
RheemStudio: Cross-Platform Data
Analytics Made Easy

Ji Lucas, Yasser Idris, Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Sanjay Chawla

Qatar Computing Research Institute, HBKU
Doha, Qatar

http://da.qcri.org/rheem/

Abstract—Many of today’s applications need several data
processing platforms for complex analytics. Thus, recent systems
have taken steps towards supporting cross-platform data analyt-
ics. Yet, current cross-platform systems lack of ease-of-use, which
is crucial for their adoption. This demo presents RHEEMStudio,
a visual IDE on top of RHEEM. It allows users to easily specify
their cross-platform data analytic tasks. In this demo, we will
demonstrate five main features of RHEEMStudio: drag-and-drop,
declarative, interactive, and customized specification of data
analytic tasks as well as easy monitoring of tasks. With this in
mind, we will consider two real use cases, one from the machine
learning world and the second one based on data discovery.
During all the demo, the audience will be able to take part and
create their own data analytic tasks too.

I. NEED FOR EASY CROSS-PLATFORM DATA ANALYTICS

More and more users and organizations seek to perform data
analytics over several data processing platforms (platforms, for
short). For example, (i) several data warehouse applications
need to move aggregated, projected, or specific data from
Hadoop (or Spark) into a relational database for further anal-
ysis [1], [2], (ii) IBM reported that North York hospital needs
to process 50 diverse datasets, which are on a dozen different
internal platforms [3], (iii) business intelligence typically re-
quires a single data analytic pipeline composed of different
platforms [4], and (iv) latest research results have shown
that using multiple platforms for ML applications improves
performance significantly [5], [6]. These are few examples of
applications that need data analytics over multiple platforms.

To cope with these new requirements, several systems have
appeared to help users to easily combine several platforms [7]–
[11]. Yet, they all need quite good expertise from users to
decide which platforms to use for the query at hand. Thus,
developing cross-platform applications is not an easy task as it
still requires being intimate with the intricacies of the different
platforms to achieve high efficiency.

The research community has recognized the need for a
systematic solution that enables efficient cross-platform data
analytics [12]–[14]. Recent systems have taken steps towards
this goal [4], [15], [16]. Despite all these efforts and al-
though ease-of-use is a very important feature of data analytic
systems, it still remains a desired feature [17]. As a result,
using any of these systems is more of an odyssey rather
than a pleasant journey. Clearly, ease-of-use is crucial for the

adoption of these systems. However, achieving ease-of-use in
cross-platform settings is quite challenging.

We have recently introduced RHEEM [12], [18], an open
source system1 for cross-platform data analytics with the goal
of addressing these two problems: (i) efficiency and (ii) easy-
to-use cross-platform data analytics. It decouples applications
from the platforms and allows them to efficiently run over
one or multiple platforms. We have shown the benefits of
running machine learning [5] and data cleaning [19] tasks
over RHEEM. We have also demonstrated the efficiency and
flexibility features in [18].

In this demo, we will demonstrate the ease-of-use feature
of RHEEM, powered by RHEEMStudio (RHEEM’s visual IDE).
RHEEMStudio helps developers to build their applications on
top of RHEEM in an easy and intuitive manner. It features
(i) drag-and-drop plan construction, (ii) a declarative language
for users to declare their data analytics tasks, which we call
RHEEMLatin (inspired from PigLatin [20]), (iii) a dashboard
for displaying RHEEM’s internal details on the plan generation
and allowing on-the-fly interaction with the developer, and (iv)
a monitor for keeping track of the progress of data analytic
tasks. To better demonstrate this ease-of-use feature, we will
consider two real use cases: one from the machine learning
world and the second one form the data discovery area. The
audience will be able to take part of the demo by creating
their own data analytic tasks too.

II. RHEEM ECOSYSTEM

Before delving into the RHEEMStudio, let us briefly outline
RHEEM [12], [18] and its ecosystem.
RHEEM is our open source cross-platform system that enables
data processing over multiple data processing platforms. It acts
as a unifying abstraction layer in an environment with multiple
co-existing processing platforms. Data processing applications
are written using RHEEM’s interface and, thus, do not need to
select any actual processing platform.

As depicted in Figure 1, RHEEM decouples applications
from the data processing platforms. Applications do not submit
tasks directly to a data processing platform. Instead, they
assign their tasks to RHEEM, which then decides where to

1https://github.com/rheem-ecosystem/rheem



RHEEM

Store Engines

Platforms

Applications

Cross-Platform 
System

…

Hadoop DBMS Spark …
HDFS S3 Local FS …

RheemStudio ML4all BigDansing

Fig. 1. RHEEM ecosystem.

execute them. Overall, the whole execution of a data analytic
task is composed of four phases: (1) task submission, (2) task
optimization, (3) task execution, and (4) task monitoring.

(1) Task submission. Applications provide a RHEEM plan,
which is a directed acyclic data flow graph: the vertices are
RHEEM operators and the edges represent data flows among
the operators. RHEEM operators are platform-agnostic and
define a particular kind of data transformation over their input
data quanta. Specific operators, such as the Loop, further
accept feedback edges, which allows to express iterative data
flows. Also, the behavior of most RHEEM operators can
be refined by user-defined functions (UDFs), which renders
RHEEM plans highly expressive.
(2) Task optimization. Given a RHEEM plan as input, RHEEM
produces an execution plan by selecting one or more of the
available data processing platforms. The execution plan is
again a data flow graph, but with two differences from a
RHEEM plan: (i) the vertices are now replaced with execution
operators, i.e., platform-specific operators; and (ii) an execu-
tion plan may comprise additional execution operators, e.g., for
data movement. For this purpose, RHEEM uses a flexible m-
to-n mappings from RHEEM operators to execution operators.
This means it can map subplans of RHEEM operators to
subplans of RHEEM or execution operators. Those mappings
eventually span the search space of possible cross-platform
executions plans from which RHEEM efficiently determines
the most promising alternative plan according to its cost
model. During the plan selection, it particularly reasons on
complex data movement paths between platforms and takes
the incurring data movement costs into account.
(3) Task execution. Next, the system runs and orchestrates
the execution of the generated execution plan on the selected
processing platforms. It first divides an execution plan into
stages. A stage is a subplan where (i) all its execution operators
are from the same platform; (ii) at the end of its execution,
platforms need to give back the execution control to the
executor; and (iii) at the end, an output dataset is generated.
The system parallelizes the execution of independent stages. It
is worth noting that RHEEM has a decoupled platform-specific
driver for each available processing platform. It is each of these
drivers that internally take care of running the execution plan.
This design choice makes our system very easy to extend to
new platforms or update an existing platform driver.
(4) Task monitoring. During execution, the system checks the
health of the execution plan. In particular, it collects light-
weight execution statistics for the given plan, such as data

cardinalities and operator execution times. Furthermore, it is
also aware of lazy execution strategies used by the underlying
platforms and attributes measured execution time correctly to
operators. RHEEM uses these statistics to improve its cost
model and re-optimize ongoing execution plans in case of poor
cardinality estimates.

The RHEEM ecosystem is currently composed of three appli-
cations for data analytics:
(1) ML4ALL is a machine learning application that frees
users from the burden of algorithm selection [5]. ML4ALL
leverages RHEEM to automatically switch between Spark and
JVM platforms for enhancing performance.
(2) BIGDANSING is a rule-based data cleaning system for big
data [19]. It leverages RHEEM to scale out data detection and
repair to unprecedented scales.
(3) TRUTHFINDER is a scalable truth discovery system. It
allows users to discover the truth from a collection of hetero-
geneous sources of information that have conflicting claims
on a particular fact. It uses RHEEM to seamlessly scale truth
discovery algorithms.

Currently, we are building a number of other applications on
top of RHEEM, such as an exploratory database and a stream
data processing system. Apart from the applications, RHEEM
provides a Java, Spark, and REST APIs as well as a declarative
language and a visual IDE (the RHEEMStudio).

RHEEMStudio is a web application that is built on JavaScript
using the MEAN stack2 and on top of the RHEEM REST
API. It exposes a GUI that allows users to develop data
analytic tasks in both drag-and-drop and declarative fash-
ion. For example, the left-side panel of Figure 2 shows the
operators that users can drag-and-drop on the middle panel.
Similarly, user can write RHEEMLatin queries on the top-
right panel. RHEEMStudio comes with a backend that is not
only responsible of connecting RHEEMStudio with the REST
API, but also of automatically generating all the content to
be displayed at the frontend. This means that all RHEEM
operators are automatically extracted from the RHEEM code
base and displayed in the frontend of RHEEMStudio. Note that
the REST API is, in turn, responsible for compiling and attach-
ing the UDFs to RHEEM plans, constructing a valid RHEEM
plan, and triggering the execution. For all data operations,
RHEEMStudio uses Mongodb to keep, among others, the user
profiles, roles, and RHEEM plans.

III. RHEEMSTUDIO AT WORK

In this demo, we will use real-life datasets to give
users the opportunity to experience the features provided by
RHEEMStudio. Notice that this demonstration significantly
differs from the one presented in [18], which demonstrates
the flexibility and efficiency features of RHEEM. Instead, we
will demonstrate RHEEMStudio by showing the audience how
easily they can specify and monitor their own cross-platform
data processing pipelines. We will use two different use cases:

2https://en.wikipedia.org/wiki/MEAN (software bundle)



output window

R
H

EE
M

 o
pe

ra
to

rs
 p

an
el

RheemLatin console

drawing surface

RHEEM plan

Execution plan

Fig. 2. K-means in the RHEEMStudio.

Machine learning (ML) has became an important piece in
data analytics. However, developing scalable ML algorithms
is typically a tedious task, which makes ML a luxurious asset
in many organizations. Thus, achieving ease-of-use in ML is
a major lacunae that needs to be urgently addressed. In this
demo, we will show how users can easily develop, execute,
and monitor scalable ML tasks with little effort.

Data discovery is an important piece in data lakes, where
users need to find relevant data from datasets spread across
several data stores. Unfortunately, current solutions are not
designed for cross-platform settings and hence are difficult to
employ in such settings. The research community has recently
recognized that performing data discovery over multiple data
stores (data lakes) is one of the important pieces of data
science [21]. In this demo, we will show how users can easily
perform customized data discovery over multiple data stores
in a transparent manner.

In particular, having these two use cases in mind, we will
showcase five main features of the RHEEMStudio:

(1) Drag-and-drop RHEEM plan generation. Our main goal is
to show how easy is to specify and run tasks in RHEEMStudio.
For this, we will start by showing three pre-defined plans: two
popular ML tasks (k-means and stochastic gradient descent)
and one data discovery task (keyword search). We will walk
the audience through these three plans so that they start getting

familiarized with the GUI. The middle panel of Figure 2 shows
the k-means plan in RHEEMStudio. Once familiarized, we will
invite the audience to specify their own data analytic tasks
using the drag-and-drop interface (left panel in Figure 2).
(2) Declarative RHEEM plan generation. We will also show
to the audience how the three previously presented plans
can be specified declaratively. For this, we will enable the
RHEEMLatin console embedded into the RHEEMStudio (top
right-side panel) and load the respective queries. We will
then ask the audience to write their analytic tasks using
RHEEMLatin. It is worth noting that the audience will be able
to see the generated RHEEM plans from their queries.
(3) RHEEM plan customization. Furthermore, we will walk
the audience through the different ways they can easily inject
their own logics, such as how to prepare data. For example,
Figure 3 shows the data preparation code for the Map operator
in the k-means plan of Figure 2. For each RHEEM plan, we
will invite the audience to select one of the operators to revise
and ask them to inject their own logics. It is worth noting
that users mainly have to inject their logics in lines 14 and 15
of Figure 3. After revision, RHEEMStudio validates the new
provided code. If the code is syntactically correct, the audience
can submit their changes by pressing the Save button and run
the plan by pressing the Execute button.
(4) Interactive RHEEM plan generation. Especially, in this



Fig. 3. Code panel for the Map operator in the k-means plan.

Fig. 4. Monitoring the execution of the K-means plan.

demo, we will show how users can interact with RHEEMStudio
in order to enhance their data analytic tasks. For this,
RHEEMStudio also displays the execution plan for any given
RHEEM plan so that users can better evaluate their queries
and plans (bottom right-side panel of Figure 2). By having
this global view of a data analytic task, users can write better
queries and RHEEM plans. As an example, we will invite
the audience to provide hints to RHEEM in order to guide
the execution plan generation. For example, we will show
the audience how to change the data processing platforms on
which a plan will be executed.
(5) Cross-platform plan monitoring. Last but not least, we will
show how users can monitor the execution of their analytic
tasks (Figure 4). RHEEMStudio not only displays the execution

progress for each operator in an execution plan, but also
displays the intermediate data being produced at different parts
of the plan. This allows users to find possible bugs in their
plans, which are usually very hard to spot.
Setup. We will run the demo on a single machine as well
as on a 4-machines cluster at QCRI. We will use the latest
version of RHEEMStudio and RHEEM. We will consider Java,
Spark, and Postgres as underlying processing platforms.

REFERENCES

[1] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling, “Split Query Processing in
Polybase,” in SIGMOD, 2013, pp. 1255–1266.

[2] S. Shankar, A. Choi, and J.-P. Dijcks, “Integrating Hadoop
Data with Oracle Parallel Processing,” Oracle White Paper,
http://www.oracle.com/technetwork/database/bi-datawarehousing/
twp-integrating-hadoop-data-with-or-130063.pdf, 2010.

[3] IBM, “Data-driven healthcare organizations use big data analytics for
big gains,” White paper, http://goo.gl/AFIHpk.

[4] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “Optimizing
Analytic Data Flows for Multiple Execution Engines,” in SIGMOD,
2012, pp. 829–840.

[5] Z. Kaoudi, J. Quiané-Ruiz, S. Thirumuruganathan, S. Chawla, and
D. Agrawal, “A Cost-based Optimizer for Gradient Descent Optimiza-
tion,” in SIGMOD, 2017, pp. 977–992.

[6] M. Boehm, M. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.
Manshadi, N. Pansare, B. Reinwald, F. Reiss, P. Sen, A. Surve, and
S. Tatikonda, “SystemML: Declarative Machine Learning on Spark,”
PVLDB, vol. 9, no. 13, pp. 1425–1436, 2016.

[7] J. Duggan et al., “The BigDAWG polystore system,” ACM SIGMOD
Record, vol. 44, no. 2, pp. 11–16, 2015.

[8] “Apache Drill,” https://drill.apache.org.
[9] “Apache Flume,” https://flume.apache.org/index.html.

[10] “Luigi Project,” https://github.com/spotify/luigi.
[11] “PrestoDB Project,” https://prestodb.io.
[12] D. Agrawal, S. Chawla, A. K. Elmagarmid, Z. Kaoudi, M. Ouzzani,

P. Papotti, J.-A. Quianuiz, N. Tang, and M. J. Zaki, “Road to Freedom
in Big Data Analytics,” in EDBT, 2016, pp. 479–484.

[13] M. Stonebraker, “The Case for Polystores,” ACM SIGMOD Blog.
[Online]. Available: \url{http://wp.sigmod.org/?p=1629}

[14] D. Tsoumakos and C. Mantas, “The Case for Multi-Engine Data
Analytics,” in Euro-Par Workshops, 2013, pp. 406–415.

[15] H. Lim, Y. Han, and S. Babu, “How to Fit when No One Size Fits,” in
CIDR, 2013.

[16] I. Gog et al., “Musketeer: all for one, one for all in data processing
systems,” in EuroSys, 2015.

[17] R. Edjlali, A. M. Ronthal, R. Greenwald, M. A. Beyer, and D. Fein-
berg, “Magic Quadrant for Data Management Solutions for Analytics,”
Gartner, 2017.

[18] D. Agrawal, M. L. Ba, L. Berti-uille, S. Chawla, A. K. Elmagarmid,
H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani,
P. Papotti, J.-A. Quianuiz, N. Tang, and M. J. Zaki, “Rheem: Enabling
Multi-Platform Task Execution,” in SIGMOD, 2016, pp. 2069–2072.

[19] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti,
J. Quiané-Ruiz, N. Tang, and S. Yin, “BigDansing: A System for Big
Data Cleansing,” in SIGMOD, 2015, pp. 1215–1230.

[20] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” in SIGMOD,
2008, pp. 1099–1110.

[21] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.
Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The
Data Civilizer System,” in CIDR, 2017.


