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Abstract—The discovery of all unique (and non-unique) column
combinations in an unknown dataset is at the core of any data
profiling effort. Unique column combinations resemble candidate
keys of a relational dataset. Several research approaches have
focused on their efficient discovery in a given, static dataset.
However, none of these approaches are suitable for applications
on dynamic datasets, such as transactional databases, social
networks, and scientific applications. In these cases, data profiling
techniques should be able to efficiently discover new uniques and
non-uniques (and validate old ones) after tuple inserts or deletes,
without re-profiling the entire dataset.

We present the first approach to efficiently discover unique and
non-unique constraints on dynamic datasets that is independent
of the initial dataset size. In particular, Swan makes use of
intelligently chosen indices to minimize access to old data. We
perform an exhaustive analysis of Swan and compare it with two
state-of-the-art techniques for unique discovery: Gordian and
Ducc. The results show that Swan significantly outperforms both,
as well as their incremental adaptations. For inserts, Swan is more
than 63x faster than Gordian and up to 50x faster than Ducc.
For deletes, Swan is more than 15x faster than Gordian and up
to 1 order of magnitude faster than Ducc. In fact, the results
also show that Swan even improves on the static case by dividing
the dataset into a static part and a set of inserts.

I. Introduction

Many emerging applications produce very large datasets
at fast rates. Examples of such dynamic data include so-
cial networks, scientific measurements, but also traditional
transactions. As the amount of data produced by applica-
tions continues to grow, the need for a better understanding
increases too. Knowing the structure and properties of such
datasets is crucial for data integration, data analytics, query
optimization, and many further applications. In this context,
data profiling is emerging as a distinct research area to address
the challenges of simple data analytical tasks on large and
dynamic datasets [18].

A fundamental task of data profiling is the discovery of
unique and non-unique column combinations. Unique column
combinations (uniques) are column combinations with no du-
plicate value combination and hence they are key candidates.
In contrast, non-unique column combinations (non-uniques)
contain at least one duplicate value combination that resemble
partial duplicates, i.e., tuples having some column values in
common. Overall, uniques and non-uniques are useful for
many tasks in the area of data management, such as data
modeling, indexing, query optimization, and anomaly detec-
tion [20]. Furthermore, uniques and non-uniques represent

1Research performed at QCRI.

data-driven rules and constraints of the data. Knowing these
constraints also supports data analytical tasks. For example, in
the life sciences, uniques provide insights about unique protein
sequences while knowledge of non-uniques provide insights
about re-occurring protein patterns [13]. Furthermore, one can
leverage uniques for the discovery of functional and inclusion
dependencies [11].

Unfortunately, in practice, most uniques and non-uniques
in large datasets are unknown and need to be discovered.
Discovering uniques and non-uniques is a hard problem: it
is NP-hard in the number of columns and sub-quadratic in
the number of rows. For instance, on a dataset with 100
columns, a brute-force algorithm has to scan the table for all
2100−1 combinations to discover all uniques and non-uniques.
Some existing techniques already tackle the problem of unique
discovery for a given dataset in a more efficient manner [1],
[9], [20]. All these techniques benefit from the observation that
supersets of uniques are also uniques and that subsets of non-
uniques are also non-uniques. Thus, these techniques focus
on discovering the set of minimal uniques (all of its subsets
are non-unique) and the set of maximal non-uniques (all of its
supersets are unique) in order to significantly prune the search
space. However, all existing unique discovery techniques are
not suitable for dynamic data. i.e., scenarios where new data
arrives or existing data is removed.

Indeed, discovering uniques and non-uniques over dynamic
data is a necessity in several different fields. Query op-
timisation, data quality monitoring, and reactive duplicate
detection are just few examples where incremental unique
discovery (i.e., over dynamic data) is crucial. For example,
many organizations can identify critical datasets that should be
of high quality, such as customer-relationship data (master data
management) and inventory data. Thus, when monitoring data
quality, it is crucial to update meta-data (e.g., uniques and non-
uniques) frequently in order to recognize and rectify potential
problems as soon as possible. An incremental approach is the
most efficient way to keep these meta-data up-to-date after the
arrival or deletion of data.

Motivating Example. Let us illustrate the problem of current
unique discovery techniques via an example. Consider the
dataset in Table I. In this example, we have two minimal
uniques: {Name, Age} and {Phone}. Accordingly, we have the
maximal non-uniques {Name} and {Age}. Now, assume the
following two cases:
(1) Insert – A new tuple, with the values (Payne, 245, 31),
arrives (see last tuple in Table I). Given this inserted tuple,



TABLE I: Example of Persons relation instance.

Tuple ID Name Phone Age
(tuple1) Lee 345 20
(tuple2) Payne 245 30
(tuple3) Lee 234 30
(insert1) Payne 245 31

we need to compare whether any minimal unique is violated.
Thus, we compare (Payne, 31) to all values in {Name, Age}
and 245 to all values in {Phone}, which are the minimal
uniques. After performing these two uniqueness check, we
discover that {Phone} is not unique anymore. As a result, {Age,
Phone} is a new minimal unique and {Name, Phone} is a new
maximal non-unique, subsuming the previous maximal non-
unique {Name}.
(2) Delete – The first tuple (Lee, 234, 30) is removed. Now
we have to check all values in Name and in Age for duplicate
values. This is because we have two maximal non-uniques:
Name and Age. After these checks we discover that Name and
Age are now uniques (excluding insert1 of course), resulting
into only three minimal uniques for the entire dataset: Name,
Phone, an Age.

On the one hand, we observe in this example that new
data (i.e., new tuples) can cause new duplicates to appear
and hence previously discovered uniques might not be unique
anymore. Removing data, on the other hand, can cause existing
duplicates to disappear, which might turn some previously
discovered non-uniques into new uniques. Thus, it is necessary
to detect the new minimal uniques and maximal non-uniques
every time a dataset changes. However, current techniques
have to profile the changed dataset entirely in order to detect
the new minimal uniques and maximal non-uniques. Indeed,
profiling the entire dataset hurts performance significantly
since an initial dataset is typically several orders of magnitude
bigger than the size of a change in the dataset. In these sce-
narios, data profiling techniques should be able to efficiently
discover the new uniques and non-uniques after tuple inserts
or deletes, without re-profiling the entire dataset.

Research Challenges. Leveraging previously discovered
uniques and non-uniques is crucial to avoid entirely re-
profiling large datasets every time a dataset changes. However,
leveraging such a knowledge is challenging for several rea-
sons. First, one has to check whether any unique or non-unique
constraint has been changed. Doing this consumes a lot of
time, because typically one has to validate a quite large number
of uniques on the entire dataset. Second, having identified a
set of changed unique and non-unique constraints, one has
to traverse a huge search space to find the new unique and
non-unique constraints. Third, in the quest for new unique
and non-unique constraints, one has to validate each of the
candidates in the search space. To perform such a validation,
one should depend on the size of the changes and not on the
size of the complete dataset.

Contributions. In this paper, we propose Swan, the first ap-
proach for unique and non-unique discovery on dynamic data,
i.e., on datasets that are continuously changing. Swan is part
of the Metanome data profiling project (www.metanome.de).
In summary, we make the following major contributions:

(1.) We model the unique and non-unique discovery on dy-
namic data by considering two common workloads: inserts
and deletes (Section II).
(2.) We present an approach to deal with inserts that depends
on the number of inserted tuples. In particular, we propose an
algorithm to select a small set of indexes that allows Swan to
efficiently detect changes on existing uniques (Section III).
(3.) We propose an approach to deal with deletes that mainly
depends on the number of deleted tuples. The particularity of
this approach is that it can detect changes in maximal non-
uniques in a few milliseconds (Section IV).
(4.) We present an exhaustive evaluation of Swan and compare
it with two baseline systems and their respective incremental
adaptations, illustrating the high superiority Swan over the
baseline systems in dynamic data scenarios. Furthermore, we
show that by transforming a static dataset into a dynamic one,
Swan can process very large datasets that cannot be processed
by any state-of-the-art algorithm (Section V).

II. Uniques and Non-Uniques on Dynamic Data

We now introduce the concepts of uniques and non-uniques
and define the problem of unique discovery on dynamic data.
Then, we briefly discuss the overall architecture of the Swan
system for dealing with inserts and deletes.

A. Problem statement

To formulate the problem of discovering of unique and
non-unique column combinations on dynamic data, let us
first define some basic concepts of unique and non-unique
discovery in general. Given a relation R with a relational
instance r, a unique column combination (unique) is a set of
columns K ⊆ R whose projection on r contains only unique
value combinations. Analogously, a set of columns K ⊆ R is
a non-unique column combination (non-unique), if and only
if its projection on r contains at least one duplicate value
combination. We formally define a unique and a non-unique
in Definitions 1 and 2.

Definition 1 (Unique): A column combination K ⊆ R is a
unique (Uc), iff ∀ri, r j ∈ r, i , j : ri[K] , r j[K].

Definition 2 (Non-unique): A column combination K ⊆ R
is a non-unique (nUc), iff ∃ri, r j ∈ r, i , j : ri[K] = r j[K].

Indeed, each superset of a unique is also unique 1 while
each subset of a non-unique is a non-unique. Therefore, we can
reduce all the effort of discovering all uniques and non-uniques
to the discovery of minimal uniques and maximal non-uniques
as defined in the following.

Definition 3 (Minimal Unique, mUcs): A column combina-
tion K ⊆ R is a mUc, iff ∀K′ ⊂ K : K′ is a nUc.

Definition 4 (Maximal Non-Unique, mnUcs): A column
combination K ⊆ R is a mnUc, iff ∀K′ ⊃ K : K′ is a Uc.

Discovering a minimal unique of size k ≤ n has been shown
to be NP-complete [15]. To discover all minimal uniques and
maximal non-uniques of a relational instance, in the worst
case, one has to visit all subsets of the given relation, no matter

1In literature one often refers to the terms key and superkey. A unique is
a more general term than a key because a key is a unique that was explicitly
chosen while designing a table
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the strategy (breadth-first or depth-first) or direction (bottom-
up or top-down). Thus, we can clearly see that the discovery
of all mUcs and mnUcs of a relational instance is an NP-hard
problem and that even the solution set can be exponential [8].
Having a relation instance of size n, there can be

(
n
n
2

)
≥ 2

n
2

mUcs in the worst case, as all combinations of size n
2 can be

minimal uniques.
When datasets change over time, the set of minimal uniques

and maximal non-uniques might change. A new tuple might
create new duplicates that change existing uniques into non-
uniques. A naive approach to detect the new minimal uniques
and maximal non-uniques would compare each new tuple by
looking for duplicates on the unique projections. Formally,
given a relational instance r, a new tuple t′, and the set of
minimal uniques mUcs, one has to check ∀K ⊂ mUcs, if ∃ ti ∈
r | t′[K] = ti[K]. For such changed minimal uniques, one has
to start comparing t′ and ti with regard to all K′ ⊃ K.

Analogously, a removed tuple ti might change existing non-
uniques into uniques. Thus, one has to check whether existing
maximal non-uniques K ∈ mnUcs are affected. Basically, one
has to check whether r[K]\ti[K] still contains duplicate values
as defined in Definition 4. If so, K is still a non-unique.
Otherwise, one has to check whether subsets of the affected
maximal non-uniques are also affected by the removal of ti.

Therefore, updating the existing unique constraints after a
new or removed tuple appeals for processing the complete
dataset, i.e., input dataset and the incremental dataset (inserts
and deletes) together. So, the challenge in discovering uniques
and non-uniques incrementally is: How to efficiently update
the sets mUcs and mnUcs within a short period of time and
without processing the whole input dataset?

B. The Swan System: Overview

We propose Swan, a system for unique and non-unique
discovery on dynamic data. Swan maintains a set of data
structures (indexes) to efficiently find the new sets of minimal
uniques and maximal non-uniques after a bunch of inserts
or deletes. Figure 1 illustrates the general architecture of
Swan. Basically, Swan is composed of two main components:
the Inserts Handler and the Deletes Handler. The Inserts
Handler takes as input a set of inserted tuples, checks all
minimal uniques for uniqueness, finds the new sets of minimal
uniques and maximal non-uniques, and update the repository
of minimal uniques and maximal non-uniques accordingly.
Analogously, the Deletes Handler takes as input a set of
deleted tuples, searches for duplicates in all maximal non-
uniques, finds the new sets of minimal uniques and maximal
non-uniques, and updates the repository accordingly. Notice
that for each task, we use special data structures that facilitate
the detection of new or removed duplicates. In the following
two sections, we discuss these two components in more detail.

III. Processing Inserts

Remember that when new tuples arrive, previously dis-
covered uniques and minimal uniques might not be valid
anymore, as the new tuples might create duplicate values
for those combinations. Furthermore, any change to the set
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Fig. 1: Overall picture of Swan.

of minimal uniques also affects the set of maximal non-
uniques [9], [20]. In this section, we discuss how Swan deals
with inserted tuples to find all uniques and non-uniques. In
particular, we show the challenges to detect changes in the
original set of minimal uniques and to discover the new set of
minimal uniques and maximal non-uniques. In the following,
we first give an overview of the inserts-workflow of Swan
to handle inserts. We then discuss how to efficiently detect
duplicates and present our index-based approach to verify a
set of minimal uniques. Finally, we show how Swan efficiently
updates the set of minimal uniques and maximal non-uniques
based on the detected changes.

A. Inserts-Workflow Overview

Algorithm 1 illustrates the overall workflow of Swan when
handling a batch of inserts. The input parameters of the
algorithm are the set of minimal uniques mUcs, the set of
maximal non-uniques mnUcs, and the set of newly inserted
tuples T . The sets mUcs and mnUcs can be obtained by any
holistic approach (e.g., Gordian [20] or Ducc [9]) for unique
discovery when uploading the initial dataset for the first time.
Overall, the algorithm has three main phases:
(1.) Swan compares the inserts to the initial dataset: for each
minimal unique Swan retrieves all tuple IDs that might contain
duplicate values (Line 3). If Swan retrieves no tuple IDs,
we can conclude that the new inserts did not create any
duplicate for the current minimal unique. This means that the
column combination is still a minimal unique. However, if
Swan retrieves some tuple IDs, Swan then stores them along
with the minimal unique in the data structure relevantLookUps
to handle them later (Line 5). As we already know that all
other tuples contain distinct values for the current minimal
unique, we also know that the projection of any superset of the
minimal unique will be unique on those tuples. Hence, Swan
considers only the tuples that might contain duplicates for the
current minimal unique. It is worth noting that depending on
the index structure used by retrieveIDs, the tuple IDs might
also correspond to tuples with partial duplicates with regard
to the minimal unique. Those tuples will be discarded later
when having the tuples at hand.
(2.) Once all relevant tuple IDs have been collected by Swan
for all minimal uniques, Swan computes the union of all IDs
and retrieves in one run all relevant tuples by a mix of random



Algorithm 1: HandleInserts()
Data: Inserted tuples T , mnUcs, and mUcs
Result: New mnUcs and mUcs
relevantLookUps ← new Map;1

for U ∈ mUcs do2

tupleIds ← retrieveIDs(U, T );3

if !tupleIds.isEmpty() then4

relevantLookUps.put(U, tupleIds);5

tuples ← sparseIdx.retrieveTuples(relevantLookUps);6

dManager ← new DuplicateManager(tuples, T );7

return findNewUniques(dManager, mUcs, mnUcs);8

accesses and sequential scans of the initial dataset. For this,
Swan uses a sparse index that maps a tuple ID to the byte
offset where the tuple resides in the initial dataset (Line 6).
(3.) Once Swan retrieves all relevant tuples, it uses a duplicate
manager dManager to group the retrieved tuples and inserted
tuples with regard to the corresponding minimal uniques
(Line 7). A duplicate group is a set of tuples that have the same
value combination when projecting the corresponding minimal
unique. This partitioning reduces the effort to discover the new
minimal uniques in the last step findNewUniques.

In the following, we describe how to discover changed
uniques by explaining retrieveIDs() and the used index struc-
tures. Finally we describe findNewUniques() in more detail.

B. Checking Uniques

According to Definition 1, all tuples of a dataset have
distinct value projections for each minimal unique. The pro-
jection of a minimal unique on a newly inserted tuple however
might contain a value combination that already exists in the
initial dataset. In that case, the uniqueness of the previously
identified unique and of its supersets does not hold anymore.
If a new minimal unique exists, it must be a superset of the
previous one. Thus, when a minimal unique becomes non-
unique because of an insert, we have to check all supersets
for uniqueness. We can limit the verifications to tuples with
duplicates in the invalidated minimal unique. All remaining
tuples can be ignored, because they contain unique values for
the minimal unique. In order to efficiently identify duplicates
among inserted tuples and the initial dataset we use an index-
based approach. In the following, we describe the challenge
in discovering duplicates and their tuple IDs and present our
index-based approach to retrieve the relevant tuple IDs.
Avoiding pairwise tuple comparisons. Given a relation R
with an instance r, a new tuple t, and a minimal unique U
holding on r, we have to compare t[U] to all ti[U] with ti ∈ r.
Consider again Table I. In that example, we have two minimal
uniques: {Phone} and {Name, Age}. To identify changes in
the dataset we have to compare (Payne, 31) to all values
in {Name, Age} and 245 to all values in {Phone}. For the
latter, we discover that the value already exists for the second
tuple. So, {Phone} is not a unique anymore. Thus, we have to
check whether any superset of {Phone} in the set of attributes
qualifies as new minimal uniques. Hereby, we only need to
compare the tuple containing 245 with the inserted tuple. As

both tuples have the same value for Name, {Name, Phone} is
also not a unique and has to be extended by the attribute Age.
However, as both tuples differ for Age {Age, Phone} must be
a unique and in this case also a minimal unique. We do not
need to check all other tuples for {Age, Phone}, because we
know that those are already unique with regard to {Phone}.

When having a batch of tuples T and a minimal unique U,
we have to compare all tuples t j ∈ T to each tuple ti ∈ r.
Additionally, we have to look for duplicates in T [U]. In that
case, we can group tuples t j, tk ∈ T with t j[U] = tk[U]. We
can skip a group G ⊆ T as soon as we discover a match in
r[U], because r[U] contains only unique value combinations.
Nevertheless, in the worst case, we have to do a fullscan on the
initial dataset and |r| times a fullscan on the grouped inserted
tuples. This is why Swan uses indexes that map values in
K ⊆ U to the corresponding tuple ids. This way Swan can
discover all duplicates with only one fullscan of T per index.
Index-based retrieval of tuple IDs. Algorithm 2 shows how
Swan identifies and retrieves relevant tuple IDs for a minimal
unique. Swan receives a minimal unique U and the set of
inserted tuples T as input parameters. Our indexes may cover
a minimal unique completely or only partially. Furthermore, a
minimal unique may be covered by multiple disjoint indexes.
In that case, Swan performs a look-up on each index and
intersect the results. Thus, Swan might use an index for
multiple minimal uniques. To avoid repeating the grouping
of inserted tuples and index look-ups, Swan caches look-up
results as well as intersection results. In line 1 we check
whether the look-up of any subset CC of the current minimal
unique has been performed before. In that case in Line 4
we directly retrieve the cached results. If the cached look-up
result is empty, Swan can already stop the uniqueness check
for U, because U will stay unique. Otherwise, Swan retrieves
all existing indexes that cover U (line 7) except the cached
indexes of CC. For each index idx, we add the associated
column combination to CC. If no cached results were retrieved
and lookUpResults is empty, we then perform the first index
look-up for U (Line 11).

Notice that Swan groups the inserts by the distinct value
projections of idx.getCC() in order to avoid multiple scans
of the inserts and unnecessary look-ups. If lookUpResults is
not empty Swan performs a modified look-up on the index.
This way, Swan simulates an intersection by considering only
those projections of idx.getCC() on the inserted tuples T that
were included in the previous look-up results. Afterwards,
Swan caches the accumulated index columns CC and the
corresponding results. If the look-up results are empty, Swan
can return the empty set lookUpResults. Otherwise, Swan
moves to the next index idx. Swan finishes at latest when all
relevant indexes for U have been used and returns the final
non-empty set of lookUpResults.

C. Minimal set of Indexes: Avoiding Full Scans

The reader might think that the best way to index a minimal
unique would be to create a multicolumn index that cover
the entire minimal unique. This way one would perform
a single look-up per distinct value projection and minimal



Algorithm 2: RetrieveIDs()
Data: Inserted tuples T , minimal unique U
Result: tupleIds
CC ← getLargestCachedSubset(U));1

lookUpResults ← new List;2

if !CC.isEmpty() then3

lookUpResults = tupleIdCache.get(CC);4

if lookUpResults.isEmpty() then5

return lookUpResults;6

indexes ← getIndexes(U \CC);7

for idx ∈ indexes do8

CC.add(idx.getCC());9

if lookUpResults.isEmpty() then10

lookUpResults ← idx.lookUpIds([T ]);11

else12

lookUpResults ←13

idx.lookUpAndIntersectIds(lookUpResults);
cache(CC, lookUpResults);14

if lookUpResults.isEmpty() then15

return lookUpResults;16

return lookUpResults;17

unique. However, datasets usually contain hundreds of min-
imal uniques in practice and creating such a large number
of indexes is expensive (computational- and storage-wise).
Furthermore, one cannot use multicolumn indexes anymore
as soon as a minimal unique loses its uniqueness after an
increment of new tuples. Also, indexing all single columns is
still very expensive (storage-wise) as a relation might consist
of hundreds of columns. Updating and maintaining all the
indexes is still too costly.

Therefore, Swan takes a different approach: Swan indexes
a small subset of columns so that all minimal uniques are
covered by at least one index. Thereby, Swan follows a greedy
approach based on the frequency of columns among minimal
uniques in order to choose the right columns to index. Notice
that the frequency of a column among minimal uniques is cor-
related to its selectivity as columns with many distinct values
occur in many minimal uniques. Of course, as indexes might
only cover subsets of a minimal unique, the IDs retrieved by
those indexes might be only partial duplicates with regard to
the projections on the newly arrived tuples. Thus, after the
retrieval of actual tuples, Swan checks the duplicate groups by
verifying the values of the columns without an index. Despite
these additional checks, having a single index allows Swan to
significantly reduce the amount of tuple comparisons.

Algorithm 3 shows how Swan chooses indexes based on a
given set of minimal uniques and the corresponding attributes
in the relation R. First, the frequency of each column with
regard to its participation among the minimal uniques is
retrieved. The most frequent column C f is added to the set of
to be indexed columns K. To choose the next column, system
excludes all minimal uniques that contain C f and retrieves the
column frequencies on the remaining minimal uniques. Again,
the most frequent column is added to K and Swan excludes

Algorithm 3: SelectIndexAttributes()
Data: mUcs, relation R
Result: Columns to be indexed K
frequencies ← new Map;1

for C ∈ R do2

frequencies.put(C, getFrequency(C, mUcs));3

C f ←frequencies.getMostFrequentColumn());4

K.add(C f );5

remainingmUcs ← mUcs \{U |U ∈ mUcs ∧C f ∈ U};6

while !remainingmUcs.isEmpty do7

frequencies.clear();8

for C ∈ R do9

frequencies.put(C, getFrequency(C,10

remainingmUcs));
C f ←frequencies.getMostFrequentColumn());11

K.add(C f );12

all covered minimal uniques for choosing the next column.
This process is repeated until all minimal uniques have been
covered by at least one column.

D. Additional Indexes: Speeding-Up Swan
Although the minimal set of indexes helps Swan to sig-

nificantly reduce the number of tuples, we still can speed
up the look-up and verification process if we reduce the
number of false positives. Hence, it is also desirable to create
extra indexes that allow Swan to reduce the number of false
positives. However, choosing more columns to index is not al-
ways beneficial. Imagine a scenario with four minimal uniques
{A, B},{A,C}, {A,D}, and {C,D}. Our index selection approach
creates the indexes IA and IC on the columns A and C. While
for an inserted tuple t′ and the minimal uniques {A, B} and
{A,D} the index IA retrieves the same set of tuple IDs T (IA),
for the minimal unique {A,C} the set of tuples may be smaller
as we can calculate the intersection T (IA) ∩ T (IC). However,
globally this intersection does not save us any reduction with
regard to the number of tuples to be retrieved as we need the
larger set T (IA) for the uniques {A, B} and {A,D} and even
T (IC) for the unique {C,D}. In total, our example leads to the
retrieval of T (IA) ∪ T (IC). So, the motivation is to reduce the
number of tuples to be retrieved. In case we were allowed to
create another index, we could choose between B, and D. By
choosing B, we do not reduce the amount of retrieved tuples
in total. As {A,D} is still only covered by IA, t(IA) will be
retrieved anyway and we still have to retrieve T (IA) ∪ T (IC).
But if we choose to index D, there is a chance that we reduce
the tuples that would have been retrieved by C, because we
can effectively reduce T (IC) to T (IC∩ IA)∪T (IC∩ ID) knowing
that |T (IC ∩ IA) ∪ T (IC ∩ ID)| ≤ |T (IC)|.

Algorithm 4 illustrates how Swan chooses more indexes
based on the initial set of index columns K and a user-defined
quota δ that limits the total number of columns to be indexed.
The algorithm consists of two parts.

First, for each column C ∈ K, Swan strives to find the best
possibility to cover that column among all minimal uniques
without exceeding the given quota δ > |K|. Swan applies



Algorithm 4: addAdditionalIndexAttributes()
Data: mUcs, relation R, initial index columns K, quota δ
Result: Columns to be indexed K
IK ←createIndexes(K);1

coveringIndexes ← new Map;2

solutions ← new Map;3

for C ∈ K do4

containingmUcs5

← {U \ {C} : U ∈ mUcs ∧ (U ∩ K) == {C}};
KC ← selectIndexAttributes(containingmUcs,R);6

if |KC | ≤ δ then7

coveringIndexes.put(C, KC);8

for combination C1,C2, ..Ck ∈ coveringIndexes.keySet()9

do
if |KC1 ∪ KC2 .. ∪ KCk | ≤ δ then10

solutions.put(C1 ∪C2, .. ∪Ck, KC1 ∪ KC2 .. ∪ KCk );11

solutions.removeRedundantCombinations();12

K0 ← combWithLowestSelectivity(solutions.keySet(), IK);13

K.add(solutions.get(K0));14

return K;15

Algorithm 3 to the modified minimal unique set as presented
in Line 5. The modified set consists of all minimal uniques
that contain the column C, but no other indexed column. As
the function selectIndexAttributes generates the smallest set of
columns that covers all of these minimal uniques in a greedy
way we have to make sure that the column C, which of course
covers all of them, is removed beforehand.

Second, Swan generates all possible combinations of
columns C1,C2, ..Ck ∈ K that can be covered by a set of
covering attributes and create the union of the corresponding
covering attributes KC1 ,KC2 ..,KCk . If the size of the union is
below δ we store the solution (Line 11). In a last step, we
choose the solution that covers least selective combination
C1,C2, ..Ck. We define the selectivity s(Ci) of an index ICi

on a relational instance r as follows:

s(Ci) =
cardinality(Ci)

|r|

The cardinality of a column denotes the number of distinct
values of this column. Accordingly a primary key column has
the cardinality of |r| and a selectivity of 1. To identify the
selectivity of the set of columns C1,C2, ..Ck ∈ K we apply the
following formula that corresponds to union probability:

s(C1,C2, ..Ck) = 1 − ((1 − s(C1) · (1 − s(C2) · . . . · (1 − s(Ck))

After several inserts the indices just need to be updated by
adding the new values and row ids. If an index contains the
new value, we append the tuple ID to the value’s ID list;
otherwise, we create a new key-value-pair. As inserts may
change the set of minimal uniques only in a way that the new
minimal uniques are supersets of previous minimal uniques,
we do not need to create new indexes. An index that covers
a minimal unique U ⊆ R also covers any superset U′ ⊃ U.
This property does not hold after deletes, because subsets of
previous minimal uniques may become new minimal uniques.

In that case, our index selection approach should be applied
again to check whether new indexes should be created.

E. Finding new Minimal Uniques and Maximal Non-Uniques

Once Swan identifies that a minimal unique changed after
a set of inserts, Swan has to traverse all supersets of the
changed minimal unique to discover all new minimal uniques.
Here, Swan reduces the effort for varifying a combination on
the complete dataset to the duplicate groups that have been
identified via our indexes.

Algorithm 5 illustrates how Swan discovers new possible
uniques and non-uniques based on the tuples stored in the
duplicate manager along with the previous set of mUcs and
mnUcs. For each unique U from our previous set, Swan
retrieves the corresponding duplicate groups (Line 2). Notice
that Swan indexes might not completely cover all columns of
a minimal unique. So, Swan has to remove all those partial
duplicates from the duplicate groups (Line 3). For uniques
that did not change, the groups are empty. Thus, Swan simply
adds them to the set newUniques. Otherwise, Swan knows
that U is non-unique and generates all relevant supersets by
adding single columns to the combination U (lines 8). For
each duplicate group, Swan checks whether the candidates are
unique. If not, Swan expands each candidate with new columns
and changes the set of candidates for the next duplicate group
(Line 11). Having processed all previous minimal uniques,
Swan simplifies the sets of newly discovered minimal uniques
and maximal non-uniques, mUcs and mnUcs, to remove redun-
dant supersets and subsets respectively (Line 23). Notice that
as an insert cannot turn a non-unique to a unique, the set of
maximal non-uniques can only change if a unique superset of
a maximal non-unique turns non-unique. In that case we can
add the new combination to the set of maximal non-uniques
and remove all its subset combinations.

IV. Processing Deletes

In contrast to the effect of new tuples, when removing tuples
d from a relational instance r, non-unique combinations can
turn into unique. This is because deleting tuples may lead
to the removal of duplicate values among some columns.
Therefore, deleting tuples may also affect both the set of
minimal uniques as well as the set of maximal non-uniques.
A maximal non-unique may turn into a unique. And if a non-
unique turns into a unique combination any minimal unique
that is a superset of that combination is not minimal anymore.
In the following we present Swan’s workflow to manage
deletes, and our strategies to check non-uniques efficiently.

A. Deletes-Workflow Overview

Algorithm 6 illustrates the overall workflow of Swan after
deletion of tuples. In contrast to the inserts-workflow, after
a batch of deletes Swan has to look for changes in the set
of non-uniques. So, Swan first stores all minimal uniques
mUcs into the data structure UGraph (Line 2). The data
structures UGraph (unique graph) and NUGraph (non-unique
graph) assure that Swan can omit redundant combinations



Algorithm 5: findNewUniques()
Data: duplicate manager dManager, mUcs, mnUcs
Result: New mUcs and mnUcs
for U : mUcs do1

groups ← dManager.getGroups(U);2

removePartialDuplicates(groups);3

if groups.isEmpty then4

newUniques.add(U) ;5

continue ;6

candidates ← new List ;7

for C ∈ R \ U do8

candidates.add(U ∪ {C});9

for group : groups do10

for K ∈ candidates do11

candidates.remove(K);12

while !isUnique(K) ∧K , R do13

mnUcs.add(K);14

C ← takeCol(R \ K);15

K ← check(K ∪C, group);16

if K = R then17

go to line 2318

candidates.add(K);19

removeRedundant(candidates);20

newUniques.addAll(candidates) ;21

mUcs ← newUniques;;22

removeRedundant(mnUcs,mUcs);23

return (mUcs,mnUcs) ;24

immediately as soon a new minimal unique or maximal non-
unique is discovered. A mapping of columns to column com-
binations enables the fast discovery of previously discovered
redundant combinations. Because all non-uniques of a relation
are subsumed by the set of maximal non-uniques, Swan can
start the analysis on that set. If a maximal non-unique stays
non-unique all of its subsets will also stay non-unique. In
that case, Swan just adds the combination NU to NUGraph
(Line 5). If the combination turns out to be a new unique, Swan
adds the combination to UGraph. Then, Swan starts to check
whether any other subset of NU also turned into a unique
combination. Here, Swan checks recursively in a depth-first
manner all subsets of NU and stores the intermediate unique
and non-unique discoveries into UGraph and NUGraph. As
maximal non-uniques may have overlaps in their subsets,
Swan also uses the UGraph and NUGraph structures to avoid
unnecessary non-uniqueness checks. If NUGraph contains a
superset of a combination to be checked, Swan can prune the
combination and all of its subsets. If UGraph contains a subset
K ⊂ NU, Swan can reduce the search space to all subsets
K′ ⊆ NU where K′ is not a superset of K.

B. Checking Non-uniques

To identify whether a previous non-unique N on a relational
instance r is still non-unique we need to know whether r′[N]
with r′ = r \ d still contains a duplicate value or not. In other

Algorithm 6: HandleDeletes()
Data: Relation R, Ids of Deleted Tuples D, mnUcs, and

mUcs
Result: New mnUcs and mUcs
UGraph ← empty graph; NUGraph ← empty graph; for1

U ∈ mUcs do
UGraph.add(U);2

for NU ∈ mnUcs do3

if isStillNonUnique(NU, D) then4

NUGraph.add(NU);5

else6

UGraph.add(U);7

checkRecursively(NU, D, UGraph, NUGraph);8

mUcs ← UGraph.getminimalUniques();9

mnUcs ← UGraph.getmaximalUniques();10

return (mUcs,mnUcs);11

words, we need to know whether the current tuple deletion has
removed all duplicates from r′[N] or not. A straightforward
approach would follow a sort-based or hash-based approach
to discover duplicates in r′[N]. This approach would in the
worst case lead to a fullscan of r′. Furthermore, if N turns
into a unique we have to do the complete duplicate detection
approach again for all subsets N′ ⊂ N with |N′| = |N | − 1. We
would unnecessarily scan unique values among N multiple
times. In contrast, Swan limits the search space to duplicate
groups in N, only. Here, Swan follows the spirit of approaches
such as [2], [10], which use inverted indexes called position
list indexes (PLIs) per column.
Position list indexes. A PLI for a column K is a list of
position lists, where each position list contains tuple-IDs that
correspond to tuples with the same value combination in K.
Our approach uses PLIs to efficiently discover whether a
combination turned to a unique or not. The PLIs per column
can be obtained during the initial run of unique discovery
when the data is scanned. The indexes are much smaller than
the actual columns, because they store only IDs for values
that occur more than once. To obtain the PLI for a column
combination K we only have to cross-intersect the PLIs of all
columns C ∈ K. The PLI of a non-unique K obviously contains
at least one PL with a duplicate pair. To update a PLI after a
delete we have to remove the existing IDs of all removed tuples
from the PLI. Remember, only IDs of duplicate values have
been stored in the first place, and if the removal of an ID from
a PL changes its cardinality to 1, the PL can be omitted. So,
we simply have to check whether there are still PLs available
for K in order to know if K remains non-uniqnues.
Avoiding complete intersections. In many cases a complete
PLI intersection is not necessary. For example, if a deleted
tuple contains a unique value for some column C ∈ K , we
can already conclude that the deletion of the tuple cannot
affect the PLI of K. Furthermore, if we consider only PLIs
that contained the deleted tuples and reduce the intersection to
those relevant PLIs before removing the IDs of deleted tuples,
we could already conclude non-uniqueness if the intersection



of all relevant PLIs per column result in an empty set of PLIs.
In that case the removed tuples did not affect the duplicates
in K. If the result contains some PLIs we check whether they
contain IDs of removed tuples. If any of the PLIs contains at
least two IDs that do not correspond to the set of deleted tuples
we can conclude non-uniqueness. Otherwise, the removal of
the tuples has affected a set of duplicates in K and we need
to check the complete PLI of K.

V. Experiments

We now evaluate the performance of Swan on different
datasets to answer the following questions: How well does
Swan deal with different sizes of inserts and deletes? How
good is Swan on large initial datasets? How well does Swan
scale in the number of columns? How efficient are the indexes
created by Swan? Can Swan behave as a holistic approach
on static datasets? To this end, we first describe our exper-
imental setup, datasets and the most relevant baselines. We
then present a series of experiments that compares Swan to
baselines in dealing with incoming new data. Next, we conduct
experiments with very high increment sizes and analyze the
ability of Swan to deal with static data. Then, we show how
Swan performs in scenarios where data is deleted.

A. Setup

Server & Datasets. We use the following server for all our
experiments: two 2.67GHz Quad Core Xeon processors; 16GB
of main memory; 320GB SATA hard disk; Linux CentOS 5.8
64-bit; 64-bit Java 7.0. We use two real-world datasets and one
synthetic dataset in our experiments: the North Carolina Voter
Registration Statistics (NCVoter) dataset, the Universal Protein
Resource (Uniprot, www.uniprot.org) dataset, and the TPC-H
lineitem relation (TPC-H). The NCVoter dataset contains non-
confidential data about 7,503,575 voters from the state of
North Carolina. This dataset is composed of 94 columns and
has a total size of 4.1GB. The Uniprot dataset is a public
database of protein sequences and functions. Uniprot contains
539,165 fully manually annotated and curated records and 223
columns, and has a total size of 1GB. The synthetic lineitem
table (with scale-factor 3) has 16 columns. For all datasets the
number of unique values per column approximately follows
a Zipfian distribution: few columns have very many unique
values and most columns have very few unique values.
Systems. We use Gordian [20] and Ducc [9] as baselines.
Gordian is a row-based unique discovery technique based on
non-unique discovery on a prefix tree. Among column-based
approaches we compare to Ducc, which combines aggres-
sive pruning through random walk and PLI representation of
columns. We further conducted an experiment that includes
the runtime of a well-known commercial DBMS for adding
new tuples to a table with unique constraints.

We made a best-effort java implementation of Gordian
according to the description given in [20]. For fairness reasons
we adapted to deal with inserts (Gordian-Inc): We provided
Gordian with the information about previously discovered
maximal non-uniques, because Gordian is based on non-
unique discovery. We only considered the time frame for

adding the inserted tuples into the prefix tree, assuming that
the initial dataset is already in the prefix tree. For deletes,
we only consider the time for removing tupels from the prefix
tree instead of creating a complete new tree. Here, Gordian-Inc
cannot use the previously discovered maximal non-uniques, as
they may not be correct after the delete.

We also adapted the original Ducc to deal with deletes
(Ducc-Inc) by providing it with previously discovered minimal
uniques, removing the subset graph above those uniques from
the search space of Ducc. Unfortunately, Ducc could not be
adapted the same way for handling inserts. Apriori knowledge
of non-uniques that have not been discovered during the
original run of Ducc lead to infinite loops of the random walk
because of the bottom-up design of Ducc.

B. Dealing with Inserts

To better analyze the performance of Swan over incoming
data, we perform four different experiments. First, we show
how Swan compares to baselines for different amounts of
incoming tuples. Second, we show the runtime behavior of
Swan with regard to the initial dataset size. Third, we evaluate
Swan with different number of columns. Fourth, we evaluate
the efficiency of the selected indexes by Swan. Note, for all
these experiments, we present results for Ducc and not for
Ducc-Inc, because one cannot adapt Ducc to deal with new
incoming data.
Scaling the batch-size on small datasets. We chose a small
sample of 100k tuples per dataset since Gordian-Inc, the
incremental adaptation of Gordian, does not finish for larger
datasets. We also restrict the number of columns for NCVoter
and Uniprot to 40 attributes in order to have a fair comparison
with Gordian, which does not scale to a larger number of
columns on larger datasets.

Figure 2a shows the results on the NCVoter dataset. Swan
outperforms both Ducc as well as Gordian-Inc for all batch
sizes. On the smallest batch size of 1k new tuples, Swan is
more than 20x faster than Ducc and more than 63x faster than
Gordian-Inc. We also observe that the runtime of all three
systems increases sublinearly with the increment size. Thus,
even for a large increment size of 20k tuples, Swan is still 12x
faster than Ducc and 40x faster than Gordian-Inc.

Figure 2b illustrates the results on the Uniprot dataset.
The results are similar to the NCvoter results. Swan again
outperforms both approaches. Swan is up to 3 times faster
than Ducc and up to more than one order of magnitude faster
than Gordian-Inc. Again, the runtime of all three systems
increases sublinearly to the the increment size. But, this time
the ratio is slightly smaller, because the Uniprot dataset has
more duplicates resulting into much more index look-ups for
Swan. For example, having 1k increment Swan retrieves 97801
tuples (which is nearly the complete dataset), while on the
NCVoter dataset Swan touches 5507 tuples out of 100k.

Figure 2c shows the results for the TPC-H dataset. This time
we also include the runtime of a commercial database (DBMS-
X)2. We see that DBMS-X is by several orders of magnitude

2DBMS-X only checks whether new tuples violate the predefined set of
268 minimal uniques, i.e., DBMS-X does not discover new constraints

www.uniprot.org
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(a) NCVoter with 100k rows and 40 columns
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(b) Uniprot with 100k rows and 40 columns
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(c) TPC-H with 100k rows and 16 columns

Fig. 2: Scaling the Number tuples per insert batch
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(a) NCVoter with 5 millions rows and 40 columns
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(b) Uniprot with 400k rows and 40 columns
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(c) TPC-H with 5 millions rows and 16 columns

Fig. 3: Scaling the Number tuples per insert batch and larger initial dataset

slower than Swan. It is worth noting that DBMS-X needed
only 120 ms to add the 20k batch when no constraints were
defined. Indeed, this performance gap might also be caused
by some DBMS-X related overhead. Regarding the other two
baseline systems, the results follow the same pattern as in
the previous two datasets results. Swan is up to one order of
magnitude faster.
Scaling the batch-size on large datasets. We now evaluate
Swan with a larger initial dataset. We increased the initial
dataset size to 5 million tuples for NCVoter and TPC-H
and to 400k tuples for Uniprot. Like previous experiments,
we consider 40 attributes for NCVoter and Uniprot and 16
columns for TPC-H.

Figure 3 illustrates the results of these experiments. Overall,
we observe that Swan follows the same behavior as in Figure 2.
We observe in Figure 3a that Swan outperforms Ducc by
almost 2 orders of magnitude and Gordian-Inc by more than
2 orders of magnitude. In fact, we had to abort Gordian-Inc
after 10 hours as it was not even able to update the prefix tree
within that time frame. In Figure 3b, we see that the runtime
behavior of all systems is quite similar to their runtime on
the smaller Uniprot sample (Figure 2b). Swan outperforms
all two baselines significantly. In Figure 3c, we see the high
superiority of Swan: it is up to 15x faster than Ducc for 50k
inserts and more than 5x faster for 1 million tuples. Again,
we had to abort Gordian-Inc after 10 hours not being able to
update the prefix tree.
Scaling the number of columns. In the previous experiments,
we could observe that speed-up ratio of Swan was comparable
for NCVoter and TPC-H although the datasets comprised
different number of columns: 40 for NCVoter and 16 for
TPC-H. Therefore, we run a another series of experiments
for NCVoter where we vary the number of columns. In these
experiments, the amount of inserted tuples corresponds to 10%
of the initial dataset, which contains 100k tuples.

Figure 4 illustrates the results. On the projection with 10
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Fig. 4: Scaling the Number columns on NCvoter with 100k
initial data size and 10k inserts

columns all systems are quite fast and below 10 seconds. Still,
Swan outperforms both systems by more than one order of
magnitude. In fact, this trend stays constant for all projections
up to 60 columns, where Swan outperforms Ducc by more
than 20x and Gordian-Inc by more than 31x. On 70 columns
Gordian-Inc and Ducc could not finish within a time frame of
10 hours even for the initial dataset.
Index Analysis. We now evaluate the efficiency of the indexes
created by Swan. Therefore, we run a series of experiments
over all three datasets and consider three variants of Swan:
Swan with the set of minimal indexes (Swan minimal), with
the complete set of indexes (Swan), and with an index on
each attribute (Index All). We limited the quota for our index
selection approach to 20 attributes for NCVoter and Uniprot
and to 8 columns for TPC-H.

Figure 5a illustrates the results for the NCVoter dataset.
Here, Swan minimal uses 11 indexes, Swan uses 18 indexes,
Index All uses 40 indexes. We observe that Swan is always
faster than Swan minimal. For realistic increment sizes such
as 1%, it is even two times faster with only 7 more indexes.
The ratio decreases with the insert size because more indexes
always means that more look-ups have to be performed and
the batch size defines the runtime of an index look-up. In
particular, we observe that Index All is much slower than both
Swan versions, although the index look-ups ensure that only
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(a) NCVoter with 5 million rows and 40 columns
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(b) Uniprot with 400k rows and 40 columns
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(c) TPC-H with 5 million rows and 16 columns

Fig. 5: Analysing SWAN with different sets of indexes

real duplicates have been retrieved.
Figure 5b shows the results for the Uniprot dataset. Overall,

we again observe this time the difference between Swan
minimal and Swan is much smaller. This is because Swan
minimal already uses 17 indexes while Swan uses one more
index (note, quota was set to 20). Still, we see that adding
one more index leads to a 1.3x speed-up of Swan. This time
indexing all columns leads to drastic performance boosts. Note
on the Uniprot dataset the batch sizes are much smaller than
for the NCVoter dataset. So in this specific case the small
amount of inserts did not lead to runtime explosion of index
look-ups and intersections.

Figure 5c illustrates the results for Swan for the TPC-H
dataset. As Algorithm 4 did not propose any additional indices
for that data set, Swan and Swan minimal use the same set of 6
indices resulting in the same execution time. Moreover, we see
in this experiment that indexing all 16 columns only slightly
improves the execution time of Swan for small increment sizes.
For the largest batch size indexing all approaches results in
more execution time, because of the same reason we gave for
the NCVoter dataset.

We also used the index advisor of a commercial database
(DBMS-X) to advise indexes according to two different work-
loads. The first workload contains statements to count the
number of distinct values in each minimal unique on the
dataset. This workload then resembles the verification of the
current minimal uniques. However, the indexes advised by
index advisor of DBMS-X were not useful as they did not
cover any minimal unique. For example, the index advisor
proposed 63 multidimensional indexes for TPC-H, but none of
them corresponded to any minimal unique forcing to perform
a fullscan. The second workload also included the set of 1k
inserts, but in this case the index advisor did not suggest any
index. Our approach that is based on single column indexes
consumes only milliseconds on the 100k datasets and up to 10
seconds on the large datasets to update all indexes. On larger
datasets the update could easily be taken offline though.

C. Swan as a Holistic Approach

Indeed, one can easily model any static scenario as an
dynamic one by dividing the dataset into a static initial dataset
and one (or more) incremental chunks. For most kinds of
problems such a design would lose against a holistic approach
that is applied on the complete dataset.

As a first series of experiments, we run an experiment where
we increase the size of the incremental chunk. The results
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Fig. 6: Scaling the Number tuples per insert batch on TPCH
with 16 columns and 5 mill rows.

are depicted in Figure 6. We observe that Swan significantly
outperforms Ducc for any size of the incremental chunks. Up
to an increment size of 40%, Swan is 4x faster than Ducc
on average. From an increment of 50%, i.e., from 7,500,000
inserted tuples, we aborted Ducc after 10 hours as it hit
the main memory capacity. In contrast, Swan could finish to
process the dataset even for an increment of 100% in almost 30
minutes. In other words, we were able to discover the minimal
uniques of a dataset with 10 million tuples much faster than
any holistic approach by combining Ducc and Swan.

We further compare Swan with Ducc for different numbers
of columns (Ducc. Figure 7 shows the results of this series
of experiments. For this series of experiments, we take the
same data chunks as in Figure 4. We evaluate two different
versions of Swan: one having 100k tuples as initial dataset
and 10% incremental data and another having 10k tuples as
initial dataset and 100k tuples as incremental data. Note that
in contrast to all experiments before, the results we report here
for Swan comprise the runtime of Ducc on the initial sample
plus the runtime of the incremental approach to deal with the
incremental chunks and the index creation for Swan.

For up to 30 columns, we observe that the runtime of Swan
with the 10k sample is much faster than Swan with the 100k
sample and Ducc. As the sample data is smaller its static part
and the index creation are much faster on the smaller 10k
sample. However from 40 columns on Swan with the 10k
sample gets by orders of magnitude slower than Ducc. For
these data sets we could observe that the shape and number
of the minimal uniques changes drastically from 10k to 100k
tuples. On the other hand Swan with the 100k sample was
slightly slower than Ducc for the data sets with 10, 20 and 30
columns, but starts to slightly outperform Ducc on the datasets
with more columns, where the gap between the runtime of
Ducc on the 100k sample and the complete dataset increases.
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Fig. 7: Holistic Swan on 110k tuples from NCVoter and
different numbers of columns

D. Deletes

We finally evaluate Swan in a scenario where tuples are
deleted. In this experiments, we additionally compare Swan
with Ducc-Inc, the adaptation of Ducc, to deal with dynamic
data (deletes only). First analyze the runtime of Swan dealing
with different amounts of deletes. Then we then analyse Swan
with different number of column.
Scaling the number of deleted tuples. Figure 8 shows the
results for all three datasets and for different numbers of
deleted tuples. We observe in Figure 8a that Swan outperforms
all baseline systems, except for 20% deletes where Swan is
slightly slower than Ducc-Inc. This is because as more deletes
occur the smaller the dataset is for Ducc and Ducc-Inc to
analyse. However, having 20% of deletes is an unusual case.
In practice, one typically finds less than 1% of deletes. In this
case, Swan is 50x faster than Ducc and more than 8x faster
than Ducc-Inc. Regarding Gordian-Inc, we had to abort it,
because it again did not finish before 10 hours.

In Figure 8b, we see a similar behaviour as for NCVoter. The
results show again the high superiority of Swan for realistic
scenarios, i.e., for a small amount of deletes. Swan outperforms
Ducc and Gordian-Inc by more than one order of magnitude
and Ducc-Inc by more than 5x. For 5% deletes, Swan is still
the fastest system: it is 1.3x faster than Ducc-Inc. However,
Swan is slightly outperformed by Ducc-Inc from 10% deletes.

Figure 8c shows the results for the TPC-H dataset. In these
results, we observe a similar pattern as before. Swan clearly
outperforms the baselines systems for 1% deletes and contin-
uously loses its superiority to Ducc-Inc when more tuples are
deleted. Again, we had to abort Gordian-Inc, because it did
not manage to finish before 10 hours.
Scaling the number of columns. Our last experiment illus-
trates how the number of columns affects the runtime of Swan
in comparison to baseline systems when removing tuples. We
fix the number of deletes to 1% of the initial dataset size,
which is realistic in practice. Figure 9 illustrates the results
of these experiments. We observe that Swan significantly
outperforms all baselines systems: Swan is up to more than
one order of magnitude faster. In particular, we observe that,
until 40 columns, Swan is able to finish before 5 seconds.

E. Summary

Overall, we observed that Swan always outperforms
state-of-the-art systems significantly over dynamic datasets,
e.g., Swan is one order of magnitude faster than Ducc for
10% inserts. In general, the runtime of Swan is linear to the
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Fig. 9: Scaling the Number columns on NCvoter with 100k
initial data size and 10k deleted tuples

increment size. In particular, we observed that the indexes cre-
ated by Swan significantly improve the performance towards
the minimal set of indexes and that adding more indexes even
reduces the runtime of the algorithm. Furthermore, Swan is
able to process very large increments for uniform data and can
substitute holistic approaches that are not able to process the
whole dataset. Specifically, Swan enables holistic approaches
(in this case Ducc) to achieve what was not possible before,
i.e., to find all uniques and non-uniques in datasets with more
than 7,500,000 tuples. Last but not least, the results clearly
showed that Swan is superior to previous baseline systems
in realistic scenarios with up to 5% deleted rows. All these
results clearly show the high efficiency of Swan to deal with
both inserts (over dynamic and static data) and deletes.

VI. RelatedWork
Although knowledge about uniques is fundamental in

database management and many other fields (such as bioinfor-
matics and data mining), their automatic discovery has been
the focus of surprisingly few research works [1], [6], [9],
[20]. There are basically two different classes of techniques
in the literature: row-based and column-based techniques.
While row-based techniques benefit from the intuition that
non-uniques can be detected without considering all rows in
a relation, column-based techniques benefit from previously
discovered uniques to prune the search space.

A prominent approach unique discovery is Gordian [20].
Gordian builds a prefix tree of the data in order to find all
maximal non-uniques, from which it computes all minimal
uniques. However, Gordian does not consider datasets that are
continuously changing. One could extend Gordian to deal with
dynamic datasets, but updating the prefix tree and computing
minimal uniques from maximal non-uniques every time the
input dataset changes are two major performance bottlenecks
(as seen in our experiment results).

HCA is a column-based algorithm that performs an opti-
mised candidate generation strategy, applies statistical pruning,
and considers functional dependencies (FDs) inferred on the
fly [1]. Nevertheless, similarly to Gordian, HCA considers
only fixed-size datasets and, in contrast to Gordian, HCA
has no optimization with regard to early identification of
non-uniques. Recently, we proposed Ducc, a scalable unique
discovery approach that, in contrast to Gordian and HCA,
mainly depends on the solution set size [9]. However, Ducc
is not suitable for dynamic datasets, because it would have to
start the whole unique discovery process for any (even minor)
change in input datasets.
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(a) NCVoter with 5 millions rows and 40 columns

1"

10"

100"

1000"

10000"

1%" 5%" 10%" 20%"

E
xe

cu
tio

n 
tim

e 
(s

) 

Amount of deleted tuples in % 

Ducc Ducc-Inc Gordian-Inc Swan 

(b) Uniprot with 400k rows and 40 columns
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(c) TPC-H with 5 millions rows and 16 columns

Fig. 8: Scaling the Number of deleted tuples

A related line of research to the unique discovery problem
is discovering FDs in a given relation [11], [12], [21]. One
of the best-known methods for FD discovery is TANE [11],
which is a levelwise-based algorithm [16]. However, TANE
works well only when the number of attributes is small. Other
FD discovery algorithms [4] also follow a similar levelwise
approach and hence they also may take exponential time in
the number of attributes. FastFD [14], [21] improves these
previous algorithms when the number of attributes is large,
but it is more sensitive to the size of the input dataset. Some
researchers, in fact, have incorporated the knowledge on exist-
ing FDs in order to identify those attributes that are, or are not,
definitely part of uniques [19]. Another related topic to unique
discovery is the discovery of conditional functional dependen-
cies (CFDs) [5], [7], inclusion dependencies (INDs) [17], [22],
and conditional inclusion dependencies (CINDs) [3], [17].
However, similar to unique discovery algorithms, none of these
techniques consider dynamic datasets.

It is worth noting that most commercial relational DBMS
allow users to specify a set of integrity constraints (such as
uniqueness) over relations. The DBMS validates all the user-
defined constraints after each inserted tuple. If a tuple does
not satisfy one of these constraints, the DBMS aborts the
insertion of such a tuple. However, while the DBMS can
validate existing unique constraints, the DBMS cannot find
new uniques and non-uniques after a set of inserted tuples.

In summary, this paper is the first to address the unique
discovery problem on dynamic datasets.

VII. Conclusion

We focused on the problem of unique discovery on dynamic
data, i.e., finding all uniques and non-uniques on datasets that
are continuously changing. Discovering all uniques and non-
uniques every time a dataset changes is cumbersome, because
unique discovery is a hard problem: it is NP-hard in the
number of columns and sub-quadratic in the number of rows.
We presented Swan, the first system to efficiently discover
unique and non-unique constraints on dynamic datasets. Swan
is the first approach to mainly depend on the incremental data
size ignoring the size of the initial dataset. Swan makes use of
intelligently chosen indices to minimize access to old data and
speed-up the whole unique discovery process. We evaluated
Swan through exhaustive experiments and compared it with
two state-of-the-art techniques for unique discovery: Gordian
and Ducc. The experimental results show the high superiority
of Swan: it is more than one order of magnitude faster than
Gordian and Ducc. In particular, the results show that Swan

even improves these two systems on the static case by dividing
the dataset into a static part and a set of inserts.
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