
Farming Your ML-based Query Optimizer’s Food
Robin van de Water3∗ Francesco Ventura1 Zoi Kaoudi1

Jorge-Arnulfo Quiané-Ruiz1,2 Volker Markl1,2

1Technische Universität Berlin (TU Berlin) 2 DFKI GmbH 3Hasso Plattner Institut (HPI)
robin.vandewater@hpi.de {francesco.ventura, zoi.kaoudi, jorge.quiane, volker.markl}@tu-berlin.de

Abstract—Machine learning (ML) is becoming a core compo-
nent in query optimizers, e.g., to estimate costs or cardinalities.
This means large heterogeneous sets of labeled query plans or
jobs (i.e., plans with their runtime or cardinality output) are
needed. However, collecting such a training dataset is a very
tedious and time-consuming task: It requires both developing
numerous jobs and executing them to acquire ground-truth
labels. We demonstrate DATAFARM, a novel framework for
efficiently generating and labeling training data for ML-based
query optimizers to overcome these issues. DATAFARM enables
generating training data tailored to users’ needs by learning from
their existing workload patterns, input data, and computational
resources. It uses an active learning approach to determine a
subset of jobs to be executed and encloses the human into
the loop, resulting in higher quality data. The graphical user
interface of DATAFARM allows users to get informative details
of the generated jobs and guides them through the generation
process step-by-step. We show how users can intervene and
provide feedback to the system in an iterative fashion. As an
output, users can download both the generated jobs to use as a
benchmark and the training data (jobs with their labels).

I. INTRODUCTION

Machine learning (ML) has gained a prominent role in
query optimization both in academia and industry. Most of the
proposed techniques are based on supervised learning and thus
require the acquisition of valuable data to train the models on.
The effectiveness of such models depends on the quantity and
quality of data and the availability of labels. This requirement
of large amounts of high-quality data quickly becomes a
roadblock in the context of query optimization. First, collect-
ing many real query plans (jobs) with labels (e.g., execution
time or cardinality values) requires developing thousands of
heterogeneous plans, both optimal and sub-optimal. Second,
after gathering these thousands of plans, one must execute
them to get their label. The latter is very time-consuming, as it
leads to the execution of numerous jobs, including sub-optimal
ones. For example, collecting labels for only 500 OLAP Flink
jobs with input data of about 1TB in our four-quadcore-nodes
cluster takes almost 10 days. This duration is problematic
because learning a model typically requires several thousands
of jobs. Extrapolating this to 10, 000 jobs would require more
than 6 months! Even if logs are available, the query plans
contained in the logs are the ones the optimizer chose to
execute, and thus most of them are (near-)optimal. Using only
these plans would lead to a biased ML model, which would
be ignorant of the performance of “bad” plans.

*Work done while conducting his master thesis at TU Berlin.

Surprisingly, there has been little progress in tackling the
problem of generating labeled query workloads. Most works
on ML-based optimizers still assume the availability of train-
ing data exploiting both private and public, often synthetic,
datasets to develop and test their solutions [2], [4], [5], [11]. In
contrast to other domains, where advanced data augmentation
techniques play a significant role [6], just a few preliminary
attempts have been made in data management [1]. We still rely
on task-specific benchmarking workload generators, such as
TPC-H or TPC-DS, which produce homogeneous workloads
with low variance from a few fixed patterns. Furthermore, none
of these benchmarks provide labeling: one still has to execute
a vast amount of queries.

To tackle this challenge, we recently proposed DATAFARM
in the context of Agora [8]. DATAFARM is a novel framework
for generating training data for learned query optimizers [10].
DATAFARM follows a data-driven white-box approach to
augment an initial small query workload and attach labels
(e.g., runtime) to each generated query. Its benefits are nu-
merous: (i) Its data-driven approach allows for augmenting
an initial query workload so that the newly generated plans
fit users’ needs; (ii) Its execution strategy allows for selec-
tively running generated plans and imputing label estimates to
the non-executed plans, which reduces label collection time
drastically, and; (iii) Its white-box strategy allows users to
understand and debug every step of the process and trust its
outcome.

Our demo will showcase the three main components of
DATAFARM [10] and its newly added feature that encompasses
the human in the training data generation [9]. The main idea
behind the new feature is that users know their query workload
better and can thus interact with the system to ultimately obtain
training data efficiently and with high quality. To achieve this,
users can analyze all the jobs via an intuitive and easy-to-use
graphical user interface (GUI) that provides several insights
into the generation process. In summary, we will demonstrate
how DATAFARM: (i) guides users through the entire training
data generation process step-by-step via its GUI; (ii) walks
users through its data visualizations to better understand and
compare the query generated workloads with the initial query
workload; (iii) allows users to intervene in the generation
process to provide feedback iteratively; (iv) enable users to
not only get training data but also download the generated
queries to be used as a query workload benchmark.



Abstract 
Plan 

Generator

Job 
Instantiator

Label 
Forecaster

Input Data

Metadata

Computing resources

Active 
Learning

Training Data

Executed job

Non-executed 

jobs

Fig. 1: DATAFARM training data generation process.

II. DATAFARM OVERVIEW

Our goal is to produce a large volume of training data
(i.e., query workload with labels) for ML-based query op-
timizers in a reasonable amount of time. We aim for a
data-driven white-box augmentation strategy that additionally
provides labels for each query. Developing an efficient and
reliable training data generation framework comes with many
challenges: (i) Jobs should be representative of the exist-
ing small workload and, at the same time, heterogeneous;
(ii) Jobs should be executable and realistic; (iii) We have to
generate reliable labels without executing all generated jobs;
(iv) Considering that we afford to execute a small set of
queries only, we need to determine which is the smallest set of
representative queries to execute; (v) We have to determine the
best information and visualization that aids the human towards
queries that should be executed.

We tackle all these challenges with DATAFARM. The input
of DATAFARM is a (typically small) set of dataflow jobs, and
the output is an augmented (much larger) set of jobs together
with a label (e.g., runtime or output cardinality). DATAFARM
comprises three main components [10]: (i) the Abstract Plan
Generator, (ii) the Synthetic Job Instantiator, and (iii) Label
Forecaster (Figure 1). We briefly explain each component and
detail how the human aids in the labeling phase.

A. Abstract Plan Generator

The goal of the Abstract Plan Generator (APG) is to learn
the patterns that appear in the input workload to generate new
jobs that both contain meaningful sequences of operators and
are representative of the real ones (challenges (i)&(ii)). APG
takes as input a real workload of jobs, learns the relations
and patterns between the operators, and generates various new
heterogeneous abstract plans. An abstract plan is a DAG of
operators without an actual operator implementation, such as
selection predicates for Filter operators or join keys for
Join operators. In more detail, APG proceeds in two phases:
the query patterns learning and the query plans generation.
(1) Query Patterns Learning. APG first learns the patterns of
the input jobs by analyzing each input plan as a Markov Chain.
Each operator in the plan represents a possible state of the
system independent from the previous and the next one. APG
learns two transition matrices (parent and child) which, given
one operator, contain the probability of each possible transition
up and down in the plan. It computes these probabilities based
on the relative frequency of an operator in each input plan.

(2) Query Plans Generation. Then, given the parent and child
transition matrices, APG creates abstract plans. To do so,
it iteratively samples the probability mass function of the
current operator from the child transition matrix and decides
which should be the next operator to insert in the abstract
plan. Whenever the algorithm encounters a Join operator, it
consults the parent matrix to build the plan backward. Note
that probabilities are used as weights when sampling and, thus,
a transition having zero probability will never appear in any
abstract plan. These weights ensure that our generated abstract
plans are always valid and realistic.

B. Synthetic Job Instantiator

The abstract plans outputted by APG cannot be executed
yet for two reasons. First, they are not concrete jobs and,
second, the operators’ user-defined functions (UDFs), such
as selection predicates, have not been instantiated yet. The
goal of the Synthetic Job Instantiator (SJI) is to generate
a representative and heterogeneous query workload that can
be successfully executed (challenges (i)&(ii)). It is thus of
primary importance to instantiate UDFs tailored to the actual
data distribution. Managing the wide range of UDFs along
with their parameters and the possible join orderings that can
be implemented is quite challenging. SJI takes as input the
abstract plans generated by APG. For each of them, it creates
different job instances. It combines possible input parameters
extracted from the input data metadata, such as the distribution
of filterable values and the input data schema. This metadata
primarily comprises structural information and statistics that
add significant value to the instantiation process. The output is
an augmented set of realistic jobs along with a set of operator-
level information about the instantiated jobs (i.e., job instances
metadata). We note that SJI leverages statistical analysis of the
input data and exploits the input metadata to ensure a realistic
instantiation for each operator, ensuring that they are always
executable. For example, Joins are performed only among
joinable fields. DATAFARM provides a handful of interfaces
allowing users to extend the default operators’ instantiation
with custom user’s UDFs [10].

C. Active Learning Label Forecaster

Executing a large query workload to get the labels is
impractical as discussed earlier. DATAFARM overcomes this
limitation by determining a small subset of jobs to be executed
while forecasting the labels of the non-executed jobs (chal-
lenges (iii)&(iv)). The Label Forecaster (LF) exploits an active
learning approach and uses quantile regression forests (QRF).
The principle of LF is to execute only the most informative
jobs and forecasting the non-executed jobs’ labels using a QRF
model. Thus, iteration after iteration, LF executes only jobs
that add new information to the QRF model.

It is evident that the human alone cannot manually select
among thousands of jobs that must be executed. For this
reason, at each iteration of active learning, LF suggests a
subset of jobs by using PCA to extract a small set of principal



components from the jobs’ features. Then, it identifies a user-
specified number of groups of jobs through agglomerative
clustering and selects the centroids of the clusters as a sample
of jobs to propose to the user. This procedure allows one to
execute jobs with maximum inter-differences. Subsequently,
users can refine this subset to one that they believe will lead
to a better QRF model and, thus, a better quality of the
training data. Next, LF trains a predictive model with the
features of the executed jobs and the collected runtimes (or
output cardinality). Finally, it exploits the features of the non-
executed jobs and the model to predict the missing labels and
attach uncertainty values to them. The uncertainty forms one
of the aspects that helps the user to select the jobs to execute
in the subsequent iterations more easily (challenge (v)).

Every new iteration is potentially very costly due to the
jobs’ execution time; we, therefore, use a stopping condition to
meet a good trade-off between predictive performance and the
number of executed jobs. DATAFARM takes a conservative ap-
proach on the number of executed jobs and suggests stopping
every time the model’s uncertainty shows a significant drop.
The user then decides whether to stop or continue the labeling
process. The output of the whole process is an augmented
dataset of labeled jobs tailored to the input query workload,
input data, and computational resources.

D. Results

To evaluate the quality of our training data, we generated
2000 jobs from only 6 TPC-H queries. We construct four
training sets that differ on the process of obtaining the labels:
The first training set contains ground truth labels that we
obtain after executing all jobs, while the other three contain
labels acquired by sampling 166 jobs to execute and using
the ML model of the Label Forecaster to predict the labels
of the rest. We used three different sampling mechanisms:
(i) random, (ii) agglomerative clustering (DATAFARM without-
the-human), and, (iii) manually modifying the set suggested
by the agglomerative clustering (DATAFARM with-the-human).
Based on these four training sets, we build four QRF models,
respectively, and predict our input query workload runtimes
using each model.

Figure 2 shows the root mean square error of each model.

Executed
 Completely

Executed
 Randomly

DataFarm
 (without the

 human)

DataFarm
 (with the
 human)

Training Set

0.0

0.5

1.0

RM
SE

 
 (l

ow
er

 is
 B

et
te

r)

0.38
0.61

0.39 0.30

Fig. 2: Models’ RMSE, trained
on sets with different labels.

We observe that the quality
of training data generated
by DATAFARM is as good
as the ground truth (green
and blue bars, respectively).
Most notably, we observe
that DATAFARM (with-the-
human) outperforms not
only DATAFARM (without-the-human) but also the ground
truth model. This result is possible because the user can
determine the essential features for the ML model and make
modifications according to her observations (adding and
removing jobs). Note that DATAFARM with-the-human can
achieve better performance than when obtaining labels by
executing the complete set of jobs because overfitting can be

avoided. We observed that the combination of job selection
time and execution time is similar for the three sampling
mechanisms described above. Thus, DATAFARM with-the-
human does not significantly increase the total sampling
duration, despite manual involvement. We observed similar
results, in terms of prediction performance and sampling
duration, for three other query workloads composed of over
3000 jobs, based on real-world IMDB data.

III. DEMONSTRATION

The goal of our demonstration is to enable the audience to
understand: (i) how the different phases of DATAFARM are
crucial for generating training data for ML-based optimizers;
(ii) how the human-in-the-loop can help this process, and
(iii) how one can use DATAFARM to combine any input
query workload with any input dataset to generate queries and
training data. We will demonstrate DATAFARM using the real-
world IMDB dataset to generate Apache Flink1 jobs.

A. Scenarios

We assume two users: Bob and Alice. Bob is a system
administrator responsible for the ML-based optimizer of Sys-
tem X. The optimizer includes an ML model that predicts
the runtime of each query plan, which is then used as a
cost during the plan enumeration. Thus, Bob needs training
data (i.e., queries with their runtime as labels) to build his
ML model. On the other side, Alice is an administrator of
a traditional cost-based System Y. Although she does not
require training data, she still needs a large query workload to
benchmark, profile, and tune System Y.

The audience will be able to play the role of either Alice
or Bob, which consists of three main steps: (1) generating
abstract plans, (2) instantiating the abstract plans for execution,
and (3) labeling the plans. Steps (1) and (2) are similar for
both Alice and Bob. Step (3) targets users like Bob.
Step (1) – Abstract Plan Generation. Alice (or Bob) uploads
a small query workload. DATAFARM analyzes it and provides
various visualizations and statistics: e.g., it clusters the jobs
based on a similarity metric that Alice chooses (e.g., the
number of operators). Alice can also inspect and modify the
children and parent matrices created by the Abstract Plan
Generator. She then chooses the number of abstract plans to
generate, the maximum number of operators per plan, and the
total number of joins per plan. Once DATAFARM generates
the abstract plans, Alice can inspect the plans via a scrolling
window and go back to modify some initial knobs and generate
new abstract plans from scratch if necessary.
Step (2) – Jobs Instantiation. As the abstract plans generated
in step (1) cannot be executed yet, the next step is to instantiate
them, i.e., to create the actual jobs. By default, DATAFARM
instantiates all plans. However, assume that Alice does not
want plans with iterations, so she removes them from the
job’s instantiation process. She also specifies the number of
instances per plan and configures the generated queries to

1https://flink.apache.org/

https://flink.apache.org/


Fig. 3: Active Learning Controller

Fig. 4: Job Explorer

be executed as Flink jobs. DATAFARM generates new jobs
and returns statistics and visualizations about the generated
workload. If she is not satisfied with the new jobs, she can still
go back to any step of the generation process. At this point, she
downloads the generated jobs and uses them to tune System
Y. Bob, in contrast, needs the execution time of the generated
jobs to use in his ML model training. He, thus, decides to
proceed with the labeling process provided by DATAFARM.
Step (3) – Labels Generation. Bob is the main actor in the
active learning process. He specifies the initial number of jobs
that have to be executed, provides an uncertainty threshold, a
maximum number of iterations, and his time budget; he also
determines whether DATAFARM should proceed with execut-
ing the suggested candidate set of jobs or a modified set. He
does so by inspecting the various facets of the active learning
controller shown in Figure 3 and selecting or deselecting jobs
for execution. DATAFARM then runs these jobs and provides
Bob with a visualization of all jobs and their uncertainty levels.
Bob can then zoom in to observe specific jobs or check their
feature importance via the Job Explorer (see Figure 4). If he
is happy with the results, he downloads the training data and
starts building the ML model for his query optimizer. If the
results are not satisfactory, Bob can instruct DATAFARM to
execute more jobs so that the model accuracy improves.

B. User Experience

DATAFARM comes with a user-friendly interactive GUI
that will smoothly walk the audience through the training
generation process. Most notably, the GUI facilitates users
to explore and modify the suggested set of candidate jobs,
thus improving user experience. The audience will be able to
browse the suggested jobs, add or remove jobs, execute the

next iteration, and download the training data with the current
forecasted labels. The GUI consists of two main parts: the
Active Learning Controller and the Job Explorer.

The Active Learning Controller (Figure 3) includes main
information statistics, such as the number of executed jobs
and the model performance so far. Furthermore, it has sev-
eral collapsible sections, in accordance with the progressive
disclosure principle [7]: performance statistics, job features,
uncertainty values of individual jobs, instantiated job char-
acteristics, and model explainability. For instance, users can
identify the current model performance and determine if they
will continue to run extra iterations of the label forecaster
to increase accuracy. Another example of helpful information
includes the model explainability analysis, which consists of
several model explanation visualizations generated using the
SHAP [3] library. The audience will be able to realize how
much each feature contributes to model predictions and decide
to execute particular jobs to gain a better model.

The Job Explorer (Figure 4) follows the same principle and
displays detailed information about one particular job. For
example, it contains a “similar jobs” section, which shows
executed jobs comparable in operator length, cardinalities, and
data sources. This interface element helps a user with the job
selection process. For instance, if the label of a particular job
deviates significantly from similar jobs, the user can decide to
execute this job to increase model performance.
Acknowledgments. This work was funded by the German
Ministry for Education and Research as BIFOLD – Berlin
Institute for the Foundations of Learning and Data (ref.
01IS18025A and ref. 01IS18037A).

REFERENCES

[1] Z. Kaoudi, J. Quiané-Ruiz, B. Contreras-Rojas, R. Pardo-Meza,
A. Troudi, and S. Chawla. ML-based cross-platform query optimization.
In ICDE, pages 1489–1500, 2020.

[2] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In
CIDR, 2019.

[3] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. In NIPS, pages 4765–4774. 2017.

[4] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. Neo: A learned query optimizer.
Proc. VLDB Endow., 12(11):1705–1718, July 2019.

[5] R. Marcus and O. Papaemmanouil. Plan-structured deep neural net-
work models for query performance prediction. Proc. VLDB Endow.,
12(11):1733–1746, 2019.

[6] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré. Snorkel:
Rapid training data creation with weak supervision. Proc. VLDB Endow.,
11(3):269–282, Nov. 2017.

[7] A. Springer and S. Whittaker. Progressive Disclosure: Empirically
Motivated Approaches to Designing Effective Transparency. In IUI,
page 107–120, 2019.

[8] J. Traub, Z. Kaoudi, J.-A. Quiané-Ruiz, and V. Markl. Agora: Bringing
together datasets, algorithms, models and more in a unified ecosystem
[vision]. SIGMOD Record, 49(4), 2021.

[9] R. van de Water, F. Ventura, Z. Kaoudi, J. Quiané-Ruiz, and V. Markl.
Farm Your ML-based Query Optimizer’s Food! – Human-Guided Train-
ing Data Generation –. In CIDR, 2022.

[10] F. Ventura, Z. Kaoudi, J. Quiané-Ruiz, and V. Markl. Expand your
Training Limits! Generating and Labeling Jobs for ML-based Data
Management. In SIGMOD, pages 1865–1878, 2021.

[11] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep unsupervised
cardinality estimation. Proc. VLDB Endow., 13(3):279–292, Nov. 2019.


	Introduction
	DataFarm Overview
	Abstract Plan Generator
	Synthetic Job Instantiator
	Active Learning Label Forecaster
	Results

	Demonstration
	Scenarios
	User Experience

	References

