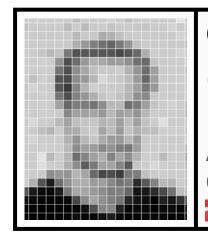


[HOW TO ANALYZE LANGUAGES AUTOMATICALLY]



Claus Brabrand

(((brabrand@itu.dk)))

Associate Professor, Ph.D. (((Programming, Logic, and Semantics))) IT University of Copenhagen

H Agenda

Relations:

Crossproducts, powersets, and relations

Lattices:

Partial-Orders, least-upper-bound, and lattices

Monotone Functions:

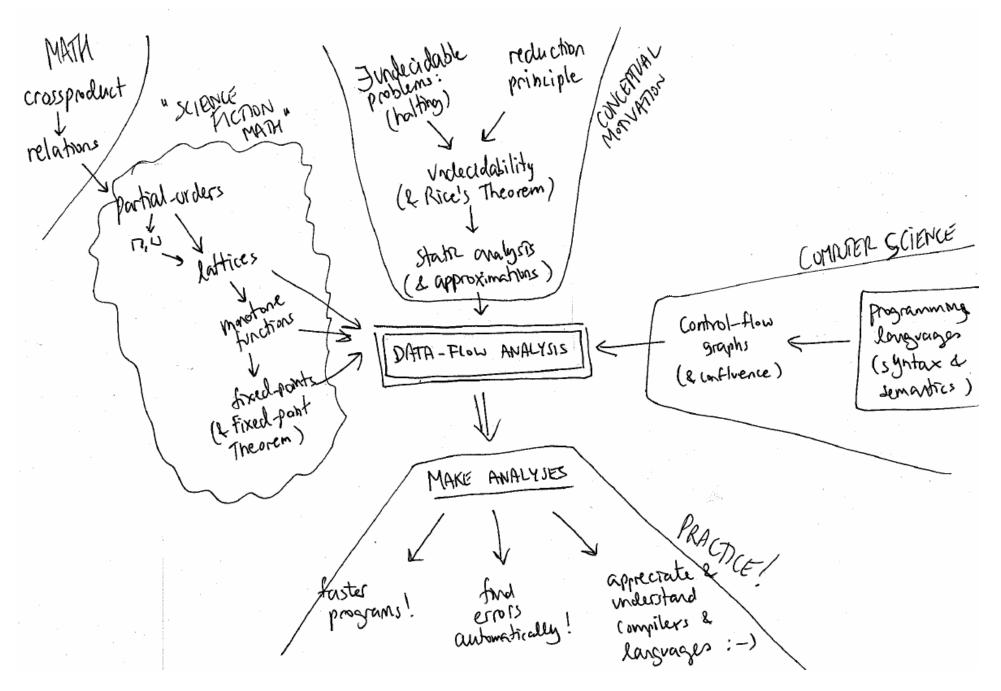
Monotone Functions and Transfer Functions

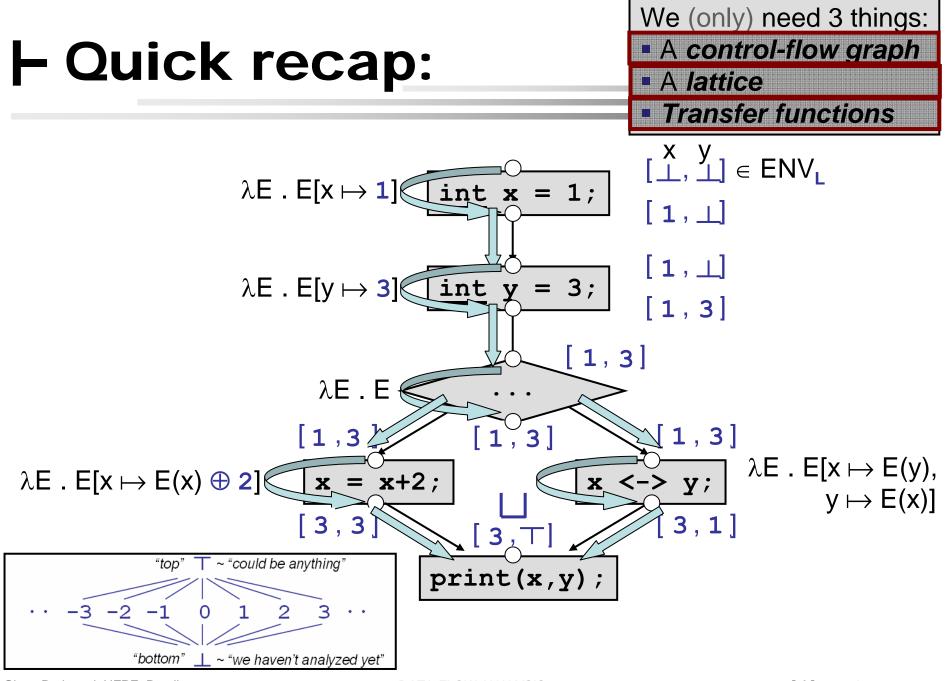
Fixed Points:

Fixed Points and Solving Recursive Equations

Putting it all together...:

Example revisited



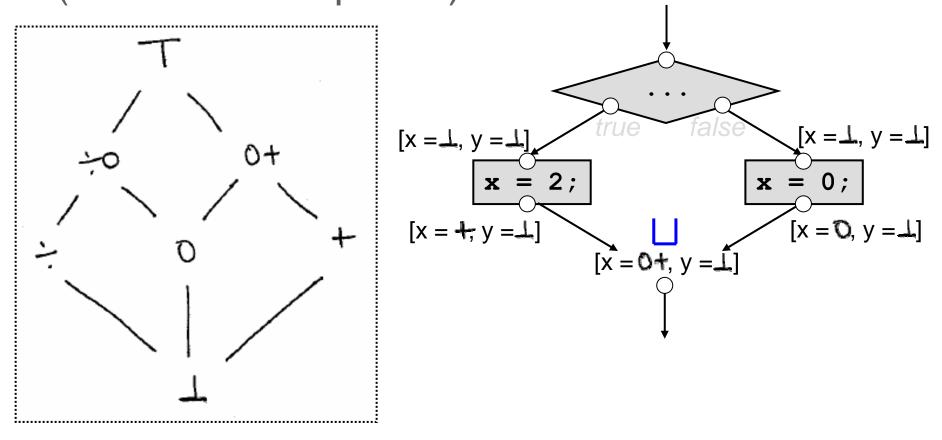


Claus Brabrand, UFPE, Brazil

DATA-FLOW ANALYSIS

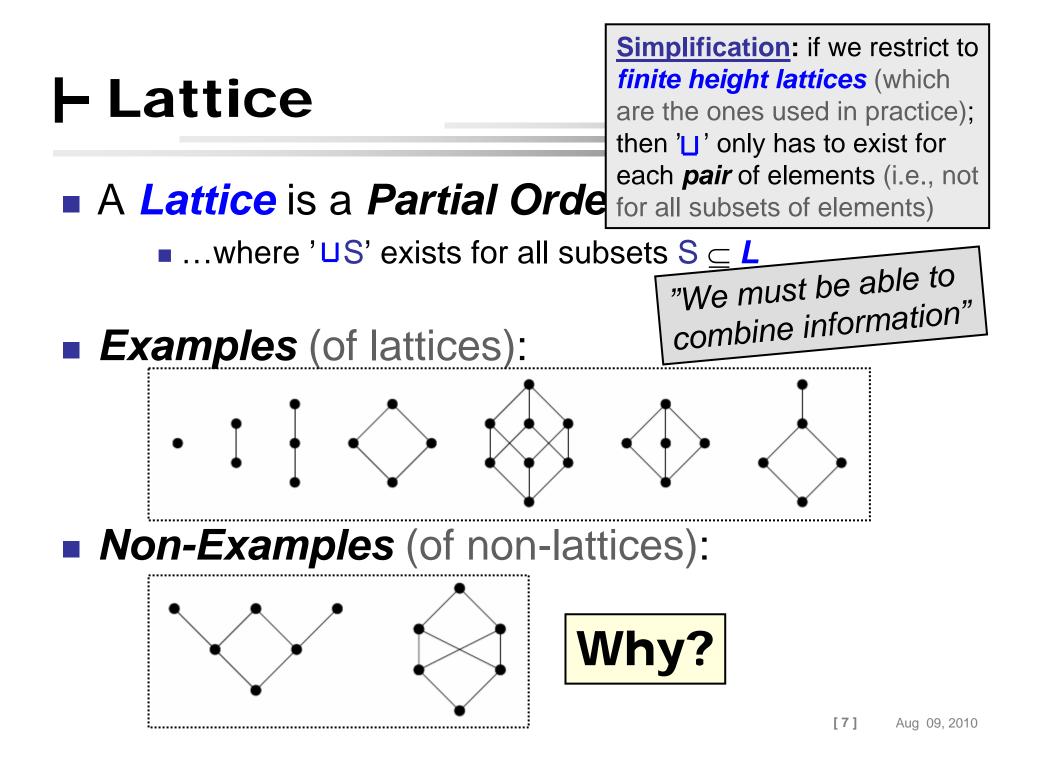
Example: Least upper bound

Analyses use 'L' to combine information (at confluence points):



Lattice

÷.

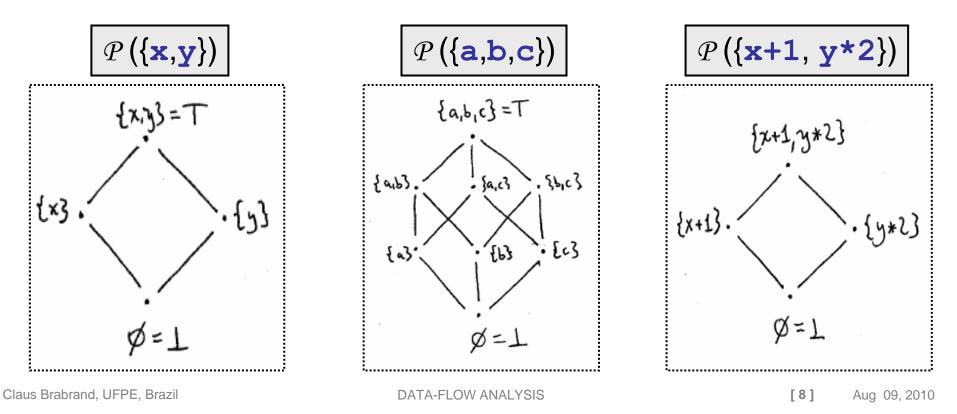


- Power-Lattices

Powerset Lattices (as Hasse Diagrams):

 $P(\{x, y\}) = \{ \emptyset, \{x\}, \{y\}, \{x, y\} \}$

• ...ordered under $' \sqsubseteq ' = ' \subseteq '$ (i.e., subset inclusion):



H Agenda

Relations:

Crossproducts, powersets, and relations

Lattices:

Partial-Orders, least-upper-bound, and lattices

Monotone Functions:

Monotone Functions and Transfer Functions

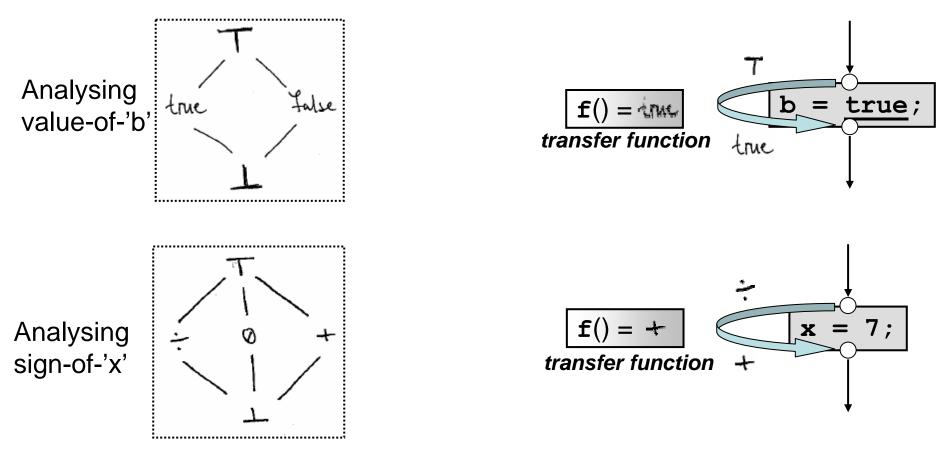
Fixed Points:

Fixed Points and Solving Recursive Equations

- Putting it all together...:
 - Example revisited

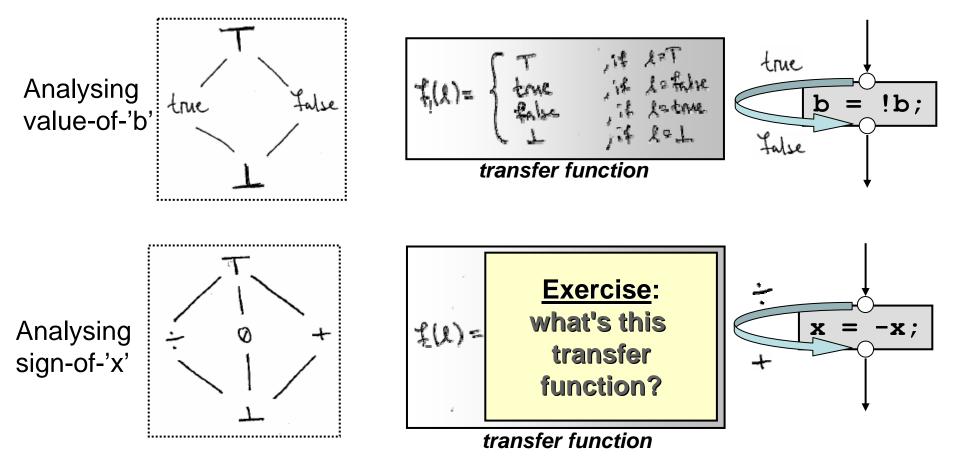
Fransfer Functions

• **Constant** Transfer functions:



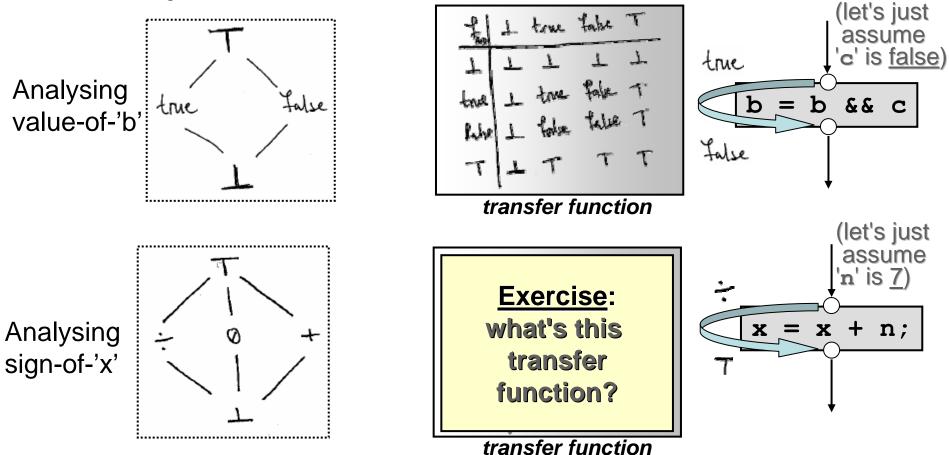
Fransfer Functions

• **Unary** Transfer functions:



Fransfer Functions

Binary Transfer functions:

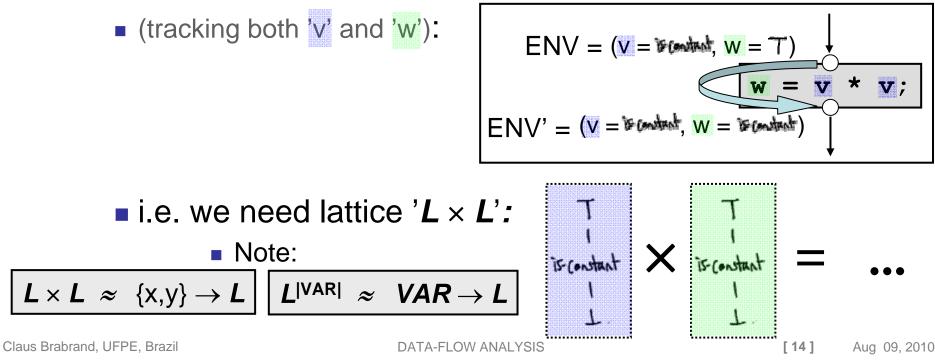


Environments

Runtime: $Var \rightarrow Val$ **Analysis:** $Var \rightarrow \mathcal{L}$ (i.e., abstract values)

Hon *Environments!*

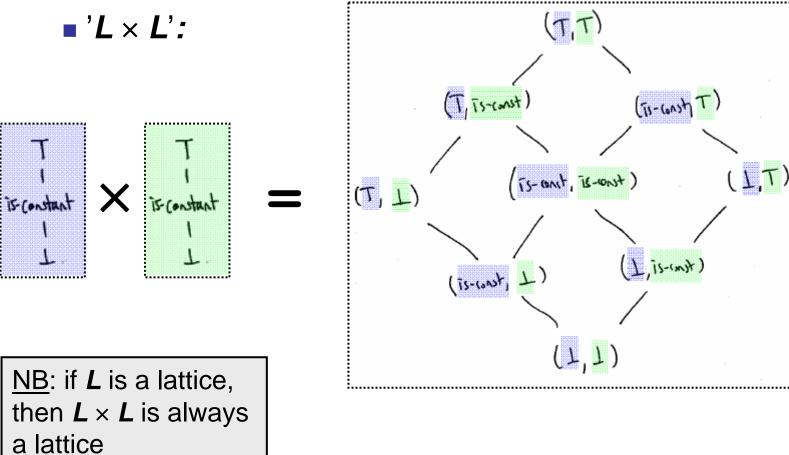
- Say lattice *L* analyses "constantness" of *one single value*:
- We need environments for analyzing:



is-(onstant

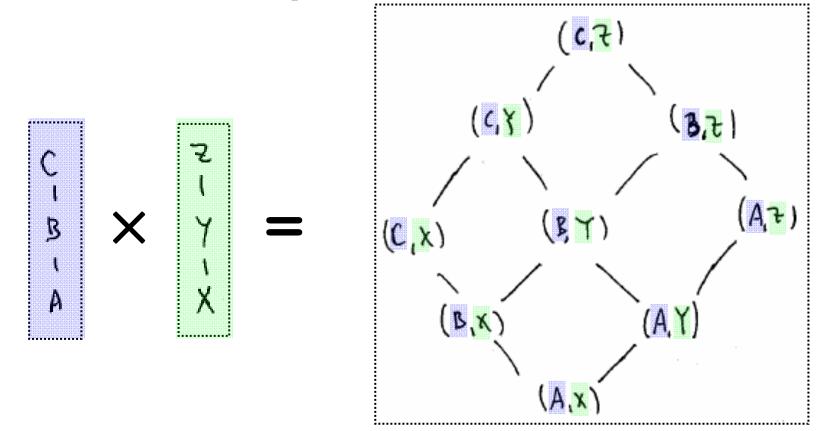
- Crossproduct Lattice

Environment Lattice:



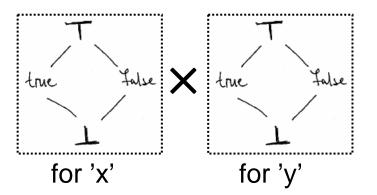
Exercise

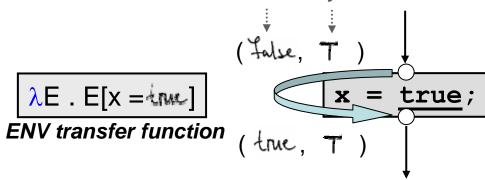
Calculate crossproduct lattice:



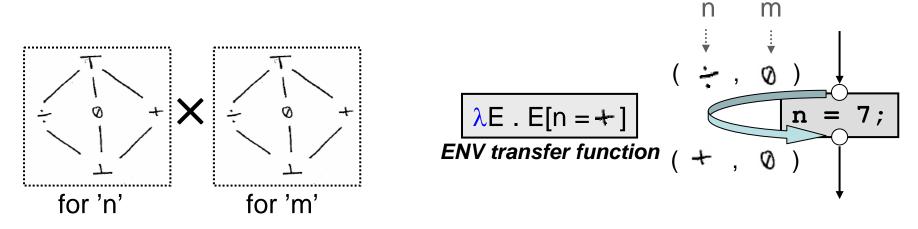
⊢ Transfer Functions *on Environment Lattices*

• **Constant** Transfer functions:

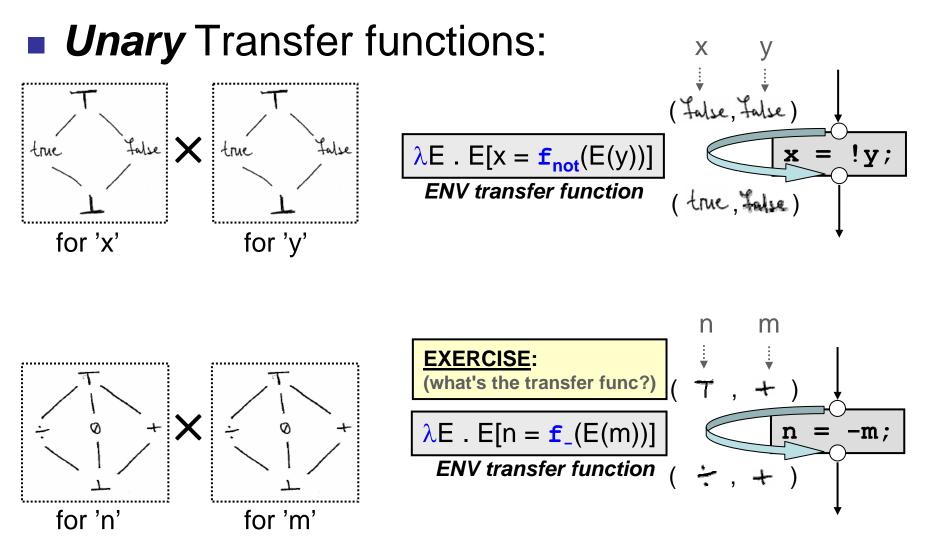




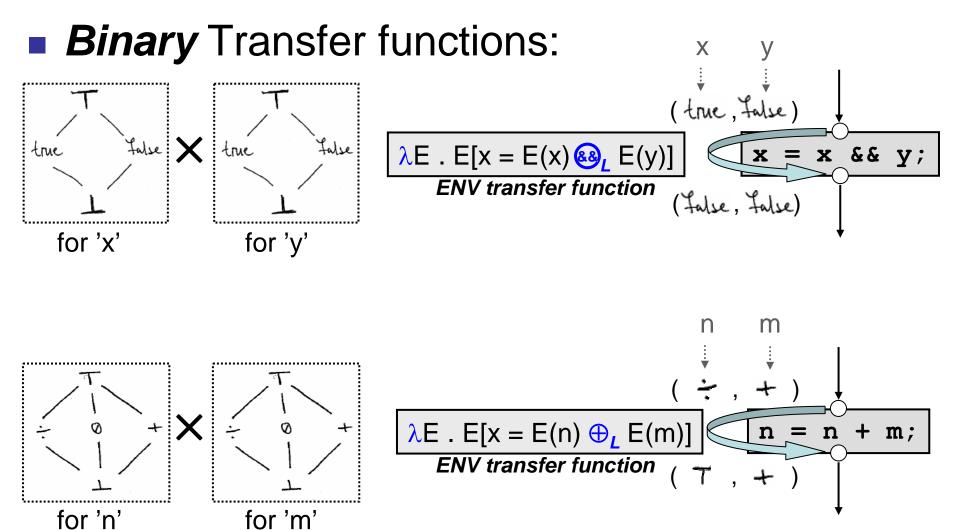
Х



For the second state of the second state of



For Functions In the second state of the second state of



Monotonicity

Monotone Transfer Functions

- Monotone Functions

• Monotone function $f : L \to L$ (on a lattice L):

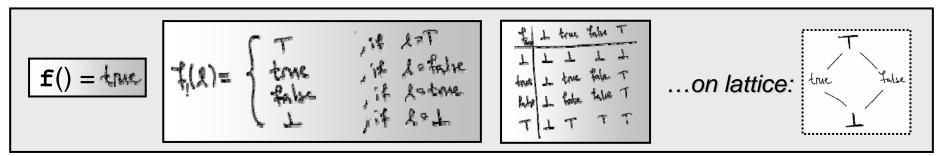
 $\forall x,y \in \boldsymbol{L}: \quad x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$

Note:

this is not saying that 'f' is ascending:

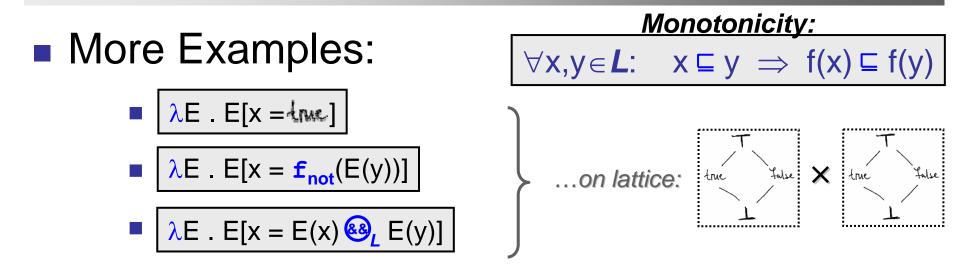
All the transfer functions you have seen were monotone! :-)

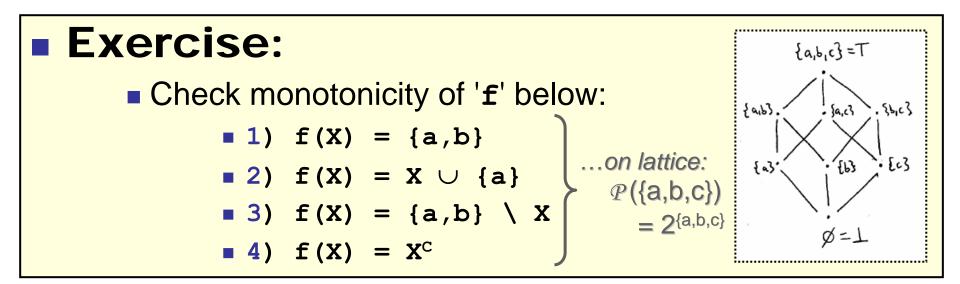
Examples:



Claus Brabrand, UFPE, Brazil

Honotone Func's (cont'd)





H Agenda

Relations:

Crossproducts, powersets, and relations

Lattices:

Partial-Orders, least-upper-bound, and lattices

Monotone Functions:

Monotone Functions and Transfer Functions

Fixed Points:

Fixed Points and Solving Recursive Equations

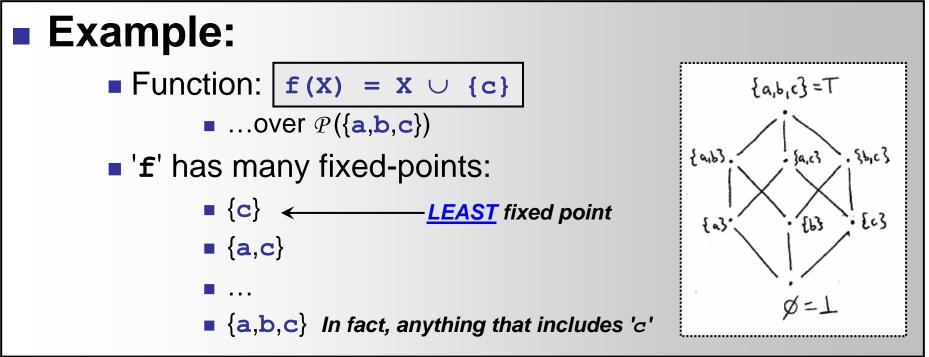
- Putting it all together...:
 - Example revisited

Fixed-Points

• A *fixed-point* for a function $f : L \to L$

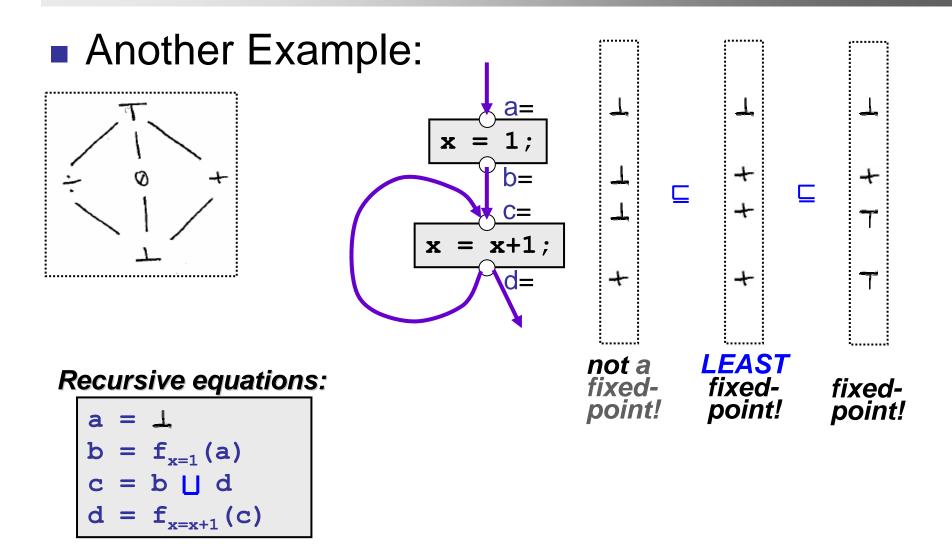
■ ...is an element ℓ ∈ L

• such that: l = f(l)



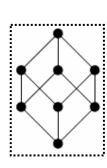
Claus Brabrand, UFPE, Brazil

- Another Example



Fixed-Point Theorem!

...over a lattice L (with finite height):



Then:

If:

- 'f' is guaranteed to have a unique least fixed-point
- ...which is computable as:

$$fix(f) = \bigsqcup_{i\geq 0} f^i(\bot)$$

Proof is quite simple [cf. Notes, p.13 top]

■ Intuition: $\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq ...$ until equality

How you can...

Now you can...

Solve ANY recursive equations

(involving monotone functions over lattices):

x = f(x,y,z)
y = g(x,y,z)
z = h(x,y,z)

Which means that you can solve any recursive data-flow analysis equation!:-)

H Agenda

Relations:

Crossproducts and relations

Lattices:

Partial-Orders, least-upper-bound, and lattices

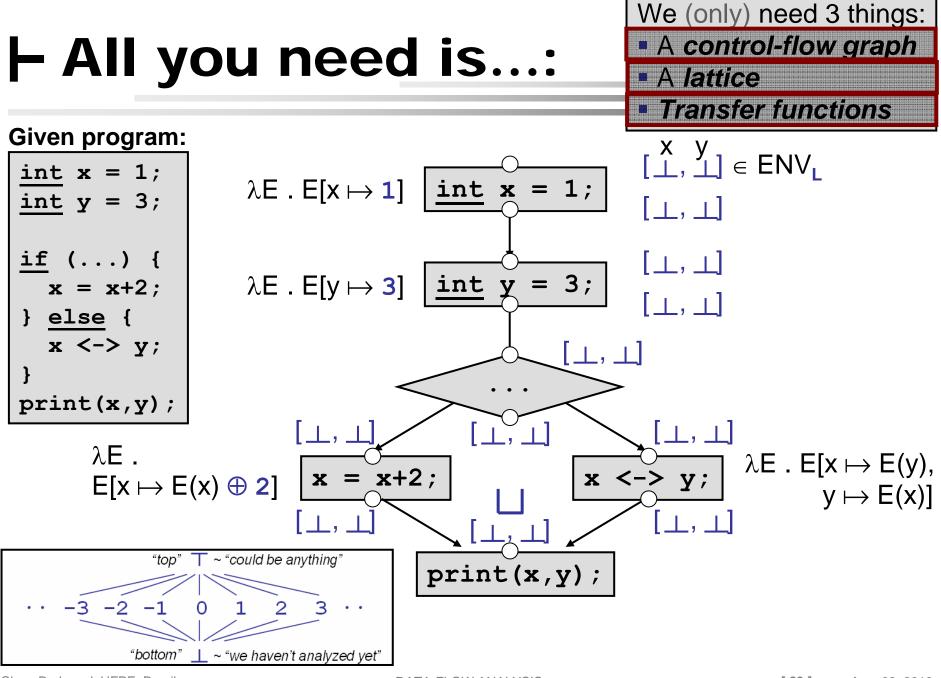
Monotone Functions:

Monotone Functions and Transfer Functions

Fixed Points:

Fixed Points and Solving Recursive Equations

- Putting it all together...:
 - Example revisited

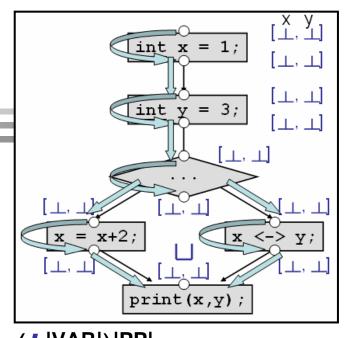


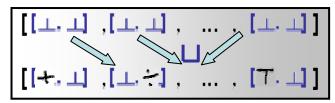
Claus Brabrand, UFPE, Brazil

DATA-FLOW ANALYSIS

- Solve Equations :-)

- One *big* lattice:
 E.g., (L^{|VAR|})^{|PP|}
- 1 **big** abstract value vector: $[[_,_],[_,_], ..., [_,_]] \in (L^{|VAR|})^{|PP|}$
- 1 **big** transfer function: ■ $F : (L^{|VAR|})^{|PP|} \rightarrow (L^{|VAR|})^{|PP|}$





- Compute fixed-point (simply):

 - Iterate transfer function 'F' (until nothing changes)
 - Done; print out (or use) solution...! :-)

H Agenda

Relations:

Crossproducts, powersets, and relations

Lattices:

Partial-Orders, least-upper-bound, and lattices

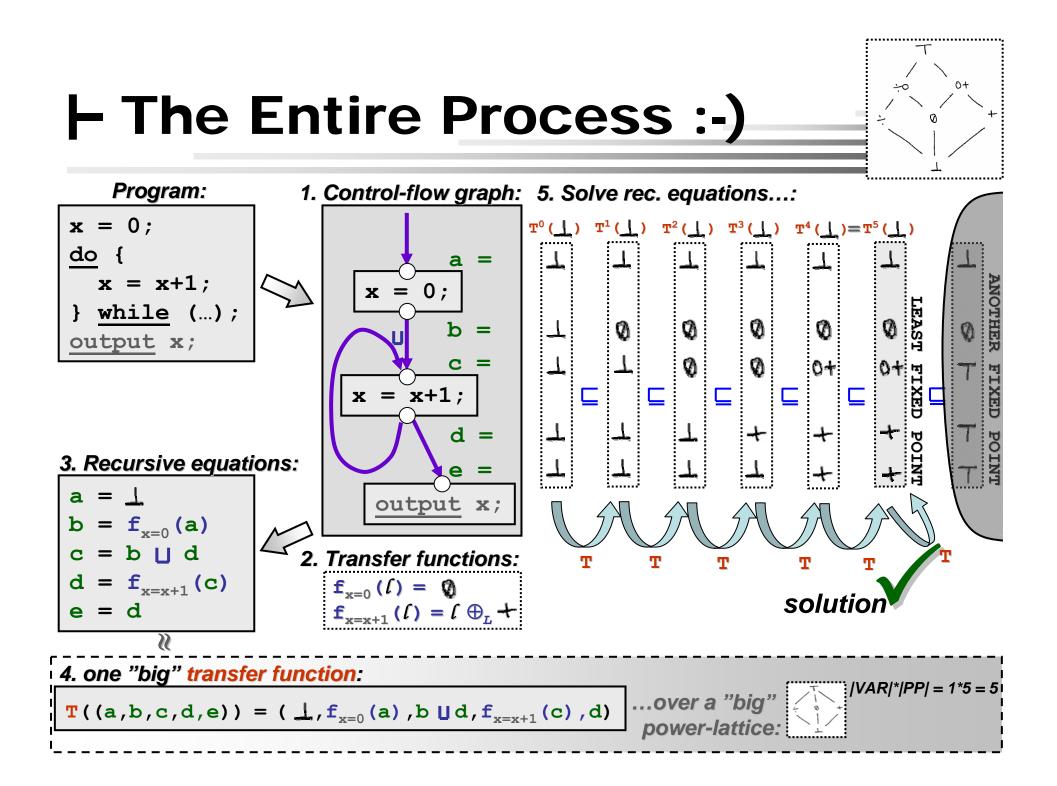
Monotone Functions:

Monotone Functions and Transfer Functions

Fixed Points:

Fixed Points and Solving Recursive Equations

- Putting it all together...:
 - Example revisited



Exercise:

Repeat this process for program (of two vars):

x = 1; y = 0; <u>while</u> (v>w) { x <-> y; } y = y+1;

...using lattice:

• i.e., *determine*...:

- 1) Control-flow graph
- 2) Transfer functions
- 3) Recursive equations
- 4) One "big" transfer function
- 5) Solve recursive equations :-)

- Now, please: 3' recap

Please spend 3' on thinking about and writing down the main ideas and points from the lecture – now!:

