ML-based Cross-Platform Query Optimization

Zoi Kaoudi®?*
Rodrigo Pardo-Meza3

YTechnische Universitit Berlin 2DFKI GmbH
{zoi.kaoudi, jorge.quiane} @tu-berlin.de

Abstract—

Cost-based optimization is widely known to suffer from a
major weakness: administrators spend a significant amount of
time to tune the associated cost models. This problem only gets
exacerbated in cross-platform settings as there are many more
parameters that need to be tuned. In the era of machine learning
(ML), the first step to remedy this problem is to replace the
cost model of the optimizer with an ML model. However, such
a solution brings in two major challenges. First, the optimizer
has to transform a query plan to a vector million times during
plan enumeration incurring a very high overhead. Second, a lot
of training data is required to effectively train the ML model.
We overcome these challenges in Robopt, a novel vector-based
optimizer we have built for Rheem, a cross-platform system.
Robopt not only uses an ML model to prune the search space
but also bases the entire plan enumeration on a set of algebraic
operations that operate on vectors, which are a natural fit
to the ML model. This leads to both speed-up and scale-up
of the enumeration process by exploiting modern CPUs via
vectorization. We also accompany Robopt with a scalable training
data generator for building its ML model. Our evaluation shows
that (i) the vector-based approach is more efficient and scalable
than simply using an ML model and (ii) Robopt matches and, in
some cases, improves Rheem’s cost-based optimizer in choosing
good plans without requiring any tuning effort.

Index Terms—query optimization, machine learning, cross-
platform data processing, polystores.

I. INTRODUCTION

Cross-platform systems are fast emerging to address so-
phisticated and complex needs of data science and business
intelligence applications [3], [10], [13], [15], [16], [35]. As
they combine multiple data processing platforms to run such
complex tasks, optimization is a crucial process. Cost-based
optimization is the prominent choice and has already been
adopted by cross-platform systems, such as [3], [13]. Yet, cost-
based optimization in general suffers from a major weakness:
it requires substantial work from administrators to fine-tune
the cost model in order to produce efficient query execu-
tion plans. This problem gets exacerbated in cross-platform
settings where the number of coefficients can easily arrive
to hundreds and thus, tuning them is not only challenging
but also time consuming. Few works focused on reducing
such manual work by running sample queries and calibrating
these coefficients [5], [12] or learning them using machine
learning [3]. However, these solutions assume a fixed function
form, e. g., linear, which may not reflect reality.

An intuitive remedy for this problem is to replace the cost
model with an ML model that can predict query runtimes.

*Work partially done while at Qatar Computing Research Institute.

Jorge-Arnulfo Quiané-Ruiz
Anis Troudi®

1,2« Bertty Contreras-Rojas?

Sanjay Chawla?

3Qatar Computing Research Institute, HBKU
{brojas, rpardomeza, schawla}@hbku.edu.qa

Although such a direction looks promising it comes with two
main challenges. First, this approach requires to transform
each query (sub)plan during plan enumeration into a vector
and feed it to the ML model. In contrast to works on
performance prediction [4], [9], [34], [37], where the plan
transformation is required once, this plan transformation can
easily be in the order of millions due to the exponential size
of the search space. Second, building an ML model for query
optimization requires a large number of execution logs. This
not only requires finding a large number of real-world queries,
but also executing each query using diverse execution plans,
which might simply be impractical. For instance, given that a
TPC-H query for 200GB takes around 13 minutes to run on
Spark in our cluster, running thousand alternative plans of it
will take 9 days. Increasing the dataset size may result to an
overall time of several months!

We overcome these challenges with Robopt, a novel vector-
based cross-platform optimizer that replaces the cost model
by an ML model in Rheem [3]. Its novelty lies in basing
the entire plan enumeration on a set of algebraic operations
that operate on vectors, which are a natural fit to the ML
model. This results into two benefits: First, it avoids the
high cost of transforming a query (sub)plan into a vector
a million times, i.e., each time the ML model is invoked;
Second, it allows us to speed up the enumeration process
by exploiting modern CPUs for performing vectorization.
Figure 1 shows the im-
provement of wusing vec-
tors in the plan enumera-
tion (vector-based plan enu-
meration) over the simple
approach of only replac-
ing the cost model with
ML (traditional plan enu-
meration). These results con-
sider two underlying plat-
forms and three tasks: Word-
count (having 6 operators);
TPC-H Q3 (having 17 op-
erators); and a synthetic
pipeline dataflow (having 40 operators). We observe that using
a vector-based plan enumeration is several times faster than
its traditional counterpart, even if both approaches explore the
same number of plans. This performance difference gets larger
when increasing the number of operators or platforms.

In summary, after further elaborating the problem with cost-

10

8

6

4

i

o LN BN B

Wordcount TPC-H Q3 Synthetic
(6op) (170p.) (400p.)

Improvement factor

Fig. 1: Benefit of using vec-
tors in the plan enumeration.

based cross-platform optimization in Section II, we give an
overview of Robopt in Section III and present our major
contributions in the following sections:

(1) We propose a fine-granular set of algebraic operations that
allows Robopt to run the plan enumeration process over query
vectors. These operations ease the design of plan enumeration
algorithms and enable parallelism. Additionally, we employ an
ML-based pruning mechanism that is lossless and reduces the
exponential number of plans to quadratic. (Section IV)

(2) To maximize the pruning effect, we propose a pruning-
aware plan enumeration algorithm, which is built using the
pre-defined algebraic operations. For this, we employ a priority
metric that determines the order in which partial plan vector
enumerations are concatenated. (Section V)

(3) We propose a scalable training data generator that is able
to generate large training datasets in a reasonable amount
of time using polynomial interpolation. The generator creates
synthetic queries, which are representative of real queries, as
well as synthetic executions logs, which significantly speed up
the training data generation. (Section VI)

(4) We implemented Robopt in Rheem' [3], an open source
cross-platform system. We show that it not only matches,
but also exceeds, the performance of its cost-based optimizer
counterpart, with almost no tuning effort. Still, even if we
implemented Robopt in Rheem, our approach can be adopted
by any other cross-platform system. (Section VII)

We conclude this paper with related work (Section VIII)
and some final remarks (Section IX).

II. WHAT’S WRONG WITH COST-BASED OPTIMIZATION?

Cost-based optimization has been at the core of traditional
databases since the early days. Following this success story,
cross-platform systems such as Rheem [3] and Musketeer [13]
employ a cost-based optimization approach for determining on
which platform(s) a query has to be executed. However, failing
to correctly define or tune the cost model in a cross-platform
system can negatively impact performance. This is because of
the large diversity in execution operators implementations.

We show this cost modeling problem with a simple exper-
iment: We ran Rheem’s cost-based optimizer using a well-
tuned (using trial-and-error) and a simply-tuned (using single
operator profiling) cost model. We injected the real cardi-
nalities in both cost models to avoid any negative impact in
performance due to wrong estimates. We used Spark, Flink,
and a standalone Java-based execution engine as underlying
platforms. Figure 2 shows the results of this experiment. We
observe that a simply-tuned cost model can negatively impact
performance by more than one order of magnitude, even if
the real cardinalities are used: For example, for Word2NVec,
the simply-tuned model forces Rheem to use Java instead of
Spark. These results clearly show the importance of having a
well-tuned cost model in cross-platform query optimization.

Unfortunately, arriving to a very well-tuned cost model
requires substantial work even from expert administrators. It

Thttps://github.com/rheem-ecosystem/rheem

Well-tuned cost model
1000

800
600
400 392
36 15
0 -

SGD Word2NVec Aggregate CrocoPR
(7.4GB input) (30MB input) (200GB input) (2GB input)

l Simply-tuned cost model

Runtime (sec)

Fig. 2: Impact of a well-tuned cost model in cross-
platform optimization: The impact in performance can be
substantial - up to a factor of 10.

took us around two weeks of trial-and-error to arrive to the
above results. This is because there are many more parameters
that need to be tuned compared to monolithic systems. In
addition, as platforms are continuously being added the job
of the administrator becomes even harder. For example, in
Rheem [3], system administrators must define a set of cost
functions for each operator of a newly added platform and tune
the cost model by providing the right coefficients. Although
Rheem comes with default values for such coefficients, users
should find out the right values in their deployments to gain
in performance, as shown above. Few works focused on
reducing such manual work by running sample queries and
calibrating these coefficients [5], [12]. We have also used
machine learning to learn such parameters [21]. However, all
these solutions assume a fixed form of function, e. g., linear,
which may not reflect reality and thus, hurt performance.

III. OVERVIEW

The main goal of cross-platform query optimization is to
find the most suitable data processing platforms combination
to process an input query in the most efficient way. In
detail, the idea is to split a query formed as a logical plan?
into multiple atomic operators and to find the most suitable
platform for each (set of) operator(s), i.e., execution plan, so
that the runtime is minimized. Below, we first set the necessary
Rheem background and then provide an overview of Robopt.

A. Rheem background

Robopt receives as input a logical Rheem query plan,
which is a directed dataflow graph. The vertices are logical
operators and the edges represent the dataflow among the
operators. Logical operators are platform-agnostic and define
a particular data transformation over their input. Figure 3(a)
shows a running example: the logical plan for a query aiming
at classifying customers of a certain country according to the
total amount of their credit card transactions in the last month.

Robopt outputs an execution plan, which is also a directed
dataflow graph but differs from an input logical plan in two
aspects. First, its vertices are platform-specific execution op-
erators (e. g., SparkMap). Second, it may comprise additional
execution operators for data movement among platforms,

2We follow the query optimization design choice as in [2], where logical
optimization is done at the application level. Therefore, logical optimizations,
such as join ordering, is beyond the scope of this paper.

Customers
03
. TextFileSource |03
Transactions N

o1

O1[TextFileSource][Filter(country) 0.4

02 Map(project)| o
o2[Filter(month)| [Map(project)|os ° p(p/) 5
Join(customer_id)|

os[Join(customer_id) >
x cross-platform ; celcos
07[ReduceBy(sum_&_count)] optimization
Y (CCollect |cos

08 0s| Map(/abel)

O9

CollectionSink

(b) Execution plan

09

(a) Logical plan
Fig. 3: Running example: (a) The logical plan of a
Join query between two relations; (b) The most efficient
execution plan of this logical plan.
Robopt

Priority-based
Enumeration

execution plan
(platform-specific)

ReduceBy(sunm_&_couni) vectorized:executr‘on) cheapest plan ’—Q—‘p duceBy(sun_&_count)

> [[[[IT]

Plan Plan Pruning Plan Q
Vectorization ML runtime T
() Unvectorization Wap(iaba)
(vector-based)

Fig. 4: Robopt obviates the need for fine-level tuning of cost
model. Instead, the challenge is to design a representative
plan vector, speedup the enumeration using such vectors,
and have access to a large training set.

logical plan
(platform-agnostic)

£\
Map(/abel)
—

called conversion operators, e.g., a SparkCollect operator
transforms an RDD into a Java Collection. Conceptually, given
a logical plan, an execution plan indicates on which platform
each logical operator must be executed. Figure 3(b) shows an
execution plan for the logical plan of Figure 3(a) when Spark
and Java are the available platforms. This plan exploits both
Spark’s parallelism for the large transactions dataset and the
low latency of Java for the small set of customers. Note that
there are additional execution operators for data movement
(JavaCollect and SparkCollectionSource).

B. Robopt in a nutshell

At its core, Robopt has an ML model trained to predict
the runtime of an execution plan and its vector-encoded plan
enumeration. Figure 4 shows the execution flow of Robopt.
Once it receives a logical plan, it transforms it into a numerical
vector, which we call plan vector. A plan vector is an array
of features that represent an execution plan. Then, it performs
the entire plan enumeration using vectors. This allows Robopt
to (i) directly feed a plan vector to the ML model without any
transformation and (ii) speed up the enumeration process by
using primitive operations and vectorized execution [7].

We have defined a set of algebraic operations that formalizes
the vector-based query plan enumeration process. This allows
not only for easily exploring different algorithmic alternatives
but also for optimization opportunities. Although this set of
operators eases the design of plan enumeration algorithms,
enumerating the entire search space of possible execution plans
remains an exponential problem. We thus propose a pruning

technique that reduces the search space from exponential to
quadratic. Our pruning technique is guaranteed to not prune
any plan vector representing a subplan that is part of the
optimal execution plan. It is based on the notion of boundary
operators, which are the operators that are in the border of
a subplan. Moreover, using this set of algebraic operators,
Robopt adopts a priority-based plan enumeration algorithm.
Using a metric of priority it determines the order in which
subplans should be concatenated. We propose a priority that
maximizes the pruning effect and yields a plan enumeration
that exploits the entire search space simultaneously.

Another challenge that Robopt has to overcome is the
number of training data required for training the ML model:
a large amount of disparate execution plans (data points)
together with their runtime (labels) is required. However, it is
not only hard to find thousands of queries but also impractical
to execute thousands of execution plans for different input
dataset sizes. Robopt comes with a scalable training data
generator that builds synthetic execution plans of different
shapes and for different input data cardinalities. The generator
executes only a subset of the plans and applies polynomial
interpolation to guess the runtime of the remaining plans.

Last but not least, notice that even though we implemented
Robopt in Rheem, it is general enough to be applied to any
cross-platform system. The integration effort required for that
would be to adapt the input and output as well as the feature
vector of Robopt to the plans of the respective system.

IV. QUERY PLANNING VECTORIZATION

We propose to vectorize the query planning process so that
Robopt is able to efficiently find the execution plan with the
lowest estimated runtime (w.r.t. its ML model). The benefit
of doing so is two-fold: First, we can directly feed a query
plan represented as a vector into an ML model to drastically
prune the search space; Second, we can leverage primitive
operations and SIMD (Single Instruction Multiple Data) to
perform multiple vector operations with a single CPU instruc-
tion (vectorized execution [7]). Inspired by relational algebra,
we take a principled approach and define a set of algebraic
operations that formalizes the vector-based plan enumeration
process. Besides the above two benefits of using vectors, using
these operations also allow us to: (i) define the enumeration
problem in a simple, elegant manner; (ii) concisely formal-
ize our plan enumeration algorithm; (iii) explore different
algorithmic alternatives; and (iv) consider parallelization and
optimization opportunities inside the plan enumeration itself.

A. Query vector representation

Our entire plan enumeration process relies on a plan vector
structure, which is an array of features that are representative
of an execution plan. In other words, the plan vector v for an
execution (sub)plan p is a set of features v = {f1,..., fn},
where each f; represents a characteristic of p. We encode
four main characteristics of execution plans: (i) their shape,
(ii) their operators, (iii) their data movement profile, and
(iv) their input dataset. We experimented with different sets

data movement features

operator features
: dataset features

»
1] 2 |
o 8 8 = 3 2 °
o o 2 S T £ F N
L2588 5§ & <z & 8
ex¥ 88583588 §.%. ¢ 8§53 g
g ©
shape features ¢ S & 8§ 3 € ©5_.5§ 8% 8 Fss8s s
| S £ ¢c & £ 5 808%F0f38¢% s s ofsd =
§ o> o o o oL =3E 8D 33380 3
0 o 2 2 0 2 0 0 @ 88738 58 3 3 amsw g
2 S35 2 383 8 g 85 £¥ 3 S ¢ £ 3 S
= 2 0 = & g & © € C .~ .~ S € o o
2 G = Q # 8 8 8 & I IS O S 8 806 5 >
Q € Q 9 = 2 %5 8 3 6 9 n o ©
33 229 F s 2c s £s§ § § 2 28E g &
o W W L = ¥ % ¥ ¥ # 0 7] ? * ® O g 5
| 1 | R I | | L |
[3[1]o]o].. [2]1]1]2]0]0] 0] 2] 42m[100K 120
)
Filter Collect

Fig. 5: Snapshot of a plan vector: vector representation of
the execution plan in Figure 3(b).

of features and we found that these features are representative
enough for building an ML model that accurately orders the
plan vectors according to their predicted runtime. We convert
these characteristics into a vector using one-hot encoding.
Figure 5 illustrates the features for the execution plan of the
query shown in Figure 3(b):

(i) Topology Features. Taking into consideration diverse
query workloads ranging from relational to machine learning,
we conclude in four representative plan topologies: pipeline,
Jjuncture, replicate, and loop. A pipeline is mainly a series of
operators receiving one input and having one output, such as
the Map and ReduceBy operators in the plan of Figure 3(a).
A juncture is a plan with at least one operator receiving two
inputs and having a single output, such as the Join operator
in Figure 3(a). In contrast to a juncture, a replicate is a plan
with at least one operator receiving one input and having two
outputs. A loop is basically a plan repeating the execution of
a pipeline plan. For example, OLAP queries contain pipeline
and junctures topologies, and, the k-means, gradient descent,
svm, logistic regression, and pagerank algorithms are mainly
pipelines with loops. Note that one plan may contain more
than one topology. For instance, the plan in Figure 3(a) has
three pipelines and one juncture. We use one feature per
topology to encode how many times this topology exists in a
query plan as shown in the orange part of Figure 5.

(ii) Operator Features. For each logical operator available in
Rheem, we first encode the total number of times it appears
in the query plan. In addition, we encode the number of times
each corresponding execution operator appears as well as in
which topology it is located in the plan. For example, the green
part of Figure 5 shows that the Filter operator exists twice
in our running execution plan (first green feature): once as a
Java operator (second green feature); and the other time as a
Spark operator (third green feature); both appear in a pipeline
topology (fourth green feature). We also encode the CPU
complexity of the UDF that an operator contains. We assume
four different complexities: logarithmic, linear, quadratic, and
super-quadratic. In addition, we consider the input and output
cardinality for each operator. Having both input and output
cardinalities allows for encoding the operators’ selectivity and
for knowing how the operators are connected (the structure of
the query): it, thus, improves the ML model accuracy.

(iii) Data Movement Features. For each conversion operator
we encode the number of instances per platform. We addition-

ally encode the input and output cardinality of the conversion
operators. For example, the blue features in Figure 5 show the
features of the Collect operator in Figure 3(b).

(iv) Dataset Features. We include the average tuple size in
bytes of the input dataset as the only characteristic of the
input dataset (pink feature in Figure 5). The cardinality of the
dataset is already taken into account by the input cardinality
of the source operators.

Although these features work well with our ML model,
one could use other representations, such as structured deep
neural networks [27]. However, further investigation on feature
extraction is out of the scope of this paper.

B. Plan enumeration problem

Having defined the main data structure of our plan enumera-
tion, we now proceed to define the plan enumeration problem.
For this, let us first introduce the plan vector enumeration
structure, which represents the different execution plans for a
given logical query (sub)plan. Formally:

Definition 1 (Plan Vector Enumeration): The plan vector
enumeration V = (s, V) of a logical (sub)plan p consists of a
scope s, denoting the set of operators ids O, in p, and a set
of plan vectors V, representing a set of execution plans for p,
where Vv € V,0, = O, = s.

If p is the initial logical query plan and the scope s of

a plan vector enumeration)V contains all the operators of p
(i.e., s = O,), then each plan vector v € V represents a
complete execution plan. Formally:
PLAN VECTOR ENUMERATION PROBLEM. Given a logical
query plan p with Q,, the search space of all possible execution
plans, the goal is to find a plan vector enumeration Vyin =
(s, V) with s = O, such that v, € V with cost(vmn) <
cost(v;), Yv; € Qp A Uppin, 7 Vj.

C. Core operations

We now introduce three core operations that allow us
to explore the entire search space to find V,,;,: vectorize,
enumerate, and unvectorize.

(1) vectorize(p) — ©: It transforms a logical plan p into
an abstract plan vector v. Unlike a plan vector v, v does
not instantiate the operators per platform. Instead, it simply
indicates the possible alternatives per operator by assigning
the value —1. For example, for the logical plan in Figure 3(a)
the first three cells for the Filter operator would be 2, —1, —1,
respectively, denoting that there are two Filter operators in p
which can be executed either on Java or Spark.

(2) enumerate(v) — V: It receives an abstract plan vector
v and outputs a plan vector enumeration V = (s, V'), where
each v; € V represents an alternative execution plan for v. It
must hold that: s = O. Essentially, this operation figures out
how the operators must be instantiated with their alternative
execution operators, i.e., it creates all possible plan vectors
(execution plans) for the given abstract plan vector T.

(3) unvectorize(v) — p: This is the reverse operation of the
vectorize operation. It translates back a query plan p from its
plan vector representation v into a format that the system can

LOT COT

Id Logical Operator(UDF) Parent

Id Conversion Operator Parent

o1 TextFileSource - co1 JavaCollect Os
02 Filter(month) 01 coz | SparkCollectionSource| co1
03 TextFileSource - co3 SparkCollect o7
04 Filter(country) 03

05 Map(project) 04

Og Join(customer_id) 02, 05

o7 |ReduceBy(sum_&_coun| o0s

Os Map(label) o7

Og CollectionSink [of]

Fig. 6: Logical plan shape: Logical and conversion opera-
tors tables, which are required to unvectorize a plan vector
into an executable execution plan.

execute. To achieve this, we use two auxiliary structures that
capture the exact shape of a query plan: the Logical Operators
Table (LOT, for short) and the Conversion Operators Table
(COT, for short). LOT keeps the structure of the logical query
plan and is immutable through the entire enumeration process.
COT keeps the processing platform switches in a specific
execution plan, being, thus, specific to each plan vector. The
optimizer reconstructs a query plan p by reading the LOT
and COT tables and replacing each operator by its execution
operator(s) as denoted by its plan vector v. Figure 6 illustrates
these tables for the execution plan in Figure 3(b).

Assuming that opt(V) returns the fastest plan vector of
V, one can use these three core operations to define an
exhaustive plan enumeration algorithm for a logical plan p
as unvectorize(opt(enumerate(vectorize(p)))).

D. Auxiliary operations

Although one can use only the core operations to
solve the plan vector enumeration problem, enumerating the
exponential-size search space €, is impractical. A logical plan
with n operators, each having k execution operators, results to
k™ possible execution plans. We thus introduce three auxiliary
operations that ease the design of more efficient enumeration
algorithms by plugging a pruning mechanism, and at the same
time enable parallelism: split, iterate, and merge.

(4) split(v) — V: It divides a plan vector ¥ into a set of
plan vectors V, which are pair-wise disjoint and their union
is equal to the set of operators of v. Formally: Vv;,7; € V:
O3, N 03, = () and U5 v Os, = Og. For example, we could
split a plan vector into singleton plan vectors (i. e., query plans
containing a single operator) to render the plan enumeration
process parallelizable.

(5) iterate(V1,Vs) — list((v1,v2)), v1 € Vi,vg € Vo It
gets as input two plan enumerations V; = (s1,V7) and Vy =
(s2, V) and returns a list of all possible pairs of plan vectors,
where the first element of each pair is from V; and the second
from V5. That is, it returns the cartesian product of V7, V5.
(6) merge(vy,v2) — v: It receives two plan vectors vy, vg,
having equal number of features, and outputs a single vector
v. The resulting vector v represents the concatenation of the
two subplans corresponding to v; and vo. In detail, we merge
two plan vectors as follows. The topology cells of v; and v
are added up to produce the new cells of v, with the exception
of the first cell that is the pipeline, for which we keep the

maximum value of the two. The reason behind this is that
when concatenating two pipeline subplans the resulted plan is
still a single pipeline. For the operators and data movement
cells we simply add up their values, while for the input tuple
size, we take the max value of the two plan vectors’ feature
cells. merge is commutative and associative, i.e., the order of
its application on plan vectors does not affect the final result.

Example 1 (Plan concatenation with vectors): Figure 7
illustrates the concatenation of two plan enumerations Vi, Vs
as a result of the iterate and merge operations. V; corresponds
to the subplan containing the Reduceby followed by the Map
in Figure 3(a), while 1V, corresponds to the execution subplan
containing just the CollectionSink operator. The concatenated
plan enumeration V1o contains the plan vector vi49, resulted
by merging plan vector v, (consisting of a Spark Reduceby
followed by a Spark Map) with plan vector vy, (consisting of
a Java CollectionSink). v142, consists of all three operators:
Reduceby followed by Map and CollectionSink. Similarly, V;2
contains also the merged plan vectors v142p, V1p2a, V1b2b. WE
do not illustrate all four vectors due to space limitations.

E. Pruning operation

We now introduce the prune operation, which allows us to
reduce the search space significantly.

(7) prune(V,m) — V': It receives a plan vector enumeration
V = (s,V) and a model m and outputs a new pruned
plan vector enumeration V' = (s’, V'), where V' C V and
s’ = s. The model m is an oracle that given a plan it
returns its cost: It can be a cost model, an ML model, or
even a pricing catalogue. We instantiate this prune operation
with a novel pruning technique that ensures that no subplan
that is part of the optimal plan will be pruned. This pruning
technique builds upon the notion of boundary operators in
plan vector enumerations. A boundary operator in a plan
vector enumeration with scope s is adjacent to some other
operator outside of s, i.e., belonging to another plan vector
enumeration. The rationale is that if two plan vectors in
the same plan vector enumeration share the same boundary
operators, pruning the plan with the highest cost will not affect
the process of finding V. Formally:

Definition 2 (Boundary Pruning): Let V = (s,V) be a plan
vector enumeration and s, C s be the set of its boundary
operators. The boundary pruning removes all v; € V for which
there is another v; € V' that (i) employs the same platforms
for all s, operators as v;, and (ii) has a lower cost than v;
w.r.t. model m.

In our case, m is an ML model that predicts the runtime of
a plan vector. The prune operator invokes the ML model for
each v; € V and compares the predicted runtimes among the
plan vectors that employ the same platforms in their boundary
operators. It keeps the one with the lowest predicted runtime.

To apply this pruning, we need to retrieve the boundary
operators from a plan vector efficiently. For this reason, we
introduce the pruning footprint vector (see Figure 7). This
vector keeps the number of boundary operators per platform

Plan vector enumeration 71

__Planvector Via- - - - - _ _ oo - Pruning footprint vector

Plan vector enumeration 72
__Planvectorvaa - - - _ _ _ _ _ __ __ ______.i__

[Elelole].. EIEEIORICEREYY . S G o Jo[[o[-[ool . /y [EIIBIEL.. [+ [+ o[+ o[o o [+[ado]. T .. |

__Planvectorvib- - — - _ _ e

: B 1 0 1 1 0 0 0 1 1m 4k ... [120
U |

Y |
ReduceBy Map Collect

Plan vector enumeration 712

= D S e s coccooocacaonocanccoocooocoocooaconoo oo

—
ReduceBy Map

: meraeliteratef:. 7)) :|1|°|°|0|...|1|0|1|1|°|°| |1|4k|0|__ :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, aln

—_— !
|
CollectionSink

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Pruning footprint vector - -

[EIoIolo]... KNCIRNENCICNCNRNTTY . SRR . | [[+ [o [0 [o] i [s[o [oo} . Jo[+[o[7 ... J1[o[s[oL....

==
ReduceBy Map

CollectionSink ReduceBy CollectionSink

pruning match

Fig. 7: Plan concatenation: Concatenating two plan vector enumerations V; and V,. In the resulted concatenated plan
vector enumeration)5, the plan vector with the highest estimated runtime among the plans that have a pruning
match is pruned. Our pruning technique reduces the search space from an exponential to a quadratic size.

(yellow cells) and the operator identifier per platform (grey
cells). Whenever there is an exact match on the pruning
footprint vector of a set of plan vectors, the optimizer keeps
the plan vector with the lowest cost.

Example 2 (Pruning footprint): The plan vector vig2, in
Figure 7 has boundary operators the Spark ReduceBy and Java
CollectionSink, whose identifiers from the ROT table are 7 and
9 respectively. The pruning footprints of the plan vectors v1424
and v1p2, (bottom part of Figure 7) match and hence one can
safely prune the one with the highest cost, €. g., v1p24-

An important property of the boundary pruning is that
it is lossless, i.e., it does not prune any plan vector of a
subplan p that is contained in the optimal plan p,,;, resulting
from unvectorize(vyin). This is because the boundary pruning
technique operates only over those plan vectors having the
same pruning footprint vector: non-boundary operators in a
plan vector do not affect the cost of consequent plan vectors.

V. PRUNING-AWARE PLAN ENUMERATION

We now describe how Robopt uses the above algebraic
vector operations to find the execution plan with the lowest
estimated runtime for a given logical query plan. The literature
for traversing the plan search space can mainly be divided
into two strategies: bottom-up or top-down. In Robopt, this
means starting either from the source or the sink operators,
respectively. However, both strategies are pruning-oblivious
and hence might not be very efficient in reducing the search
space. We thus introduce a plan enumeration algorithm that is
driven by the priority of each partial plan vector enumeration
V: it chooses to concatenate (and prune) first those plan vector
enumerations with high priority. We argue that it is highly
beneficial if such priority is in accordance with the used
pruning technique (the boundary pruning in our case).

A. Plan vector enumeration priority

We define the priority of a plan vector enumeration V as
the cardinality of the plan vector enumeration resulted from
the concatenation of V with its children, i.e., the total number

of plan vectors in the resulting plan vector enumeration. The
higher the cardinality is, the higher the priority is. Formally:

Definition 3 (Plan Vector Enumeration Priority): Given
a plan vector enumeration V = (s, V) and its children plan
vector enumerations VC = {Vi,...,V,,}, where m is the
number of V’s children, we define the priority of V as:
V] x Iy, eve| Vil

Example 3 (Plan Vector Enumeration Priority): Assume
that the Join operator (OPg) in Q). of Figure 3(a) has three
alternative execution operators (in Java, Spark, and Postgres),
i.e., [Vop,| = 3, while the ReduceBy operator (OP7) has
only two alternative execution operators (in Java and Spark),
i.e., |Vop,| = 2. Then, the priority of the plan vector
enumeration for Join is equal to |Vop,| X |Vop,| = 6.

By using this priority, our algorithm is neither top-down
nor bottom-up: it rather exploits the entire search space
simultaneously leading to greater pruning opportunities. The
rationale behind this priority definition is twofold. First, the
more inner (i.e., non-boundary) operators exist in a plan
vector, the more effective our pruning technique. Second, the
more plan vectors with the same boundary operators in a plan
vector enumeration, the larger the pruned search space. Still,
one could change the priority to result into the standard top-
down or bottom-up strategies (e.g., a priority defined as the
distance between the last operator of a subplan and the sink
operator results into a bottom-up traversal).

B. Priority-based plan enumeration

Algorithm 1 depicts our priority-based plan enumeration
process, which uses the pre-defined algebraic operations. It
takes as input a logical query plan and an ML model that
predicts the runtime of execution plans and passes through
four main phases: (i) it vectorizes and splits the input query
plan into singleton abstract plan vectors (Line 2); (ii) it
enumerates each singleton plan vector and sets their priority
(Lines 3-5), (iii) it concatenates the resulting singleton plan
vector enumerations based on their priority (Lines 6-13), and
(iv) it outputs the plan with the minimum estimated runtime
according to the ML model (Line 18). The reason of first

Algorithm 1: Priority-based plan enumeration

1 Function Ma1n

Input: p, ML //logical query plan, ML model
Output: xp,,;, /foptimal execution plan

2 V = split(vectorize(p));

3 foreach 7; € V do

4 L V Q.enqueue(enumerate(7;));

5 V Q.setPriorities();

6 | while VQ.size() > 1 do

7 Y = VQ.dequeue();

8 foreach V. € getChildren(V) do

9 Py = iterate (V,V,);

10 Vi =0;

11 foreach (v1,v2) € Py do

12 v = merge (vq, V2);

13 V' .append(v);

14 |V = prune (', ML);

15 V.setPriority();

16 VQ.enqueue(V);

17 B V Q.updatePriority(get Parents(V));

18 | TPmin = unvectorize (getOptimal(V,ML));

creating singleton plan vector enumerations (Lines 2-5) is
to guide the entire plan enumeration process based on the
plan vector enumerations’ priority. We detail below the plan
enumeration process and we discuss how we build a robust
ML model for query runtime prediction in the next section.

Let us now explain how Robopt incrementally concatenates
the plan vector enumerations until a final plan vector enumera-
tion for the entire input query plan is created. It first dequeues
a plan vector enumeration from the priority queue VQ (Line 7)
to concatenate it with its children’s plan vector enumerations to
get a new plan vector enumeration V' (Lines 8-13). Note that in
case of equal priority between two plan vector enumerations,
we take the one introducing the less number of new boundary
operators. If the equality continues, we consider the order with
which they were entered in the queue. In more detail, it uses
the iterate operation (Line 9) to go through all possible pairs of
plan vectors (Line 11) between two plan vector enumerations
and merge them using the merge operation (Line 12). After
each child’s concatenation, it uses the boundary ML-based
pruning operation (see Section IV-E) to significantly reduce the
number of plan vectors in V (Line 14). Once the concatenation
with all V’s children’s is done, Robopt computes the priority
of the resulting plan vector enumeration V and updates the
priority of its parents’ plan vector enumeration (Lines 15-
17). It terminates when queue VQ has only one plan vector
enumeration, which is the final plan vector enumeration,
i.e., V = Vnin- As a final step, it feeds all plan vectors in V to
the ML model to estimate their runtime, outputs the fastest one
according to the ML model and uses the unvectorize operation
to return the corresponding execution plan (Line 18). As our
pruning is lossless, our algorithm can determine the optimal

execution plan with respect to the ML model.

Note that our fine-granular operations allow us to easily
change Algorithm 1. For example, our boundary-operator
pruning is similar to the concept of interesting sites in
distributed relational query optimization [18], which is an
instance of interesting properties [30]. Hence, on can easily
extend the enumeration algorithm to account for other inter-
esting properties by simply modifying the prune operation.
In addition, by changing the priority metric to be equal to the
distance of an operator from the source or sink, one can easily
design a bottom-up or top-down enumeration algorithm.

Lemma 1: The boundary pruning reduces the search space
from O(k™) to O(nk?), where n is the number of operators
and k the number of platforms.

Proof: Let p be a pipeline logical plan having n operators each
being able to be executed in k platforms. We will show that
using the pruning of Definition 2 we have |Q,| = (n—1) x k2.
The plan enumeration of p is composed of n — 1 steps in
total, where in each step we concatenate a single operator to
the previous composed subplan. In the first step of the plan
enumeration, we compose plans of two operators and therefore
pruning is not possible. This results in &2 possible plan vectors.
For each next step, we have 2 boundary operators and thus,
k? combinations of platforms for these boundary operators.
For each such combination, we keep only the plan with the
lowest estimated time (see Definition 2). We, thus, end up with
(n — 1) x k? total execution plans. O

VI. TRAINING DATA AT SCALE

Although ML-based query optimization is a promising
direction, its effectiveness strongly depends on the training
data. In our case, a large amount of disparate execution plans
(data points) together with their runtime (labels) is required.
However, it is not only hard to find thousands of queries but
also impractical to execute thousands of execution plans for
different input dataset sizes in a reasonable amount of time.

In contrast to works that utilize previously executed work-
loads as training data [36], we assume that there is no or very
limited access to query workloads. Therefore, we accompany
our ML-based query optimizer with a scalable training data
generator (TDGEN). The generator allows for producing a
representative training dataset in three different ways: (i) users
can provide their real query workload and let the generator
to create a specified number of training data that resembles
their query workload, (ii) users can specify only the shapes
(e.g., pipeline- or loop-style as specified in Section IV) and
the maximum size (i.e., number of operators) of the queries
they expect to have, and (iii) users can let the generator
to exhaustively create training data of all possible query
shapes given the maximum number of operators only. Overall,
TDGEN proceeds in two main phases: the job generation,
which is basically generating the training data points, and log
generator, which assigns labels to each training data point. We
explain each of these two phases below.

A. Job generation

TDGEN starts by creating synthetic logical plans of differ-
ent shapes and sizes. In case a user provides a real query
workload, TDGEN extracts the shapes and maximum size
of the given queries and creates similar synthetic query plan
templates. It then populates these query plan templates with
logical operators so that the input (output) of each operator
complies with its parent’s output (children’s input, respec-
tively). It can populate a query plan template with all possible
combinations of logical operators or with a randomly chosen
set of logical operators. The result is a set of logical plans.

Next, TDGEN uses our priority-based plan enumerator to
create a number of execution plans for each logical plan. The
difference is that it uses a different pruning operation to prune
the search space. It uses as a heuristic the number of platform
switches. The idea is to prune an execution plan that has more
than 3 (by default 8 = 3) number of platform switches as this
is very unlikely to be an optimal execution plan in practice.
Our algebraic operations defined in Section IV allowed us to
easily reflect these changes. Then, TDGEN instantiates each
execution plan with different configuration profiles, which
provide input dataset sizes, UDF complexities and selectivities
of the involved execution operators. An execution plan with a
specific configuration profile specifies a runnable job.

B. Log generation

Running all jobs is practically infeasible, because they
are not only too many but also often have a large input
cardinality and thus, take very long time to terminate. To
overcome this challenge TDGEN proceeds in two steps. First,
given a set of jobs J with the same structure (execution
plan), it actually runs only a subset J, C J. This set
J, includes: (i) all the jobs with small input cardinalities,
(ii) few jobs with medium and large input cardinalities, and
(iii) only jobs with low and high UDF complexity. Second,
it imputes the runtime of each j € J;, with J; = J \ J,
via polynomial interpolation using the already executed jobs
J-. We use piecewise polynomial interpolation with degree
5% in order to learn the function that fits the points of 7.
Figure 8 exemplifies this log
generation process: the blue
points are executed jobs of “ooono
plans consisting of 6 opera-
tors with different input car-
dinality (7,) while the green
line predicts the runtime of
all unknown the jobs (J;).
TDGEN uses interpolation
for all different types of ex-
ecution plans.

8

uuuuuu

Runtime (sec)

100000

000 025 050 075 100 125 150 175 2.00
7

Input cardinality (#tuples)

Fig. 8: Interpolation to pre-
dict jobs runtime.

VII. EVALUATION
We integrated Robopt, which comprises more than 6,000
lines of Java code, in Rheem*. We compare Robopt with the

3Degree 5 was giving us better accuracy without sacrificing runtime.
“https://github.com/rheem-ecosystem/rheem

TABLE I: Number of enumerated subplans.

(#ops, #iplats) | (52) (53) (54 (55 (202) (203) (204) (20,5)
W pruning 36 117 272 525 156 522 1232 2,400
w/o pruning 60 724 4,090 15618 106 10° 102 104

previous cost-based optimizer of Rheem (RHEEMix) [3], [21],
[22] and with the approach of simply replacing the cost model
with an ML model without using vectors in the plan enumera-
tion (Rheem-ML). We used the same pruning strategy in both
baselines to have a fair comparison. We aim at answering the
following: (i) How efficient is Robopt compared to these two
baselines (Section VII-B)? Can Robopt match the ability of
the cost-based optimizer to (ii) choose the best platform for
performing a given query (Section VII-C1)? and (iii) boost
performance by using multiple platforms (Section VII-C2)?

A. Setup

We ran all our experiments on a cluster of 10 machines, each
with: 2 GHz quad-core CPU, 32 GB memory, 1 TB storage, 1
Gigabit network, and 64-bit Ubuntu OS. We used Java 9 (with
vectorization enabled), Spark 2.4.0, Flink 1.7.1, GraphX 1.6.0,
Postgres 9.6.2, and HDFS 2.6.5. We, in purpose, considered
data processing platforms that are quite similar in terms of
capability and efficiency as underlying platforms: Having two
platforms with quite similar performance makes it harder for
an optimizer to choose the fastest, which better evaluates the
effectiveness of Robopt. We used each of these platforms with
their default settings and 20 GB of max memory. We set up
Rheem with its default settings and hand-tuned its cost-based
optimizer as doing so produced a more precise cost model
than using the cost learner explained in [3].

For building the ML model in Robopt, we tried linear
regression, random forests, and neural networks and found
random forests to be more robust. Still, one can plug any
regression algorithm. Further investigating models for runtime
prediction is out of the scope of our paper. We generated
training data generated with TDGEN by giving as input three
different topology shapes (pipeline, juncture, and loop) and a
maximum number of operators equal to 50. Generating the
training data and building the ML model took only a couple
of days. No further tuning was then required.

B. Robopt efficiency and scalability

We first evaluate the efficiency and scalability of Robopt.
We measured the latency of the optimization process for
increasing number of operators and platforms: from the time
that we receive the logical plan until the time we have the
execution plan. In this evaluation, we used synthetic logical
plans consisting of an increasing number of operators and
assume all operators are available in 2 —5 platforms. Note that
having plans with many operators is not unusual, especially
for complex workflows, e. g., a simple query of finding similar
words contains 26 operators.

Figure 9(a) shows the latency of the plan enumeration with
increasing number of operators for two platforms. We observe
that Robopt scales better than all baseline systems. This is
thanks to its vector-based plan enumeration that speeds up
processing by performing primitive operations. Rheem-ML

1400 900

Exhaustive enumeration Exhaustive enumeration

1 Rheemix 1} Rheemix
% 1050 | Rheem-ML @ 675 | & Robopt
E A Robopt . £
g 700 x & 450
H I3
2 2
-] P © o
- 350 -1 225 —
X e A
o _— A
e — a
o g “ ot
5 20 40 80 2 3 4
operators # platforms

(a) 2 platforms (b) 5 operators

1800

16000

O Rheemix
Robopt

O Rheemix
4 Robopt

o
@
&
3

N

12000

8000 A

Latency (ms)
S o
o o
o o
\
Latency (ms)

4000 P

G

o

0 o=—x
2 3 4 5 2 3 4

platforms # platforms

(c) 20 operators (d) 80 operators

Fig. 9: Robopt efficiency and scalability: Its vector-based plan enumeration is much more efficient than simply replacing
the cost model with an ML model (Rheem-ML in the figure). In addition, it is more scalable than the cost-based in
both the number of operators in a plan and the number of underlying platforms.

confirms this aspect: keeping the traditional plan enumeration
and calling the ML model as an external black box leads to up
to 11x worse performance. We observed that Rheem-ML took
47% of the time just vectorizing the subplans when calling
the ML model. Invoking the ML model for both approaches
took only 10% of the optimization time on average. In fact,
an optimizer based on our vectorized enumeration but without
pruning (exhaustive enumeration in Figure 9(a)) is also faster
than RHEEMix and Rheem-ML for 5 operators.

Figures 9(b), 9(c), and 9(d) demonstrate the scalability of
Robopt. Note that we do not report the Rheem-ML baseline as
we already showed that it is outperformed by all other methods
with only two platforms. We do not report the exhaustive
enumeration’s numbers for 20 and 80 operators either, because
it cannot run at such a scale due to the large number of
enumerated plans (see Table I). This shows the efficiency
of our pruning technique. Overall, we observe Robopt scales
gracefully and its superiority becomes more apparent as the
number of operators and platforms increases. For example,
for 80 operators with 3 platforms Robopt takes 0.5s, which is
half the time of RHEEMix (1.1s). This performance difference
increases exponentially with the number of platforms: it can
be more than one order of magnitude different. This is
because there is a huge overhead of concatenating and pruning
subplans when using objects rather than when merging and
matching vectors using primitive methods.

We additionally show the benefit of our enumeration
algorithm using the traditional top-down and
bottom-up enumeration strategies as baselines.
We could easily implement
top-down and bottom-up by
simply adjusting the priority
function to measure the dis-
tance from a given operator
to the sources and sink, re-
spectively. Figure 10 illus- 1
trates the results for plans
with increasing number of
joins. In the worst case,
Robopt performs similarly to
the top-down enumeration (i.e., for small queries with 2
joins). As the number of joins and the number of platforms

1000000 W Robopt (3 plats)
W Top-down (3 plats)
I Bottom-up (3 plats)

1000

Latency (ms)

joins
10: Effectiveness of
priority-based enumeration.

Fig.

TABLE II: Real queries and datasets.

Query Description #operators Dataset (size)

WordCount count distinct words 6 Wikipedia (30MB — 1TB)
Word2NVec word neighborhood vectors 14 Wikipedia (3MB — 3GB)
SimWords clustering of similar words 26 Wikipedia (3MB - 3GB)
TPC-H Q1 aggregate query 7 TPC — H (1GB - 1TB)
TPC-H Q3 join query 18 TPC — H (1GB - 1TB)
Kmeans clustering 7 USCensus1990 (36MB — 1TB)
SGD stochastic gradient descent 6 HIGGS (740MB - 1TB)
CrocoPR cross-community pagerank 22 DBpedia (200MB — 1TB)

increases, the benefit of our enumeration is evident: up to
2.5 improvement factor over the top-down and up to 8.5
improvement factor over the bottom-up. This is thanks to our
priority-based enumeration strategy, which in most of the cases
results in enumerating less number of subplans.

Note that, even if we enabled vectorization in Java, the
improvement factor was only 60% on average. This is a well-
known problem in Java and there are already efforts that aim
at improving this. We expect that in the future our approach
can benefit even more with more efficient SIMD support.

C. Robopt effectiveness

Although Robopt’s optimizer is quite efficient, one may
wonder how well it performs in choosing execution plans as
the execution time is the lion’s share in the total query runtime.
For this reason, we evaluate the effectiveness of Robopt in
comparison with Rheem’s cost-based optimizer (RHEEMix) in
two different execution modes: single platform execution and
multi-platform execution. In this evaluation, we considered
a broad range of real data analytics queries and datasets
(Table II) in the fields of text mining, relational analytics,
machine learning, and graph mining, also used in [3], [13],
[21]. Most of these are in Rheem’s repository’. As in this
experiment we are solely interested in performance, and not
in the correctness of the results, we varied the datasets size
up to 1TB by replicating the input data.

1) Choosing a single platform: We first evaluate the suc-
cess of Robopt in choosing a single platform to run a query
and compare it with RHEEMix. For this, we set Rheem to
choose only one platform for executing a query.

Figure 11 presents the results for the eight queries of
Table II and for increasing dataset sizes. Each bar in the
graphs shows the runtime of each underlying platform and
the red and green triangles show the choice of Rheem and
Robopt, respectively. We observe that in most cases Robopt

Shttps://github.com/rheem-ecosystem/rheem-benchmark

10000

M Java

¥ Rheemix ¥ Robopt

M Spark

10000

M Java Y Rheemix ¥ Robopt
M Spark

10000

M Java v Rheemix ¥ Robopt

10000

M Java Y Rheemix ¥ Robopt [l ¥

S 1000 | Fimk 1000 | Fiink
L L
[A4 Q
100 v
£ v v I Bva S E 10 vvi@vy
€ v Y t 22 A4 M/
g 10 2
o 1] 1] o |1 (1] |
1 1
003 03 15 3 6 24 1000 3 30 60 90 150
Dataset size (GB) Dataset size (MB)
(a) WordCount (b) Word2NVec
10000 :
W Java ¥ Rheemix YRobopt _y M Java v Rheemix ¥ Roboptym -
— W Spark v — 10000 | ™ Spark
S 1000 Flink vy v [Flink
())
2 < 1000
[v [
g 100 v £
v
E v £ 100
H S
g 10 I 2 10
1 1
1 10 100 200 1000 36 361 3610 1M

Dataset size (GB)

Dataset size (MB)

- I Spark —_ I Spark M
§ 1000 Flink g 1000 Flink A
2 A Yy
g 100 g 100 vy
H £ VY
K 10 £ 10 II I
1 1
3 30 60 9 150 1 10 100 200 1000
Dataset size (MB) Dataset size (GB)
(c) SimWords (d) Aggregate
[l Java v Rheemix ¥ Robopt M Java v Rheemix v Robopt
< 10000 | M Spark 5 5 10000 | B Spark 5 5
] Flink 3 Flink
o 1000 < 1000
£
£ 100 £ 100
c c
3 =1
o 10 3 10

0.74 1.85
Dataset size (GB)

37 74

14.8 1000

-

1 5

10 20
Dataset size (GB)

1000

(e) Join

(f) K-means

(2) SGD

(h) CrocoPR

Fig. 11: Single-platform execution mode: Robopt matches or improves the performance of the execution plans derived
from Rheem’s well-tuned cost model. The red and green triangles denote the choices of Rheem and Robopt, respectively.

chooses either the same platform with RHEEMix or a faster
one. For example, for the WordCount (Figure 11(a)), both
Robopt and RHEEMix choose the fastest platform, i.e., Java
for the smallest dataset size and Spark for the rest. For
Word2NVec (Figure 11(b)), in contrast to RHEEMix, Robopt
always chooses the fastest platform, i.e., it chooses Spark
for all dataset sizes while Rheem chooses Flink instead. The
only case where Robopt chose to run a query on a slower
platform than the one chosen by RHEEMix is for Aggregate
with 10GB input. However, the performance difference in this
case is only 3sec: Spark executes the query in 31s and Flink
in 34s. More interestingly, we observe that Robopt chooses
the fastest platform in 84% of the cases while RHEEMix does
so in only 43% of the cases. Table III summarizes the results
of Figure 11 by showing the maximum and average runtime
difference of Robopt and RHEEMix from the optimal runtime
(diff*) for each query. Among the cases where Robopt does
not choose the fastest platform, its maximum performance
difference from the optimal is only 343sec (for SGD with
1TB input). In contrast, RHEEMix’s maximum performance
difference from the optimal goes up to 90min (for CrocoPR
with 1TB input). Interestingly, when removing these two cases
(SGD for Robopt and CrocoPR for RHEEMix), we observe
that Robopt’s average overhead for each query is in the order
of milliseconds while for RHEEMix ranges from seconds to
minutes. These results confirm the caveats of a cost model and
the benefit of an ML-based model in a cross-platform setting:
(i) the parameters to tune are so many that makes manual
tuning very hard, (ii) the cost formulas RHEEMix uses are
linear, which do not reflect the real interactions of the different
parameters, (iii) ML models are more efficient in capturing
complex relationships resulting in better performance.

2) Combining multiple platforms: We proceed to evaluate
if Robopt is able to combine multiple platforms to speed

Query

diff;
max

Rheemix

avg

max

avg

‘WordCount
‘Word2NVec
SimWords
Aggregate
Join
K-means
SGD
CrocoPR

0
8
0
305
1152
5
343
5412

0

5

0
73.8

317.2

1.25
120
828

w
O O WO~ O

w

0
0.2
0
0.6
0.8
0
63
0

TABLE III: Summary results of Figure 11 in seconds.

e
diffy,

up the execution of a single query. For this experiment,
we compared again Robopt’s performance with RHEEMix’s
performance as well as with the runtimes of running the
query on a single platform. In contrast to previous experiment,
we show the results only for those queries where Robopt
or RHEEMix selected multiple platforms: namely K-means,
SGD, and CrocoPR. The rest of the queries perform better on
a single platform and hence Robopt and RHEEMix selected
a single platform for such queries. We thus omit showing
the results for these queries as we already showed them in
the previous section. We also varied different parameters for
each of these three queries to better evaluate Robopt: the
number of centroids for K-means, the batch size for SGD,
and the number of iterations for CrocoPR. To further stress
the necessity of cross-platform, for CrocoPR we show two
cases: the data is initially stored in HDFS (CrocoPR-HDFS)
and the data is stored in Postgres but need to be cleaned
from null values (CrocoPR-PG). As Postgres is not suitable of
running Pagerank for CrocoPR-PG, using different platforms
is mandatory.

Figure 12 show the results. We observe that Robopt outper-
forms any single-platform execution for all three queries. Sur-
prisingly, we observe that Robopt also outperforms RHEEMix
for K-means and SGD. For K-means (Figure 12(a)), in contrast
to RHEEMix that chooses to execute the entire plan on Spark,
Robopt is able to find a plan that combines Spark with
Java. This plan uses Java to keep the centroids and broadcast

10000 W Java W Spark

M Java & Spark Flink

M Rheemix M Robopt

Runtime (sec)
Runtime (sec)

[Spark+Javal
—
]
Spark+Java
Spark+Java

1 100 1000

batch size

(b) SGD

centroids

(a) K-means

Flink W Rheemix I Robop{

M Java
M Rheemix

[Spark
M Robopt

Flinl

W Java I Spark
M Rheemix M Robopt

100 1 10

100 100

Runtime (sec)

Runtime (sec)
ink+Java

Fnk|
#iterations

(d) CrocoPR-PG

Flink+Java
Flink+Java
Pg+Flink+Java
Pg+Flink+Javal
Pg+Flink+Java
Pg+Fli
Pg+Flink+Java

1 10

100

#iterations

(c) CrocoPR-HDFS

Fig. 12: Multiple-platform execution mode: Robopt matches the performance of the execution plans derived from
Rheem’s well-tuned cost model; Robopt even outperforms Rheem’s execution plans, such as for SGD.

them to the Spark operators. Broadcasting the centroids as
a collection is more beneficial than broadcasting them as an
RDD. This minor change in the plan leads Robopt to 7x better
performance than RHEEMix: the benefit increases with the
number of centroids. For SGD (Figure 12(b)), although Robopt
selects the same platforms (Spark and Java) as RHEEMiXx,
it is able to outperform RHEEMix by factor 2 on average.
This is because Robopt produces a slighter different plan: it
does not place a cache operator before the Sample operator,
which is inside a loop. Although caching the data before a
loop seems a rational decision, it is not always beneficial as
it strongly depends on the operator(s) used after the cache.
In this case, SGD uses the ShufflePartitionSample operator,
which shuffles a partition the first time it is called and then
sequentially retrieves data points from that partition. For this,
this operator keeps a flag of whether it is the first time that
is executed. Therefore, having a cache operator before this
sampling operator causes the loss of the sample operator’s
state. This results into a high overhead for shuffling the data
in each iteration. Such cases are very hard to spot and even
harder to model in a cost formula. However, Robopt is able
to find such cases by observing patterns in the execution logs.

For CrocoPR (Figures 12(c) and 12(d)), we observe that
Robopt produces exactly the same execution plan as RHEEMix.
When the data is in HDFS, this plan uses Flink to preprocess
the data and encode them as integers. Then, as the data is
compressed, Java performs faster the pagerank algorithm as
it has lower overhead than Spark or Flink. This leads both
Robopt and RHEEMix to run up to twice faster than Spark (the
fastest single-platform execution in this case). As Postgres is
not suitable for running pagerank, for CrocoPR-PG we used
as baseline the common practice of moving the data out of
Postgres to a single platform to perform the task. Robopt and
RHEEMix filter out the null values in Postgres and then move
the rest into Flink for the preprocessing and Java for pagerank,
similary to the previous case.

Finally, we ran the Join

query in a different scenario
in order to further evaluate
the effectiveness of Robopt.
We now assume that the in-
put data of this query is
stored on Postgres. In this
case we additionally com-
pare Robopt with the execu-

M Postgres (Pg)
10000 | M Rheemix
M Robopt

Runtime (sec)
=)
8

100
Dataset size (GB)

Fig. 13: Join query.

tion of Join on Postgres, which is the obvious platform to run
this query as the data already resides on it. The results are
quite interesting (Figure 13). First, we observe that Robopt
significantly outperforms Postgres, even though the input data
is stored there: it is up to 2.5x faster than Postgres®. This is
because it simply pushes down the projection into Postgres
and then moves the data into Spark to perform the join and
aggregation, thereby leveraging the parallelism of Spark. Note
that Robopt has the same performance as RHEEMix as both
produce the same execution plan.

Conclusion. All above results confirm the high efficiency and
scalability of Robopt as well as its superiority over all base-
lines. Robopt can match, and sometimes exceed, RHEEMix’s
success in choosing good execution plans in both single-
and multiple-platform settings. This is in addition to being
more efficient and scalable than RHEEMix. Finally, recall
that Robopt requires much less tuning effort. It took us only
a couple of days of automatic training data generation. In
contrast, RHEEMix took us a couple of weeks to correctly
tune its cost-model and achieve its most efficient results.

VIII. RELATED WORK

There are few cross-platform optimizers in the literature,
either rule-based [35] or cost-based [1], [3], [8], [13], [24].
However, they all require substantial effort from the system
administrators to produce efficient execution plans. The rest of
the cross-platform systems, such as [6], [10], do not provide
any optimizer but rely on the users to specify the platforms to
use or the desired execution plan.

Most works that explore the use of ML in query optimiza-
tion focus on using ML as a black box in one module of the
query optimizer: e.g., selectivity estimation [14], [17], [23],
[28], [32] and join ordering [20], [25]. Other works use ML
to aid the cost model of the optimizer [31], [38]. Robopt
differs from these works as it uses ML as an integral piece
of the cross-platform optimization and embeds ML into the
core of optimization itself. More recently Neo [26] puts all
these together into an end-to-end learned query optimizer. For
its plan enumeration it uses a DNN-guided learned best-first
search strategy, which cannot always find the optimal plan
due to its heuristic nature. In contrast, our plan enumeration
is guaranteed to find the optimal plan w.r.t. the ML model
while being both efficient and scalable.

SWe use cold caches in all cases.

Pg+Flink+Java

Researchers have also used ML in other aspects of systems.
For instance, few works use ML to ease the task of DBAs,
such as tuning DBMSs configurations [29], [33] or building
the correct indices [19]. There are also works that use ML
for performance prediction [4], [9], [11], [27], [34], [37].
However, the goal of all these works is different from Robopt
as they need to predict the runtime of each query only once.

IX. CONCLUSION

We presented Robopt, an ML-based optimizer whose goal is
to find an efficient plan by combining multiple data processing
platforms. Robopt uses ML as a core component to guide the
plan enumeration and prune the search space. More impor-
tantly, it uses a set of algebraic operations on plan vectors
to speed up the plan enumeration process via vectorized
execution. Its plan enumeration algorithm is pruning-aware
and hence more efficient. As training data is crucial for any
ML-based solution, we accompanied Robopt with a scalable
training data generator which uses polynomial interpolation
to generate not only synthetic queries but also impute their
execution time. We evaluated Robopt by comparing it with
Rheem’s cost-based optimizer, and showed how it can improve
performance with almost no tuning effort.

ACKNOWLEDGMENTS

This work was funded by the German Ministry for Ed-
ucation and Research as BIFOLD - Berlin Institute for the
Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

REFERENCES

[1] D. Agrawal, M. L. Ba, L. Berti—Equille, S. Chawla, A. K. Elmagarmid,
H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and M. J. Zaki. Rheem: Enabling
Multi-Platform Task Execution. In SIGMOD, pages 20692072, 2016.

[2] D. Agrawal, S. Chawla, A. Elmagarmid, Z. Kaoudi, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and M. J. Zaki. Road to freedom
in big data analytics. In EDBT, pages 479-484, 2016.

[3] D. Agrawal, B. Corteras-Rojas, S. Chawla, A. Elmagarmid, Y. Idris,
Z. Kaoudi, S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, P. Papotti, J.-
A. Quiané-Ruiz, N. T. S. Thirumuruganathan, and A. Troudi. Rheem:
Enabling Cross-Platform Data Processing — May The Big Data Be With
You! PVLDB, 11(11):1414-1427, 2018.

[4] M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. B. Zdonik.
Learning-based Query Performance Modeling and Prediction. In ICDE,
pages 390401, 2012.

[5] F. Andres, F. Kwakkel, and M. L. Kersten. Calibration of a DBMS Cost
Model with the Software Testpilot. In CISMOD, pages 58-74, 1995.

[6] E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. J. Mior, and D. Lemire.
Apache Calcite: A Foundational Framework for Optimized Query Pro-
cessing Over Heterogeneous Data Sources. In SIGMOD, pages 221-230,
2018.

[71 P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, pages 225-237, 2005.

[8] K. Doka, N. Papailiou, V. Giannakouris, D. Tsoumakos, and N. Koziris.
Mix 'n’ match multi-engine analytics. In BigData, pages 194-203, 2016.

[9] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Perfor-

mance Prediction for Concurrent Database Workloads. In SIGMOD,

pages 337-348, 2011.

A. Elmore et al. A Demonstration of the BigDAWG Polystore System.

PVLDB, 8(12):1908-1911, 2015.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and

D. Patterson. Predicting Multiple Metrics for Queries: Better Decisions

Enabled by Machine Learning. In ICDE, pages 592-603, 2009.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Gardarin, F. Sha, and Z. Tang. Calibrating the Query Optimizer Cost
Model of IRO-DB, an Object-Oriented Federated Database System. In
VLDB, pages 378-389, 1996.

I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, and
S. Hand. Musketeer: All for one, one for all in data processing systems.
In EuroSys, pages 1-16. ACM, 2015.

M. Heimel, M. Kiefer, and V. Markl. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In
SIGMOD, pages 1477-1492, 2015.

A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. WWHow! Freeing Data
Storage from Cages. In CIDR, 2013.

Z. Kaoudi and J.-A. Quiané-Ruiz. Cross-Platform Data Processing: Use
Cases and Challenges. In ICDE, pages 1723-1726, 2018.

M. Kiefer, M. Heimel, S. BreB3, and V. Markl. Estimating Join Selec-
tivities Using Bandwidth-optimized Kernel Density Models. PVLDB,
10(13):2085-2096, 2017.

D. Kossmann and K. Stocker. Iterative dynamic programming: A new
class of query optimization algorithms. TODS, 25(1):43-82, 2000.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case
for Learned Index Structures. In SIGMOD, pages 489-504, 2018.

S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica.
Learning to Optimize Join Queries With Deep Reinforcement Learning.
CoRR, abs/1808.03196, 2018.

S. Kruse, Z. Kaoudi, J.-A. Quiané-Ruiz, S. Chawla, F. Naumann, and
B. Contreras-Rojas. RHEEMix in the Data Jungle — A Cross-Platform
Query Optimizer. arXiv: 1805.03533 https://arxiv.org/abs/1805.03533,
2018.

S. Kruse, Z. Kaoudi, J.-A. Quiané-Ruiz, S. Chawla, F. Naumann, and
B. Contreras-Rojas. Optimizing Cross-Platform Data Movement. In
ICDE, pages 1642-1645, 2019.

H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality
Estimation Using Neural Networks. In CASCON, pages 53-59, 2015.
J. Lucas, Y. Idris, B. Contreras-Rojas, J. Quiané-Ruiz, and S. Chawla.
RheemStudio: Cross-Platform Data Analytics Made Easy. In ICDE,
pages 1573-1576, 2018.

R. Marcus and O. Papaemmanouil. Deep Reinforcement Learning for
Join Order Enumeration. In aiDM Workshop, pages 3:1-3:4, 2018.

R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. Neo: A Learned Query Optimizer.
PVLDB, 12(11):1705-1718, 2019.

R. C. Marcus and O. Papaemmanouil. Plan-Structured Deep Neural Net-
work Models for Query Performance Prediction. PVLDB, 12(11):1733—
1746, 2019.

J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning
State Representations for Query Optimization with Deep Reinforcement
Learning. In DEEM Workshop, 2018.

A. Pavlo et al. Self-Driving Database Management Systems. In CIDR,
2017.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access Path Selection in a Relational Database Management
System. In SIGMOD, pages 23-34, 1979.

P. Shivam, S. Babu, and J. Chase. Active and Accelerated Learning of
Cost Models for Optimizing Scientific Applications. In VLDB, pages
535-546, 2006.

K. Tzoumas, A. Deshpande, and C. S. Jensen. Lightweight graphical
models for selectivity estimation without independence assumptions.
PVLDB, 2011.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic Database
Management System Tuning Through Large-scale Machine Learning. In
SIGMOD, pages 1009-1024, 2017.

S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics. In NSDI, pages 363-378, 2016.

J. Wang et al. The Myria Big Data Management and Analytics System
and Cloud Services. In CIDR, 2017.

C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao.
Towards a Learning Optimizer for Shared Clouds. PVLDB, 12(3):210—
222, 2018.

W. Wu, Y. Chi, H. Hacigiimiis, and J. F. Naughton. Towards Predicting
Query Execution Time for Concurrent and Dynamic Database Work-
loads. PVLDB, 6(10):925-936, 2013.

N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang.
Statistical Learning Techniques for Costing XML Queries. In VLDB,
pages 289-300, 2005.

