Differentially Private Sparse Vectors with Low Error, Optimal Space, and Fast Access
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Problem formulation

Given x € R? with sparsity ||x||q < k and

| x|l < u,apply a mechanism &f st f(x) is
e-difterentially private with respect to pairs of
vectors x, x' € R4 with ||x — x|l £ 1

Goals:

e 9 (x) stored in small-space data structure,
space depending on k,d, u,and n = ||x||,

* Abllity to quickly query for a value x;

» Per-query error similar to Lap(1/¢)

Known trade-offs®

o , Per-query error
Reference Space in bits Access time ==
(expected, worst X)

DMNS06  O(dlogu)  O(1) O(1/¢)
KKMNO9** O(k log (d+u)) O(1) O(log (1/5)/€)

CPSTI12 O(klog (d+u)) O(1) OC(log (d)/¢€)

3V | 8 O(n/e log d) O(n/e) O(1/¢)

* Results are explicit or follow directly from the references
** Approximate differential privacy

Main result

We introduce the Approximate Laplace

Projection (ALP) private sparse vector
representation, with these properties:

O(k log (d+u)) O(logd) O(1) - Lap(1/¢)

Expected value of Lap(1/¢€) is O(1/¢)

lechniques

Initially scale to values y; = é&x;

Difficult case: Small values, |y;| = O(log d)

| dea for the case kK = 1:

» Randomly round y, to an integer y;

» Use unary O(log d)-bit representation of y;
* Flip each bit with probability 1/3

e Maximum-likelihood estimator y; for y:

e Estimate for x; is yi/¢

Extending to k > 1.

Use hashing to randomly choose where to
place each bit in unary representation of y;

Approximate DP

Previously investigated by, e.g., [KKMNO9],

BNSI6], [BVIZ], [LKSS 8], [CGSS20]. In this
setting, It was known how to improve the

per-query error bound to O(log(1/0)/¢).

Our mechanism has the following properties:

O(k log (d+u)) O(log (1/6)) O(1) + Lap(1/e)

Open problem

s It possible to Improve access time while not
iNcreasing space and error?
T so, Is 1t possible to achieve these properties?

O(k log (d+u)) O(1) O(1) « Lap(1/e)
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