, ma;
if (args.length == 0)

System.out.println("No numbers");
else {

mi = ma = Integer.parseInt(args[0]);
for (int i=1; i < args.length; i++) {

int obs = Integer.parseInt(args[i]);
if (obs > ma)

ma = obs;
else

if (mi < obs) mi = obs;
}
System.out.println(”min=" + mi + "," +

"max=" + ma);
}}

if

else

for

if

else
if

[37]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control-Flow Graph

CFG:
int mi, ma;

System.out.println
("No numbers");

args.length == 0

mi = ma = Integer.parseInt(args[0]);

int i=1;

i < args.length

i++;

System.out.println(”min=" + mi + "," + "max=" + ma);

int obs = Integer.parseInt(args[i]);

obs > ma

ma = obs; mi < obs

mi = obs;

true false

true false

true false

true false

[38]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control Structures (cont’d2)

do-while: exercise

”?:”; ”conditional expression”:

”||”; ”lazy disjunction” (aka., ”short-cut ∨”):

”&&”; ”lazy conjunction” (aka., ”short-cut ∧”):

switch:
switch (Exp) { Swb* }

case Exp : Stm* break;

do Stm while (Exp);

default : Stm* break;

Swb:

Exp1 ? Exp2 : Exp3

Exp1 || Exp2

Exp1 && Exp2

[39]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control Structures (cont’d3)

try-catch-finally (exceptions):

return / break / continue:

”method invocation”:
e.g.;

”recursive method invocation”:
e.g.;

”virtual dispatching”:
e.g.;

try Stm1 catch (Exp) Stm2 finally Stm3

f(x)

return ; return Exp ; break ; continue ;

f(x)

f(x)

[40]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Control Structures (cont’d4)

”function pointers”:
e.g.;

”higher-order functions”:
e.g.;

”dynamic evaluation”:
e.g.;

Some constructions (and thus languages)
require a separate control-flow analysis
for determining control-flow in order to do
data-flow analysis

(*f)(x)

λf.λx.(f x)

eval(some-string-which-has-been-dynamically-computed)

[41]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Introduction:
Undecidability, Reduction, and Approximation

Data-flow Analysis:
Quick tour & running example

Control-Flow Graphs:
Control-flow, data-flow, and confluence

”Science-Fiction Math”:
Lattice theory, monotonicity, and fixed-points

Putting it all together…:
Example revisited

Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

MATH

[43]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Relations:
Crossproducts, powersets, and relations

Lattices:
Partial-Orders, least-upper-bound, and lattices

Monotone Functions:
Monotone Functions and Transfer Functions

Fixed Points:
Fixed Points and Solving Recursive Equations

Putting it all together…:
Example revisited

[44]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Crossproduct: ’×’
Crossproduct (binary operator on sets):

Given sets:
A = { 0, 1 }
B = { true, false }

A × B = { (0,true), (0,false), (1,true), (1,false) }
i.e., creates sets of pairs

Exercise:
A × A =
Z × Z =
(A × A) × B =

{ (0,0), (0,1), (1,0), (1,1) }

{ (0,0), (0,1), (0,1), …, (1,0), (1,1), …, (42,87), … }

{ ((0,0),true), ((0,1),true), …, ((1,1),false) }

[45]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Powersets : ’P (S)’

Powerset (unary operator on sets):
Given set "S = { A, B }";
P (S) = { Ø, {A}, {B}, {A,B} = S }

i.e., creates the set of all subsets (of the set)

Note:

Exercise:
P (Z) =
P (Z × Z) =
If a set S has |S| elements;

How many elements does P (S) have?

X ⊆ S ⇔ X ∈ P (S)

{ Ø, {0}, {1}, {2}, …, {0,1}, … {13,42,87}, … Z }

’’P P ((SS))’’ is (therefore) often written is (therefore) often written ’’22S S ’’
Answer: Answer: 22|S||S|

{ Ø, {(0,0)}, {(1,1)}, …, {(0,0),(3,2),(4,9)}, … Z×Z }

[46]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Relations

Example: “equals” relation:
Signature:
Relation is:
Written as: as a short-hand for:
… and as: as a short-hand for:

Example: “less-than” relation:
Signature:
Relation is:
Written as: as a short-hand for:
… and as: as a short-hand for:

2 ≠ 3 (2,3) ∉ ‘=’

‘=’ ⊆ Z × Z

(2,2) ∈ ‘=’2 = 2

(8,7) ∉ ‘<’

‘<’ ⊆ Z × Z

(7,8) ∈ ‘<’

8 < 7

7 < 8

equals = { (0,0), (1,1), (2,2), (3,3), (4,4), … }

less-than = { (0,1), (0,2), (0,3), …, (1,2), (1,3), … }

……same as saying: same as saying: ’’==’’ ∈∈ P P ((ZZ ×× ZZ))

……same as saying: same as saying: ’’<<’’ ∈∈ P P ((ZZ ×× ZZ))

[47]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Exercises

Example: “less-than-or-equal-to” relation:
Signature:
Relation is:
Written as: as a short-hand for:
… and as: as a short-hand for:

Example: “is-congruent-modulo-3” relation:
Signature:
Relation is:
Written as: as a short-hand for:
… and as: as a short-hand for:

3 ≤ 2 (3,2) ∉ ‘≤’

‘≤’ ⊆ Z × Z

(2,3) ∈ ‘≤’2 ≤ 3

(7,8) ∉ ‘≡3’

‘≡3’ ⊆ Z × Z

(6,9) ∈ ‘≡3’

7 ≡3 8

6 ≡3 9

‘≤’ = { (0,0), (0,1), (0,2), …, (1,1), (1,1), …, (2,3), … }

‘≡3’ = { (0,0), (0,3), (0,6), …, (1,1), (1,4), …, (6,9), … }

……same as saying: same as saying: ’’≤’’ ∈∈ P P ((ZZ ×× ZZ))

……same as saying: same as saying: ’’ ≡3’’ ∈∈ P P ((ZZ ×× ZZ))

[48]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Equivalence Relation

Let ‘~’ be a binary relation over set A:
‘~’ ⊆ A × A

~ is an equivalence relation iff:
Reflexive:

Symmetric:

Transitive:

∀x∈A: x ~ x

∀x,y∈A: x ~ y ⇔ y ~ x

∀x,y,z∈A: x ~ y ∧ y ~ z ⇒ x ~ z

[49]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Agenda

Relations:
Crossproducts, powersets, and relations

Lattices:
Partial-Orders, least-upper-bound, and lattices

Monotone Functions:
Monotone Functions and Transfer Functions

Fixed Points:
Fixed Points and Solving Recursive Equations

Putting it all together…:
Example revisited

[50]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Partial-Order

A Partial-Order is a structure (S,):
S is a set
’ ’ is a binary relation on S (i.e., ’ ’ ⊆ S × S) satisfying:

Reflexivity:

Transitivity:

Anti-Symmetry:

∀x∈S: x x

∀x,y∈S: x y ∧ y x ⇒ x = y

∀x,y,z∈S: x y ∧ y z ⇒ x z

[51]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Visualization: Hasse Diagram
Partial-Order (S,): ⇔

Reflexive:

Transitive:

Anti-Symmetric:

Hasse Diagram:

∀x∈S: x x

∀x,y∈S: x y ∧ y x ⇒ x = y

∀x,y,z∈S: x y ∧ y z ⇒ x z

[52]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Exercise (Hasse Diagram)

Given Hasse Diagram:

Write down partial order (B,):
Set B = { … }
Relation ’ ’:

Signature
All elements of the relation (i.e., ’ ’ = { … })
Give example of element in ’ ’ (w/ + w/o shorthand)
Again, but for an element not in the relation

[53]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Example Partial-Orders

Lattice Examples (as Hasse Diagrams):

…depending on what is analysed for!

2 or2 or
moremore

Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Least Upper Bound ' '

[55]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

”Least Upper Bound”

Upper bound:
We say that ’z’ is an upper bound for set ’X’

…written if

Least upper bound:
We say that ’z’ is the least upper bound of set ’X’

…written if

∀x∈X: x zX z

z = X X z ∧ ∀z’: X z’ ⇒ z z’

upper bound least

[56]Claus Brabrand, UFPE, Brazil Aug 04, 2010DATA-FLOW ANALYSIS

Example: Least upper bound

Analyses use ’ ’ to combine information
(at confluence points):

x = 2; x = 0;

true false
...

[x = , y =] [x = , y =]

[x = , y =][x = , y =]
[x = , y =]

