
Road to Freedom in Big Data Analytics

Divy Agrawal∗ Sanjay Chawla Ahmed Elmagarmid Zoi Kaoudi Mourad Ouzzani
Paolo Papotti Jorge-Arnulfo Quiané-Ruiz Nan Tang Mohammed J. Zaki∗

Data Analytics Center, Qatar Computing Research Institute, HBKU

ABSTRACT
The world is fast moving towards a data-driven society where data
is the most valuable asset. Organizations need to perform very di-
verse analytic tasks using various data processing platforms. In
doing so, they face many challenges; chiefly, platform dependence,
poor interoperability, and poor performance when using multiple
platforms. We present RHEEM, our vision for big data analytics
over diverse data processing platforms. RHEEM provides a three-
layer data processing and storage abstraction to achieve both plat-
form independence and interoperability across multiple platforms.
In this paper, we discuss our vision as well as present multiple re-
search challenges that we need to address to achieve it. As a case in
point, we present a data cleaning application built using some of the
ideas of RHEEM. We show how it achieves platform independence
and the performance benefits of following such an approach.

1. WHY TIED TO ONE SINGLE SYSTEM?
Data analytic tasks may range from very simple to extremely

complex pipelines, such as data extraction, transformation, and
loading (ETL), online analytical processing (OLAP), graph pro-
cessing, and machine learning (ML). Following the dictum “one
size does not fit all” [23], academia and industry have embarked on
an endless race to develop data processing platforms for supporting
these different tasks, e.g., DBMSs and MapReduce-like systems.
Semantic completeness, high performance, and scalability are key
objectives of such platforms. While there have been major achieve-
ments in these objectives, users still face two main roadblocks.

The first roadblock is that applications are tied to a single pro-
cessing platform, making the migration of an application to new
and more efficient platforms a difficult and costly task. Further-
more, complex analytic tasks usually require the combined use of
different processing platforms. As a result, the common practice is
to develop several specialized analytic applications on top of differ-
ent platforms. This requires users to manually combine the results
to draw a conclusion. In addition, users may need to re-implement
existing applications on top of faster processing platforms when

∗Work done while at QCRI.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

these become available. For example, Spark SQL [3] and MLlib [2]
are the Spark counterparts of Hive [24] and Mahout [1].

The second roadblock is that datasets are often produced by
different sources and hence they natively reside on different storage
platforms. As a result, users often perform tedious, time-intensive,
and costly data migration and integration tasks for further analysis.

Let us illustrate these roadblocks with an Oil & Gas industry ex-
ample [13]. A single oil company can produce more than 1.5TB of
diverse data per day [6]. Such data may be structured or unstruc-
tured and come from heterogeneous sources, such as sensors, GPS
devices, and other measuring instruments. For instance, during the
exploration phase, data has to be acquired, integrated, and analyzed
in order to predict if a reservoir would be profitable. Thousands of
downhole sensors in exploratory wells produce real-time seismic
data for monitoring resources and environmental conditions. Users
integrate these data with the physical properties of the rocks to vi-
sualize volume and surface renderings. From these visualizations,
geologists and geophysicists formulate hypotheses and verify them
with ML methods, such as regression and classification. Training
of the models is performed with historical drilling and production
data, but oftentimes users have to go over unstructured data, such
as notes exchanged by emails or text from drilling reports filed in
a cabinet. Thus, an application supporting such a complex ana-
lytic pipeline has to access several sources for historical data (rela-
tional, but also text and semi-structured), remove the noise from the
streaming data coming from the sensors, and run both traditional
(such as SQL) and statistical analytics (such as ML algorithms)
over different processing platforms.

Similar examples can be drawn from many other domains such
as healthcare: e.g., IBM reported that North York hospital needs
to process 50 diverse datasets, which are on a dozen different in-
ternal systems [15]. These emerging applications clearly show the
need for complex analytics coupled with a diversity of processing
platforms, which raises two major research challenges.
Data Processing Challenge. Users are faced with various choices
on where to process their data, each choice with possibly orders
of magnitude differences in terms of performance. However, users
have to be intimate with the intricacies of the processing platform to
achieve high efficiency and scalability. Moreover, once a decision
is taken, users may end up being tied up to a particular platform.
As a result, migrating the data analytics stack to a more efficient
processing platform often becomes a nightmare. Thus, there is a
need to build a system that offers data processing platform inde-
pendence. Furthermore, complex analytic applications require exe-
cuting tasks over different processing platforms to achieve high per-
formance. For example, one may aggregate large datasets with tra-
ditional queries on top of a relational database such as PostgreSQL,
but ML tasks might be much faster if executed on Spark [28]. How-



ever, this requires a considerable amount of manual work in select-
ing the best processing platforms, optimizing tasks for the chosen
platforms, and coordinating task execution. Thus, this also calls for
multi-platform task execution.
Data Storage Challenge. Data processing platforms are typically
tightly coupled with a specific storage solution. Moving data from
a certain storage (e.g., a relational DB) to a more suitable process-
ing platform for the actual task (e.g., Spark on HDFS) requires
shuffling data between different systems. Such shuffling may end
up dominating the execution time. Moreover, different departments
in the same organization may go for different storage engines due
to legacy as well as performance reasons. Dealing with such het-
erogeneity calls for data storage independence.

To tackle these two challenges, we envision a system, called
RHEEM1, that provides both platform independence and interop-
erability (Section 2). In the following, we first discuss our vision
for the data processing abstraction (Section 3), which is fully based
on user-defined functions (UDFs) to provide adaptability as well
as extensibility. This processing abstraction allows users to focus
only on the logic of their data analytic tasks and offers data pro-
cessing platform independence to applications. We then discuss
how to divide a complex analytic task into smaller subtasks to ex-
ploit the availability of different processing platforms (Section 4).
As a result, RHEEM perform multi-platform task execution, i.e., run
simultaneously a single data analytic task over multiple processing
platforms, to boost performance. Next, we present our first attempt
to build an application based on some of the ideas of RHEEM and
the resulting benefits (Section 5). We then show how we push down
the processing abstraction idea to the storage layer (Section 6). This
storage abstraction (i) allows users to focus on their storage needs
and (ii) offers data storage independence to processing platforms.

Some initial efforts are also going into the direction of provid-
ing data processing platform independence [11,12,21] (Section 7).
However, our vision goes beyond the data processing. We not only
envision a data processing abstraction but also a data storage ab-
straction, allowing us to consider data movement costs during task
optimization. We give a research agenda highlighting the chal-
lenges that need to be tackled to build RHEEM in Section 8.

2. OUR VISION
We envision a system that frees applications and users from

being tied to a single data processing platform (platform inde-
pendence) and provides interoperability across different platforms
(multi-platform task execution). We discuss these two aspects in
the following. We discuss data storage independence in Section 6.
Processing Platform Independence. Whenever a new platform
that achieves better performance than existing ones becomes avail-
able, one is enticed to move to the new platform. However, such a
move does not usually come without pain. There is a clear need for
a system that frees us from the burden and cost of re-implementing
applications from one platform to another. Mahout [1] and ML-
lib [2] clearly illustrate this need, as all ML algorithms initially
implemented in Hadoop had to be re-implemented in Spark. In
addition, there are cases where, for the same task but with a dif-
ferent input, one platform is better than another. Thus, the system
we envision should not only provide platform independence, but
also should be able to select the best available platform to execute
a given task in order to deliver better performance.
Multi-Platform Task Execution. We are witnessing the emer-
gence of complex data analytic pipelines in many different do-

1Rheem is a native gazelle species in Qatar.

Figure 1: RHEEM data processing abstraction.

mains [4, 6, 13, 15]. These pipelines require combining multiple
processing platforms to perform each task of the process and then
integrating the results. For instance, many companies are already
adopting a lambda architecture, which combines both batch and
stream processing. Our vision goes beyond batch or stream pro-
cessing to any kind of data analytics paradigm. We envision a sys-
tem that eases the integration among different processing platforms
by automatically dividing a task into subtasks and determining the
underlying platform for each subtask.
RHEEM. The foundation of our vision is a three-layer data pro-
cessing abstraction that sits between user applications and data pro-
cessing platforms (e.g., Hadoop or Spark). Figure 1 depicts these
three layers: the application layer models all application-specific
logic; the core layer provides the intermediate representation be-
tween applications and processing platforms; and the platform
layer embraces the underlying processing platforms. In contrast
to DBMSs, RHEEM decouples physical and execution levels. This
separation allows applications to express physical plans in terms of
algorithmic needs only, without being tied to a particular process-
ing platform. The communication among these levels is enabled
by operators defined as UDFs. These three layers allow RHEEM to
provide applications with platform independence. Providing plat-
form independence is the first step towards realizing multi-platform
task execution, which is crucial to achieve the best performance at
all times. For example, Figure 2 shows the benefits of running
the SVM algorithm on different datasets from LIBSVM2 with only
one hundred iterations, as a Spark job and as a plain Java program.
We observe that, for small datasets, executing SVM as a plain Java
program is up to one order of magnitude faster than executing it on
Spark. Indeed, this performance gap gets bigger with the number of
iterations. Using Spark pays off for big datasets only. Such results
show a great potential for platform independence and ultimately
multi-platform execution. RHEEM will be able to receive a com-
plex analytic task, seamlessly divide it into subtasks, schedule each
task on the best processing platform, monitor task execution, and
aggregate results for users or applications. Achieving our vision re-
quires tackling several challenges that we will discuss throughout

2
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/



Figure 2: SVM on Spark and Java.
the paper and then summarize in Section 8.

To show the benefits of our RHEEM vision, we have fully devel-
oped one data cleaning application based on it [19]. While this ini-
tial instance provides only platform independence, its performance
is encouraging and already demonstrates the advantages of our vi-
sion (see Section 5).

Similar to the data processing abstraction, we envision a three-
level data storage abstraction to support data processing tasks. The
data storage abstraction is also composed of an application, a core,
and an execution level. The RHEEM data storage abstraction func-
tions symmetrically as the data processing abstraction. We shall
further discuss this storage abstraction in Section 6.

3. DATA PROCESSING ABSTRACTION
In this section, we detail the abstraction layers of RHEEM and

show how users can interact with the system at each layer.

3.1 Abstraction Layers
RHEEM provides a set of operators at each layer, namely, logical

operators, physical operators, and execution operators. The input
of the application layer comprises the logical operators provided by
users (or generated by a declarative query parser) and the output is
a physical plan. The physical plan is then passed to the core layer
where multi-platform optimizations take place to produce an exe-
cution plan. In contrast to a DBMS, RHEEM decouples the physical
level from the execution one. This separation allows applications to
express a physical plan in terms of algorithmic needs only, without
being tied to a particular processing platform.
Application Layer. A logical operator is an abstract UDF that
acts as an application-specific unit of data processing. One can see
a logical operator as a template where users provide the logic of
their tasks. Such abstraction enables both ease-of-use, by hiding
implementation details from users, and high performance, by al-
lowing several optimizations, e.g., seamless distributed execution.

A logical operator works on data quanta, which are the smallest
units of data elements from the input datasets. For instance, a data
quantum represents a tuple in the input dataset or a row in a matrix.
This fine-grained data model allows RHEEM to apply operators in
a highly parallel fashion and thus achieve better performance.

Example 1: A developer, who wants to offer end users logical op-
erators to implement various ML algorithms, can define three basic
operators: (i) Initialize, for initializing algorithm-specific parame-
ters, e.g., initializing cluster centroids, (ii) Process, for the com-
putations required by the ML algorithm, e.g., finding the nearest
centroid of a point, (iii) Loop, for specifying the stopping condi-
tion. Users can implement algorithms, e.g., SVM, K-means, and
linear/logistic regression, using these operators. 2

The application optimizer translates logical operators into phys-
ical operators that will form the physical plan at the core layer.
Core Layer. This layer is the heart of RHEEM. It exposes a pool
of physical operators, each representing an algorithmic decision
for executing an analytic task. A physical operator is a platform-

independent implementation of a logical operator. These operators
are available to the developer to deploy a new application on top of
RHEEM. Developers can still define new operators as needed.

Example 2: In the above ML example, the application optimizer
maps Initialize to a Map physical operator and Process to a
GroupBy physical operator. RHEEM provides two different im-
plementations for GroupBy: the SortGroupBy (sort-based) and
HashGroupBy (hash-based) operators from which the optimizer of
the core level will have to choose. 2

Once an application has produced a physical plan for a given
input task, RHEEM divides this physical plan into task atoms,
i.e., sub-tasks, which are the units of execution. A task atom (a part
of the execution plan) is a sub-task to be executed on a single data
processing platform. It will then translate the task atoms into an
execution plan by optimizing each task atom according to a target
platform. Finally, it schedules each task atom to be executed on its
corresponding platform. Therefore, in contrast to DBMSs, RHEEM
produces execution plans that can run on multiple platforms.
Platform Layer. At this layer, execution operators (in an execu-
tion plan) define how a task is executed on the underlying process-
ing platform. In other words, an execution operator is the platform-
dependent implementation of a physical operator. RHEEM relies on
existing data processing platforms to actually run input tasks.

Example 3: Again in the above ML example, the MapPartitions
and ReduceByKey execution operators for Spark are one way to
perform Initialize and Process. 2

In contrast to a logical operator, an execution operator works on
multiple data quanta rather than a single one, which enables the
processing of multiple data quanta with a single function call.
Flexible operator mappings. Defining mappings between execu-
tion and physical operators is the developers’ responsibility when-
ever a new platform is plugged into the core. Our goal is to rely on
a mapping structure to model the correspondences between opera-
tors together with context information. Such context is needed for
the effective and efficient execution of each operator. For instance,
the Process logical operator maps to two different physical opera-
tors (SortGroupBy and HashGroupBy). In this case, a developer
could use the context to provide hints to the optimizer for choos-
ing the right physical operator at run time. Developers will provide
only a declarative specification of such mappings; the system will
use them to translate physical operators to execution operators.

3.2 User Interaction
We distinguish between two types of users: end-users, who in-

teract with the applications, and developers, who interact with the
system at all the three layers. We discuss below how developers
define operators (UDFs) at every layer of the abstraction.
Application layer. At this layer, developers model a data pro-
cessing application by specifying a set of abstract logical opera-
tors. End-users implement these operators to express their analytic
tasks. RHEEM provides an abstract LogicalOperator that defines
the method applyOp. Logical operators of any application ex-
tend LogicalOperator and provide an implementation of applyOp.
RHEEM invokes this method at runtime to apply a logical opera-
tor. In addition to logical operators, an application developer could
also expose a declarative language for users to define their tasks
(e.g., queries). The application is then responsible for translating
a declarative query into a logical plan. Then, the application opti-
mizer translates the logical plan into a physical plan.
Core layer. RHEEM provides a pool of physical operators for ap-



plications to produce physical plans. To enable extensibility, the
system also provides an abstract PhysicalOperator, with the ab-
stract method applyOp, for developers to define their own physical
operators. Developers define a new physical operator to fill two dif-
ferent needs. First, developers define a wrapper operator to execute
the logical operator together with some physical details, such as al-
gorithmic decisions and schema details. The wrapper operator fol-
lows the signature of the logical operator. Second, since the output
of a specific operator might not fit as input of a subsequent operator,
developers define enhancer operators to fill possible gaps between
wrapper operators. For example, an application for K-means clus-
tering might only expose the GetCentroid (for getting the closest
centroid of a data point) and SetCentroids (for computing the new
centroids) logical operators. GetCentroid outputs a data point and
its closest centroid, while SetCentroids requires a centroid and all
its closest data points. Here, the developer provides a GroupBy
enhancer operator between GetCentroid and SetCentroids.
Platform layer. To model a data processing platform, developers
extend the abstract ExecutionOperator and implement its applyOp
method. There are two main scenarios. If a new physical opera-
tor has been defined, e.g., because the developer is adding a new
application, then it must be supported with a corresponding ex-
ecution operator in the actual execution platform. In a different
scenario, the developer is adding a new platform to the execution
layer. In this case, every physical operator must be supported with
a corresponding execution operator in the new execution platform.
RHEEM uses these execution operators to produce an execution
plan and to push “down” execution details to the underlying plat-
form, such as data distribution, parallel execution, and data storage.
At the end, the target processing platform simply performs an exe-
cution plan in its own data and processing model.

4. MULTI-LAYER OPTIMIZATIONS
In contrast to traditional data management systems, which are

tied to a specific data processing platform, RHEEM’s goal is not
only platform independence but also multi-platform execution. To
efficiently deal with both aspects, we envision optimizations at each
layer: (i) at the application layer, we validate an input task, translate
it into a logical plan, and then produce an optimized physical plan,
(ii) at the core layer, we translate a physical plan into an execution
plan by dividing the query into task atoms, and (iii) at the platform
layer, we further refine a task atom based on the actual platform.

4.1 Application-Layer Optimizations
In our envisioned system, users will be able to express their tasks

either procedurally (via logical operators) or declaratively (using a
query language). Given an input task, the application optimizer
builds a logical plan and performs some pre-defined optimizations,
such as operator push-down. Once the logical plan is built, the ap-
plication optimizer produces an optimized physical plan by trans-
lating each logical operator into a wrapper physical operator. Recall
that a wrapper receives a logical operator as input. Additionally,
the application optimizer might use enhancer physical operators to
boost performance; for example, it may plug-in a GroupBy phys-
ical operator followed by a CrossProduct operator to perform a
cross product inside a group only. This avoids a costly cross prod-
uct over the entire input dataset. As an example of this kind of
optimization we refer to [19]. Then, the application sends the opti-
mized physical plan to the core layer.

4.2 Core-Layer Optimizations
The optimizations at the core layer are the responsibility of the

multi-platform task optimizer (see Figure 1). RHEEM receives

a physical plan from an application and passes it to the multi-
platform task optimizer to generate a plan for execution on the
underlying processing platforms. We envision the multi-platform
task optimizer to deal with five aspects. First, the optimizer should
consider operators as first-class citizens, fully based on UDFs op-
timization techniques. We will base our solutions on different ex-
isting optimization techniques, such as Manimal [16], PACTs [25],
and SOFA [22], but we also need to devise new optimization tech-
niques to support different processing platforms. Second, the op-
timizer should consider rules and cost models for its optimizations
as plugins and not hard-coded as in traditional database optimiz-
ers. In other words, these two aspects should be decoupled from
the optimizer in order to allow for extensibility when new process-
ing platforms are added by developers. Third, it has to consider
inter-platform cost models to effectively take into account the cost
of moving data and computation across underlying processing plat-
forms. The main difficulty here comes from the fact that underly-
ing frameworks are typically highly heterogeneous in terms of both
data representations and processing paradigms. Fourth, it should
divide a physical plan into task atoms according to the supported
underlying data processing platforms. Recall that it is the under-
lying processing platform that ensures the execution of task atoms.
The main challenge in this aspect is to find a way to divide a task
into atoms seamlessly from users. Last, but not least, it should also
apply traditional physical optimizations, whenever possible. Exam-
ples are shared scans and optimized data access paths, such as index
access. Achieving this is difficult as such optimizations should be
general in order to be efficient on any processing platform.

Once an execution plan is built, the multi-platform task optimizer
passes it to the Executor (see Figure 1) for: (i) scheduling the re-
sulting execution plan on the selected data processing frameworks,
(ii) monitoring the progress of plan execution, (iii) coping with fail-
ures, and (iv) aggregating and returning results to users.

4.3 Platform-Layer optimizations
Once at a target processing platform, we envision a third op-

timization phase that uses plugged-in platform-specific optimiza-
tion tools. For instance, if the selected platform for a task atom
is Hadoop, we could further optimize an execution plan by using
Starfish [14]. Notice that the data processing platform itself can
also perform some additional optimizations, e.g., if an execution
plan is given as input to Spark in the form of a Shark query [26].

5. APPLICATIONS
Clearly, a large number of applications benefit from our vision.

As a proof of concept, we present here a data cleaning application
we developed based on RHEEM’s vision. We are currently devel-
oping two other applications: a machine learning application and a
graph processing application.

5.1 Data Cleaning in RHEEM
Demand. Ensuring high quality data is challenging because of
the variety of data dirtiness, such as typos, duplicates, and missing
values. However, detecting errors is a combinatorial problem that
quickly becomes expensive with the size of the data, thus limiting
the applicability of cleaning systems.
Our solution. We built BIGDANSING, a Big Data Cleansing sys-
tem on top of RHEEM [19]. The two distinct features of BIGDANS-
ING are its ease-of-use and high scalability; both natural conse-
quences of the RHEEM abstraction vision. BIGDANSING mod-
els data quality rules with five operators, namely Scope, Block,
Iterate, Detect, and GenFix. These operators allow users to cap-



Figure 3: RHEEM execution times for violations detection.

ture the semantics of error detection and possible repairs generation
at the application layer (see [19] for details).
Ease-of-use. The developer of the application has to come up with
the physical plan of the cleaning process (preferably via an auto-
matic optimization process). The detection part of BIGDANSING
is composed of a sequence of five physical operators, which are
fed with the logics coming from the corresponding logical oper-
ators. Similarly, the logical operators require only a few lines of
code [19], allowing for ease-of-use.
High scalability. Figure 3 shows a comparison of the performance
for a single Detect UDF versus our operators for the same task.
The left subfigure clearly shows the benefits of the abstraction with
operators that enable finer granularity for the distributed execution.
The right subfigure shows a comparison of BIGDANSING against
state-of-the-art approaches on Spark. We observe that RHEEM en-
ables orders of magnitude better performance than baselines, which
we had to stop after 22 hours. Here, as an example of extensibility,
we extended the set of physical RHEEM operators with a new join
operator (called IEJoin [20]) to boost performance.

5.2 When to Use RHEEM?
It should be clear at this point how the proposed three layers

enable better performance and more freedom in developing appli-
cations with respect to existing solutions. However, there is a trade-
off. A developer who decides to use RHEEM instead of one of the
alternative systems may need to implement new operators as re-
quired by the target application. This is because our pool of default
physical operators is not as exhaustive as the operators provided by
the specific underlying platforms. For example, we had to imple-
ment the IEJoin operator in RHEEM to boost the performance of
our data cleaning application. While this may require extra effort
from a developer, we believe that this a reasonable price to pay for
platform independence when performance is crucial.

6. DATA STORAGE ABSTRACTION
So far we have focused our attention on the data processing side

of our vision. Symmetrically to the data processing, we envision a
data storage abstraction to provide interoperability among different
data storage platforms.

Figure 4 illustrates the RHEEM data storage abstraction. Each
layer of abstraction has a set of operators (i.e., UDFs): logical
operators (l-store) at the application layer, physical operators (p-
store) at the core layer, and execution operators (x-store) at the
platform layer. At the application layer different storage applica-
tions, e.g., Dropbox, or data processing platforms, e.g., Hadoop or
PostgreSQL, output a physical storage plan in a homogeneous for-
mat defined by RHEEM. Then, at the core layer, RHEEM takes the
physical storage plan as input and produces an optimized execution
storage plan. Finally, at the platform layer, a data storage platform
stores or accesses a dataset according to the execution storage plan.
Note that an execution storage plan is composed of storage atoms,
i.e., the counterpart of task atoms, which are processed by a dif-
ferent data storage platform. It is worth noting that while a data

Figure 4: RHEEM data storage abstraction.

quantum is the data unit itself (e.g., a tuple), a storage atom is the
minimum unit of data quanta transformation (e.g., projection).

The benefit of such a data storage abstraction is twofold. First, it
provides interoperability across storage platforms to simplify users’
specifications about how to store or transform their datasets from
one platform to another. Second, it offers opportunities to fully op-
timize a data flow in order to further improve the performance of
data processing tasks. Still, two main challenges make this problem
hard: (i) how to unify the abstraction for data storage and access
over multiple platforms, and (ii) how to seamlessly decide where
and how to store data. Our current efforts into this direction in-
clude Cartilage [18], which is a unified data storage representation.
In summary, Cartilage introduces the notion of data transformation
plans, analogous to logical query plans, that specify a sequence of
data transformations that should be applied to raw data as it is up-
loaded into a storage system. This allows for intermediate storage
optimizations based on users and applications needs. For example,
WWHow! [17] is a first effort for a unified data storage optimizer.
Embracing hot data. Accessing data through a unified data storage
might degrade the performance of processing platforms because the
data might not be in the required format. Thus, we envision pro-
cessing platforms or storage applications with specialized buffers
for embracing frequently accessed data in their native format.

7. RELATED WORK
The closest work to us is Musketeer [12], which provides an in-

termediate representation between applications and data process-
ing platforms. While Musketeer has the merit of proposing an op-
timizer for the supported applications and platforms, it considers
neither the costs of data movement across processing platforms nor
the fact that multiple platforms may be able to perform the same
job. Furthermore, it lacks the extensibility that we advocate with
our proposal. In fact, only Musketeer developers can integrate new
processing platforms or applications. This is in fact similar to in-
tegrating a new storage system on an existing processing platform,
such as Spark or Hadoop MapReduce. In contrast, in RHEEM, users
can achieve these tasks with mappings and new physical operators.

DBMS+ [21] is another work that aims at embracing several pro-
cessing and storage platforms for declarative processing. However,
DBMS+ is not adaptive and extensible as it is limited by the expres-
siveness of its declarative language. Furthermore, it is unclear how
it abstracts underlying platforms seamlessly. BigDAWG [11] has
recently been proposed as a federated system that enables users to
run their queries over multiple vertically-integrated systems such
as column stores, NewSQL engines, and array stores. As a re-
sult, users can leverage the advantages of each of them. However,
users explicitly specify the underlying platforms (called islands)
on which their queries must run on. This implies that users need to
know how to divide their queries into subqueries and which under-
lying platform is best suited for each of them.



Other groups have been working on a general platform for big
data analytics [5, 7–9, 27, 29]. For example, AsterixDB [5] offers
an open data model, native data storage and indexing, declarative
querying over multiple datasets, and a rule-based optimizer. Sim-
SQL [10] compiles SQL queries into Java code that can run on top
of Hadoop. Moreover, users can use UDFs to materialize views
with simulated data, which enables a range of applications requir-
ing stochastic analytics. PACTs [7] extends the MapReduce pro-
gramming model with second-order functions on top of Nephele, a
processing platform that RHEEM can also use as underlying plat-
form. However, none of the above systems provides the multi-
platform data processing and storage we propose with RHEEM.

8. ROAD TO FREEDOM
“I have walked that long road to freedom. I have tried not
to falter; I have made missteps along the way. But I have
discovered the secret that after climbing a great hill, one only
finds that there are many more hills to climb... and I dare not
linger, for my long walk is not yet ended.”

– Nelson Mandela –

Oftentimes, users are confronted with the hard decision to choose
the right processing platform given the requirements of their ana-
lytic application. In addition, their data, born out of various pro-
cesses, ends up in different storage platforms. To make things
worse, the same application may have tasks requiring different plat-
forms to be performed efficiently. Thus, there is a real urgency
to free both users and data from (i) being tied to a specific plat-
form, either for processing or storage, and (ii) going through the
pain of moving from one platform to another, depending on the
requirements of their applications and the characteristics of their
data. While the road to freedom is full of challenges, RHEEM data
processing and storage abstractions hold promise to achieve this
freedom. As a case in point, a data cleaning application [19] is our
first success towards this goal. IEJoin [20] also showcases the ex-
tensibility of RHEEM. While we have laid down the basic ideas on
how to build RHEEM, many challenges remain to be addressed.
(1) Extensibility. How to adapt to extensions and improvements in
a data processing platform without requiring the developers to go
into the source code? What is the right language to provide hints
to the optimizer? We envision an optimization process based on a
flexible data model, such as RDF. Developers will specify map-
pings between operators as well as encode rule- and cost-based
models in RDF triples. The optimizer will use this RDF repre-
sentation as a first-class citizen in its optimization process.
(2) Multi-platform optimization. How to divide a task into atoms,
assign the best platform to each atom, and combine results? We
envision a solution based on data processing profiles and inter-
platform cost models. A data processing profile denotes the type
of data processing a platform can support, e.g., batch-processing
profile for Hadoop. An inter-platform cost model will capture dif-
ferent multi-platform aspects, such as the cost of transferring and
transforming data from one processing platform to another.
(3) Unified storage abstraction. How to provide a unified abstrac-
tion for data storage and access for multiple storage platforms?
How to decide where and how to store data? We envision a three-
layer abstraction as discussed in Section 6. This abstraction will
enable storage platforms with specialized data buffers to embrace
frequently accessed data in their native format.

In summary, the above challenges can be categorized into five
main research themes: (i) processing and storage abstractions,
(ii) platform-independent task specification, (iii) multi-platform
optimization, (iv) multi-platform execution, and (v) data storage
and data movement optimizations.

9. REFERENCES
[1] Apache Mahout. http://mahout.apache.org/.
[2] Spark MLlib: http://spark.apache.org/mllib/.
[3] Spark SQL. http://spark.apache.org/sql/.
[4] Powering Big Data at Pinterest. Interview with Krishna Gade.

http://goo.gl/UMGSvy, April 2015.
[5] S. Alsubaiee et al. AsterixDB: A scalable, open source BDMS.

PVLDB, 7(14), 2014.
[6] A. Baaziz and L. Quoniam. How to use big data technologies to

optimize operations in upstream petroleum industry. In 21st World
Petroleum Congress, 2014.

[7] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.
Nephele/PACTs: A Programming Model and Execution Framework
for Web-Scale Analytical Processing. In SoCC, 2010.

[8] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks:
a flexible and extensible foundation for data-intensive computing. In
ICDE, 2011.

[9] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, and I. Manolescu.
Invisible Glue: Scalable Self-Tuning Multi-Stores. In CIDR, 2015.

[10] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. M.
Jermaine. Simulation of database-valued markov chains using
simsql. In SIGMOD, 2013.

[11] A. Elmore et al. A Demonstration of the BigDAWG Polystore
System. In VLDB 2015 (demo), 2015.

[12] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement,
and S. Hand. Musketeer: All for One, One for All in Data Processing
Systems. In EuroSys, 2015.

[13] A. Hems, A. Soofi, and E. Perez. How innovative oil and gas
companies are using big data to outmaneuver the competition.
Microsoft White Paper, http://goo.gl/2Bn0xq, 2014.

[14] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. PVLDB, 4(11), 2011.

[15] IBM. Data-driven healthcare organizations use big data analytics for
big gains. White paper, http://goo.gl/AFIHpk.

[16] E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optimization for
MapReduce Programs. PVLDB, 4(6):385–396, 2011.

[17] A. Jindal, J. Quiané-Ruiz, and J. Dittrich. WWHow! Freeing Data
Storage from Cages. In CIDR, 2013.

[18] A. Jindal, J. Quiané-Ruiz, and S. Madden. CARTILAGE: adding
flexibility to the hadoop skeleton. In SIGMOD, 2013.

[19] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzanni, P. Papotti,
J.-A. Quiané-Ruiz, N. Tang, and S. Yin. BigDansing: A System for
Big Data Cleansing. In SIGMOD, 2015.

[20] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani, P. Papotti, J.-A.
Quiané-Ruiz, N. Tang, and P. Kalnis. Lightning Fast and Space
Efficient Inequality Joins. PVLDB, 8(13), 2015.

[21] H. Lim, Y. Han, and S. Babu. How to Fit when No One Size Fits. In
CIDR, 2013.

[22] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and F. Naumann.
SOFA: An extensible logical optimizer for UDF-heavy data flows.
Inf. Syst., 52:96–125, 2015.

[23] M. Stonebraker and U. Çetintemel. “One Size Fits All": An Idea
Whose Time Has Come and Gone (Abstract). In ICDE, 2005.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solution
over a Map-reduce Framework. PVLDB, 2(2), 2009.

[25] K. Tzoumas, J.-C. Freytag, V. Markl, F. Hueske, M. Peters,
M. Ringwald, and A. Krettek. Peeking into the Optimization of Data
Flow Programs with MapReduce-style UDFs. In ICDE, 2013.

[26] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica. Shark: SQL and Rich Analytics at Scale. In SIGMOD,
2013.

[27] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A System for General-purpose
Distributed Data-parallel Computing Using a High-level Language.
In OSDI, 2008.

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In HotCloud’10, 2010.

[29] J. Zhou et al. SCOPE: Parallel Databases Meet MapReduce. VLDB
J., 21(5), 2012.


