
Prescriptive Learning for Air-Cargo Revenue
Management

Stefano Giovanni Rizzo∗, Yixian Chen†, Linsey Pang†, Ji Lucas∗, Zoi Kaoudi‡, Jorge Quiane‡, Sanjay Chawla∗
∗Qatar Computing Research Institute, Doha, Qatar

{strizzo, jlucas, schawla}@hbku.edu.qa.com
†Walmart Labs, Sunnyvale, CA, USA

{yixian.chen, linsey.pang}@walmartlabs.com
‡TU Berlin, Berlin, Germany

{zoi.kaoudi, jorge.quiane}@tu-berlin.de

Abstract—We propose RL-Cargo, a revenue management ap-
proach for air-cargo that combines machine learning prediction
with decision-making using deep reinforcement learning. This
approach addresses a problem that is unique to the air-cargo
business, namely the wide discrepancy between the quantity
(weight or volume) that a shipper will book and the actual
amount received at departure time by the airline. The discrep-
ancy results in sub-optimal and inefficient behavior by both the
shipper and the airline resulting in an overall loss of potential
revenue for the airline. A DQN method using uncertainty
bounds from prediction is proposed for decision making under a
prescriptive learning framework. Parts of RL-Cargo have been
deployed in the production environment of a large commercial
airline company. We have validated the benefits of RL-Cargo
using a real dataset. More specifically, we have carried out
simulations seeded with real data to compare classical Dynamic
Programming and Deep Reinforcement Learning techniques on
offloading costs and revenue generation. Our results suggest that
prescriptive learning which combines prediction with decision-
making provides a principled approach for managing the air
cargo revenue ecosystem. Furthermore, the proposed approach
can be abstracted to many other application domains where
decision making needs to be carried out in face of both data
and behavioral uncertainty.

I. INTRODUCTION

The revenue of commercial airlines is primarily derived

from sales of passenger tickets and cargo (freight) shipments.

While most modern airlines have implemented sophisticated

data-driven passenger revenue management systems, for cargo

the situation is different. The air-cargo ecosystem is complex

and involves several players including shippers, freight for-

warders, airlines and end-customers. Overall, there are three

fundamental differences between passenger and cargo revenue

management [1] [2] [3]:

(1) In the case of cargo revenue, the unit of sale is highly

dynamic due to substantial variability in both volume and

weight of cargo shipments. It is different from the static unit

of sale, an airline seat, in the case of passenger revenue.

(2) In the air-cargo management ecosystem, there is no

penalty of overbooking for customers. A large chunk of air

cargo capacity is pre-booked by freight forwarders who tend to

overbook and release capacity closer to the date of departure.

Overbooking often leads to offloading, which has a cost in

terms of storage and rerouting for the airline company.

Fig. 1. The x-axis is booked volume (bkvol). The y-axis is received volume
(rcsvol). In an ideal scenario, all bookings should fall in the rcsvol = bkvol
diagonal line. Instead, received volume widely differs from the booked
volume, representing a challenge for accept/reject decision-making. For con-
fidentiality reasons, the axis range is obfuscated.

(3) It is well known that cargo capacity is often volume-

constrained, i.e., the aircraft will reach volume capacity before

it reaches weight capacity. However, this makes revenue

management even harder because the volume measurements

are less accurate than the weight ones. Figure 1 illustrates

this fact further that there exists a large discrepancy between

received and booked volume.

Due to these major differences, air-cargo business requires

not only to accurately predict the quantity (weight and volume)

of an item that will be tendered but also to make decisions

on whether to accept or reject a booking for a certain flight.

This will enable the airline to greatly increase the efficiency of

capacity utilization. However, prediction and decision-making

in an air-cargo setting is non-trivial because of three main

reasons. First, the quality of cargo booking data varies among

shippers. Shippers often send information using text messages,

emails, spreadsheets, voice calls, or even intermediate their

462

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00055

bookings through freight forwarders. Second, there are no

good features for predicting the final quantity that will be

received. Employees working in the cargo revenue teams use

their intuition to decide whether to accept a shipment for a

flight or to reroute through another flight. Third, offloading

and rerouting cargo incur high costs in terms of storage and

rerouting, which somehow constraints the decision-making.

We present the RL-Cargo system that deals with the above

challenges. Although the use of formal decision-making is

well established in the revenue management community [4],

RL-Cargo is the first work that puts all pieces together to

provide a complete pipeline for the air-cargo revenue man-

agement problem: given an incoming booking it (i) identifies

if there might exist a substantial difference between the booked

volume and the one that might be tendered, (ii) predicts

the volume that will be tendered, and (iii) considers such a

volume prediction to make an acceptance/rejection decision.

A version of RL-cargo has been tested in production in a large

airline company1. In particular, after surveying related work in

Section II, we make the following contributions in Section III:

(1) We model air-cargo revenue management as a prediction-

driven sequential and stochastic optimization problem, where

the true state (total volume) is realized at departure time. We

formulated it as a Markov Decision Process and then solved

by using Dynamic Programming and Deep Reinforcement

Learning to find the optimal policy to maximizes the revenue

for each cargo flight. This model tightly integrates the above

prediction model in order to make more reliable decisions.

(Section III-B, Section III-C and Section III-D)

(2) We propose an uncertainty-aware Q-value function for the

DQN method, to take into account the uncertainty bounds

of the prediction, resulting in a safer decision making and

a substantial reduction in offloading costs. (Section III-D)

(3) We evaluate the RL-Cargo using real data taken from

the airline company. We demonstrate that our prediction-

based decision-making technique helps the airline company

to increase the total revenue and decrease the offloading cost.

(Section IV)

We conclude this paper with a discussion, some lessons

learned from the project, and future work in Section V.

II. RELATED WORK

To the best of our knowledge the proposed solution is

the first known cargo revenue management approach which

combines prediction and decision making optimization. We

overview related work in these subareas.

The discipline of Revenue Management (RM) is an ad-

vanced and well developed topic within the Operations Re-

search (OR) community. It has roots in the airline industry

and has now expanded in other areas, including hotels and

tourism [4]. The initial focus in the airline industry was primar-

ily on passenger RM, in particular how to price passenger seats

in order to maximize revenue [5]. A strand of relevant work

that has appeared in the data mining literature is the problem

1We omit the company name for confidentiality reasons.

of determining overbooking rate, forecasting the number of

no-shows per flight, i.e., the percentage of bookings that were

made but did not show up by departure time [6], [7]. No-shows

are a common problem in air-cargo too and several works have

proposed solutions [8], [9].

While RM for passenger seats is now a well developed area,

the same is not true for cargo management. The first research

overview of issues surrounding air cargo revenue management

were introduced in [10]. Since then the research literature has

seen a steady growth with works including [1], [11]. Our work

closely follows the decision making paradigm introduced by

[3] for modeling both volume and weight aspects of bookings

in air-cargo RM. The main innovation of our approach is

that we integrate machine learning prediction into the decision

making process using deep reinforcement learning to address

the real-world cargo revenue management.

III. PROPOSED SYSTEM: RL-CARGO

The main components of RL-Cargo are shown in Figure 2:

(i) Cargo Predictor, and (ii) Decision-Maker. RL-Cargo system

has offline and online modes. In online mode, given an

incoming booking, the Cargo Predictor gets as input the

booking from the RM system, extracts the relevant features

from the booking, and predicts the volume expected to be

tendered by the customer, together with a prediction interval

to model the uncertainty of the decision. Then, the Decision-

Maker gets the incoming booking with the predicted volume

that will be tendered and takes a decision whether to accept

or not the booking via our DQN module. The offline mode

is composed of the process of data cleaning to generated a

training seet, training of GBM model for volume prediction

and DQN training in our simulated environment. We detail

each of these steps in the following three sections.

A. Predicting Cargo Volume

Given an incoming booking, RL-Cargo proceeds to predict

rcsvol (i.e., the received volume by departure time) for the

given booking, as shown in Figure 2. To do so we need to

offline build a model using historical data as illustrated in

the middle-bottom of Figure 2. We thus need to (i) decide

on the features and (ii) decide on the algorithm to use.

Predicting rcsvol is quite challenging as the bkvol is usually

quite different from rcsvol. Figure 4 illustrates this difficulty.

The vertical lines provide a clear indication that we need

other features besides bkvol to have any chance of accurately

predicting rcsvol.
We thus experimented with extracting different feature

combinations until we settled on a set that provides a good

compromise between model complexity and accuracy. More

formally, given a sample of bookings, we formed a feature set

X and mapped each booking i as an element xi ∈ X and

the rcsvol as yi ∈ R+. The prediction task then becomes a

regression problem, where we have to learn a function

fθ : X→ R+

463

Fig. 2. The RL-Cargo DQN system mainly consists of two components: a prediction component to estimate rcsvol and a decision-making DNQ engine to
decide which bookings to accept in order to maximize expected revenue.

DAYS
BKW

T

PIE
CES

BKVOL
SHC

PRODUCT
DMV

DEST
ORIG

0.0

0.1

0.2

0.3

Fe
at

ur
e

im
po

rta
nc

e

Fig. 3. Features importance. For categorical features, such as product, the
value of the category with the maximum importance is shown.

Figure 3 shows the set of features we use, which were the

most important ones, for predicting rcsvol:

• Days until departure (DAYS): The most important

feature by far is the number of days between the booking

time and the departure time. Bookings closer to the

departure time tend to be more accurate. In fact, bookings

that are time-stamped several days before departure day

tend to show a clear pattern of overbooking from the

customer side (and hence of using DMV, the flag showing

the disguised missing values in data). It is natural for

shippers to overbook as in the air-cargo business there is

no penalty for that.

• Booked weight (BKWT): Contrary to bkvol, which

usually tends to be a DMV, bkwt is a valuable informa-

tion. This is because shipping agents have a much more

accurate information of bkwt as they have access to high

quality weighing machines. Indeed, instruments for ac-

curately measuring volume are not that widespread [12],

[13]. Thus, being easier to measure, bkwt is on average

more precise.

• Number of pieces (PIECES): A shipment may consist

of a number of equal units. Diagonal lines in Figure 4

suggest that bookings frequently differ from the tendered

shipments in the number of pieces rather than in their

volume. Thus, knowing the number of pieces is useful

in predicting possible outcomes at receiving time. For

example, if two pieces where booked for a bkvol of

12m3, with volume for each piece of 6m3, it is unlikely

that a single piece will be split and the rcsvol will

become 4m3. It is in fact much more likely that it may

become 6m3, 18m3, or 24m3.

• Booked volume (BKVOL): We observed that, despite of

DMVs, the booked volume, bkvol, is still an important

feature for predicting rcsvol. This is because when bkvol
is not a DMV, it tends to be precise.

• Shipment code (SHC): This is a set of codes to instruct

how the shipment must be handled, e.g., live animals

or perishables. This feature ended up being important

as it specifies over (or complements the) the product

type explained here below. We encode the shipment code

feature as a binary vector with one element for each

shipment code (one-hot encoding).

• Product type (PRODUCT): We observed that the pat-

terns in rcsvol vary with different product type. In theory

product type should be a highly informative feature, but

we observed that the distribution of product types is

skewed.

• DMV Flag (DMV): An important observation we made

is that customers often send arbitrary but fixed values

as proxies for NaN. In the data cleaning literature, these

proxy values are often called Disguised Missing Values

(DMVs) [14], [15] Because DMVs are frequent and must

be dealt within a production environment, we decided not

to remove DMV data from the training set. At the same

time, giving their negative impact in the prediction, it is

464

Fig. 4. Values of bkvol and related rcsvol in shipments from historical data for a given range of bkvol. Circled in green are vertical patterns that are evidently
disguised missing values.

important to know if a booking has a DMV for bkvol. For

this reason, we provide a flag, which is obtained by the

DMV Detector based on historical data. Some examples

of DMVs are shown in Figure 4.

• Destination (DEST): We also consider the destination as

a feature, even if the destination alone is a weak predictor

for rcsvol. This is because in conjunction with product

type it becomes possible to elicit subtypes within products

and thus reduce the variance.

• Origin (ORIG): The origin airport of the shipment. This

feature allows capturing the average behavior of booking

agents from each location.

We also experimented with using both random forests (RFs)

and gradient boosting machines (GBMs) [16] for building

the model. GBMs are ensemble methods and are known to

perform well “out of the box”. They can also easily handle a

mixture of datatypes including numeric and categorical data.

Recall that for a prediction problem the error can be decom-

posed into a sum of bias and variance [17]. On the one hand,

RFs reduce the error by reducing variance as they combine

independently generated deep trees on bootstrapped samples.

GBMs, on the other hand, reduce the bias by building shallow

trees in a sequential manner, where each subsequent tree is

trained by using the dependent variable as the residuals of the

previous one. In our case, even though we trained the model

to make predictions at the booking level, we were primarily

interested in making flight level predictions, which are an

aggregation of booking level predictions. Therefore, while

GBM predictions fluctuate more and individual predictions are

further from the actual value, the differences cancel each other

out at the flight level, that is, the aggregation of bookings at the

flight level will automatically result in variance reduction. This

has been confirmed by evaluating both models for booking

level and flight level prediction. On the booking level, the

variance in GBM predictions is more than 5 times higher than

RF predictions. However, at the flight level, the mean absolute

error of RF is 87.1% higher than the GBM error. For these

reasons, in our production deployment we have used GBMs.

B. Model of the environment

Once the volume is predicted from bkvol and the de-

scribed booking features, the Decision-Maker creates an ac-

ceptance/rejection suggestion for the given booking. Before

digging in how it does so, let us first state what the problem of

decision making in the context of airline cargo booking is. For

any flight, capacity is a perishable quantity, i.e., once the flight

takes-off the capacity is lost. Therefore, an airline wants to

accept bookings that will maximize revenue. The problem can

be seen as a generalization of the classic Knapsack problem

with two caveats: (i) cargo bookings appear over time and the

exact volume (weight) of the shipment becomes available only

at departure time. We, thus, model this problem as a stochastic

dynamic program [3], [18].

We thus model this problem as a Markov Decision Process

(MDP) [19].A Markov Decision Process is generally described

by a set of all the states s referred to as state space S
(s ∈ S), a set of all actions a given by the action space A

(a ∈ A), a reward function R(s, a) which depends on the

current state and action, and a transition probability T (s, a, s′)
that action a in state s will result in state s′. At each time

t, a decision maker observes the state of the system. As a

result of choosing an action in a state following the Markovian

assumption, the system probabilistically evolves into a new

state and the decision maker receives a reward r. A discount

factor γ is generally included so that immediate rewards are

valued more than rewards that could be obtained in the future.

The sequential decision making problem is to find an optimal

policy π∗ to maximize the expected reward sequence.

π∗ = argmax
π

E[

T∑
t=0

R(st, at)|π]

Our MDP formulation is as follows:

1) State Space

The state space (S) vector contains the information

generated during the booking process regarding accep-

tance/rejection of cargo. It includes the volume of items

that have been assigned to a flight for the ith product

type (xi), the time remaining for the booking process

465

to departure (t), the product type of the latest item (i)
assigned booking.

S = {i, bkvol, x1, x2, ..., xn, t}
We can illustrate the state by the following example. At

each time step, only one shipment booking can arrive,

t days prior to departure, of booked volume bkvol
and product type i. Additionally, the freight shows

that the volume booked in the product type 1,2,..,n are

x1, x2, ..xn respectively.

2) Action Space

At every time step, there are one of the two decisions

which are accept (a1) or reject (a0), that can be made.

The action space (A) is given by:

A = {a0, a1}
3) Reward Functions

The reward for accepting a booking is computed using a

revenue function R(voli) based on the volume and the

product type i of the booking. We follow a synthetic

pricing table found in [3] to implement the revenue

function. The received volume rcsvol is not known

before departure time, instead a proxy value for the

real reward can be computed using the booked volume

R(bkvoli), the average volume for type i product R(v̄i),
or the volume predicted using a parameterized function

fθ on the booked volume, R(fθ(bkvoli)).
The true reward Rtrue is not observable until departure

time and it is computed at each step as

Rtrue =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R(rcsvoli), if action = a1, t > 0

- hv(
∑

i xi − kv), if
∑

i xi − kv > 0,

t = 0,

0 otherwise

At the time of departure, if the received volume is over

the maximum capacity (kv), then the cost of off-loading

occurs, which is proportional (hv) to the total received

volume minus the capacity.

4) Model Dynamics

The state space updates by the occurrence of any one

of the following events: 1) new booking request, 2)

flight departure. The state is reset when the terminal

conditions meet (flight departure or current booking

volumes reaches to maximum capacity). Actions need

to be taken only when there is a booking request. In

one time step there is only one item request submitted.

The agent is said to be in a decision-making state at

that instance. When a booking request is accepted,

the volume state for the corresponding product type

gets incremented by its predicted volume. When it is

rejected, the volume state remains unchanged.

Defining the MDP of the model is required to address decision-

making optimization problems solved via dynamic program-

ming and reinforcement learning.

C. Dynamic programming

We start by defining a state vector of the accepted bookings,

x = (x1, . . . , xm), that can be obtained from S. Each xi is

the number of items of type i assigned to a flight. A type is

a pre-defined category, like fresh food or pharma. The state

x evolves with time t. We define the value function V F (x, t)
as the expected revenue from the flight given that at time t
the flight is in state x. We label departure day as time t = 0
and the booking horizon extends up to time t = T . Thus,

time flows backwards. We model a single flight whose volume

capacity kv
2 is fixed and known. We also discretize time and

in each time bin t the probability of an item i being received

for a booking is pi,t. We assume that at each time step only

one shipment can arrive for booking. We define p0,t as 1 −∑m
i=1 p(i, t) as the probability that no booking will show up

in time period t. In practice, when an agent books an item of

type i, it is accompanied by a booked volume bkvoli. When

the item finally arrives for shipment the received volume is

rcsvoli. The revenue received from the item i is R(rcsvoli),
where R() is typically an increasing and concave function

of volume. Recall that during booking time the airline only

knows bkvoli and not rcsvoli. Thus, it is common to make a

decision about whether to accept or reject a booking based on

the average volume of type i, v̄i.
We can now define the value function V F (x, t) as a

recursive function (Bellman’s Equation) in order to maximize

the overall expected revenue [3]:

V F (x, t) =

m∑
i=1

pi,t max{R(v̄i) + V F (x+ ei, t− 1),

V F (x, t− 1)}+ p0,tV F ((x, t− 1)),

t = 1, 2, . . . , T

V F (x, 0) = −hv[
m∑
i=1

xiv̄i − kv]
+

where [a]+ = max{a, 0}. We now explain the above

recursive equation. When the state is x at a given time t then

V F (x, t) is the expected revenue over the full time horizon of

the booking. At time step t, the probability of a shipment of

type i arriving is pi,t. If the booking is accepted then the state

will transition to x+ ei, where ei is the one-hot binary vector

with a 1 at the i-th location. By accepting the booking, the

expected revenue will be R(v̄i). However, the booking of item

i will only be accepted if the revenue R(v̄i)+V F (x+ ei, t−1)
is greater than not accepting the booking and transitioning

one step towards departure while staying in the same state,

i.e., V F (x, t−1). At time t = 0 and in state x, the V F (x, 0)
captures the cost of off-loading, which is proportional (hv) to

the total expected volume
∑

i xiv̄i minus the capacity kv . For

2For non-cargo flights kv varies depending upon passenger load.

466

Fig. 5. The Value Function (VF) corresponding to Example 1. Each cell
corresponds to the revenue that will be accrued starting from state x at time
t. Note the cell values are computed using backward induction as time is
going backwards.

example, if the expected volume is 100 units and the capacity

kv is 50, then the off-loading cost is −50hv .

Having defined the value function V F (x, t), the decision

rule (D1V) at each time step t, which determines whether to

accept or reject an incoming shipment of type i is given as:

D1V : R(v̄i) + V F (x+ ei, t− 1) > V F (x, t− 1)

However, we can integrate prediction in the decision-making

by modifying the decision rule. For example, suppose

our predictive function is fθ (as defined in Section 3.23),

i.e., given a booked volume bkvoli of type i, fθ(bkvoli) is

the predicted received volume (ˆrcsvoli). We, then, have a

new decision rule (D2V) as

D2V : R(fθ(bkvoli))
+V F (x+ ei, t− 1) > V F (x, t− 1)

The Curse of Dimensionality: It is worth noting that the

construction of V F (x, t) suffers from the well-known curse

of dimensionality of dynamic programming [18], [20]. For

example, suppose there are m items and the number of time

periods is T . Then, the size of the state space is exponential

in m4. An approximate solution to escape the exponential

blow-up is to use aggregate x =
∑

i xiv̄i. This makes the state

space one-dimensional scalar-valued, instead of vector-valued,

of maximum size. This state space is bounded by M × T ,

where M is the maximum possible volume booked for any

type. The construction of V F (x, t) becomes considerably

simplified and the decision rule D2V then becomes D2S:

D2S : R(fθ(bkvoli))
+V F (x+ fθ(bkvoli), t− 1) > V F (x, t− 1)

In the same way, we define D1S as simplified state version of

D1V, where only booked volume is observed without access

to prediction.

3We have overloaded the fθ signature to emphasize the role of bkvol
4It is S(T,m), Stirling number of second kind

Illustrative Example 1: To illustrate how dynamic program-

ming is used to form the V F function, we will work through

a simple scenario shown in Table I.

TABLE I
SAMPLE CARGO CHARACTERISTICS

type1 type2
1 volume 1 1
3 revenue (ρ) 1 2
4 prob. arrival in t 0.4 0.4
5 prob. no booking in t 0.2
6 max capacity (kv) 2

We assume there are two shipment types: type1 and type2.

Both types can arrive for a booking with a probability of 0.4 in

any time step and the probability that no shipment will arrive

for any booking is 0.2. The revenue for type1 is 1 and for

type2 is 2, while the volume for both types is fixed at 1 unit.

Recall that time is labeled in a reverse order, i.e., departure

time is 0 and booking horizon extends up to time t = 4.

To compute the value function V F , we proceed backwards

for each state x. Now the state is a two-dimensional vector

x = (x1, x2), where x1 and x2 are the number of bookings

of type1 and type2 respectively. However, we collapse x into

x = x1v̄1+x2v̄2 = x1+x2 as we have assume that the volume

booked has a value of 1. The different values of x are shown

as rows in Figure 5. We first have to populate the first column

of Table I. For example, V F (0, 0) = −max(0 − kv, 0) = 0
as kv = 2 and V F (3, 0) = −max(3 − 2, 0) = −1. As an

example, we compute V F (1, 2).

V F (1, 2) =0.4max(1 + V F (2, 1), V F (1, 1))

+ 0.4 ∗max(2 + V F (2, 1), V F (1, 1)

+ 0.2 ∗ V F (1, 1)

=0.4 ∗ (1 + 0.4) + 0.4 ∗ (2 + 0.4) + 0.2 ∗ 1.2
=1.76 ≈ 1.8

D. Deep Q-Learning

Dynamic programming methods are well-developed

mathematically, but require a complete and accurate model of

the environment [21]. In our case, the cargo prediction results

have uncertainty, which can lead to an undesirable Dynamic

Programming performance. We will address the optimal

decision-making under uncertainty using Reinforcement

Learning. Q-learning [22] is one of the most popular

reinforcement learning algorithms to solve MDP using action-

value function. Action-value function returns the expected

true value (Q-value) of an action in a state under a given a

policy. A true value of an action is the mean reward when

that action is selected. The optimal action at each state is the

one that maximizes the state-action value.

Qt+1(st, at) =Qt(st, at) + α[Rt + γmax
at

Qt(st+1, at+1)

−Qt(st, at)]

467

In the context of Q-learning, an effective approach to

address the curse of dimensionality of exponentially increasing

state space is to use the function approximation and repre-
sentation learning features of deep learning. The agent does

not need to visit all states, and the state-action values that

have not been encountered would be generalized from neural

networks. Here we will use Deep Q-Networks (DQN) [23]

to model the problem. For n-dimensional state space and an

action space containing 2 actions, the neural network is a

function from R
n to R

2. DQN combines Q-learning with two

networks: prediction network and target network. The target

network with parameters θ−, is the same as the online network

except that its parameters are copied every τ steps from online

network, so that then θ−t = θt and kept fixed on all other

steps. Another important ingredient in DQN is experience

replay. The experience replay observed transitions that are

stored for some time and sampled uniformly from this memory

bank to update the network. Both the target network and

the experience replay dramatically improve the performance

and stability of the algorithm. In order to ensure that model

converges to the optimal value, some amount of exploration

is required depending upon the known information of the

environment, therefore an ε-greedy policy is implemented with

an exponential decay of the ε probability through the training

episodes.

Uncertainty: Uncertainty intervals from prediction models

can be used to further improve the safety of the decision

making, with the goal of reducing offloading cost and therefore

increase the revenue. We integrate the uncertainty of the

prediction, in the form of prediction intervals [bl, bu], in the

following way. Given the current state using predicted volume

S = {i, fθ(bkvol), x1, x2, ..., xn, t}, we define Sl and Su

Sl = {i, bl, x1, x2, ..., xn, t}
Su = {i, bu, x1, x2, ..., xn, t},

then, we define the uncertainty-aware Q function as

QU (S, a) =
1

2
(Q(Sl, a) +Q(Su, a)) .

The uncertainty-aware QU (S, a) is particularly useful when

the value of the upper or the lower bound state of the

prediction significantly deviates from the value of the predicted

state. Consider as an example of the case when accepting

a volume of bu would incur in very high offloading costs,

while accepting a volume of fθ(bkvol) or bu would lead to a

moderate revenue, that is Q(Su, a1)� Q(S, a1) < Q(Sl, a1).
In this case QU (S, a1) < Q(S, a1) thus the agent will less

likely accept the booking and opt for the safer action.

IV. RESULTS

We first evaluate our proposed RL-Cargo system in terms

of revenue and costs. We then show an in-depth analysis of

our techniques. Note that the prediction module of RL-Cargo

has been deployed in a large international airline company and

the results reported are from the production environment.

A. Dataset

We obtained a real dataset spanning two years (June 2016-

August 2018) of booking records from the cargo IT team

of the airline company. Each booking record consists of

several attributes including, booking date, origin, destination,

agent, booking volume (bkvol), product type, received date,

departure datetime, and received vol (rcsvol). We use this

dataset to detect the DMVs and build the ML model for

predicting rcsvol using all other attributes. As we do not have

real information on the revenue and offload costs, we create

simulated data as proposed in [3] to evaluate our decision

making approach. To create the simulations from the real

dataset, we compute the probabilities of the product types from

the real dataset: For each type i, we compute

pi =
bookings with product i

total bookings

The related probabilities of the ten most frequent product

types are shown in the top Table II. We observe that the

product type frequencies are skewed, with the most frequent

product type with a probability of 0.856. Then, we split the

booking horizon into 60 equal time steps and we compute the

probability of a booking arriving at time step t as

pt =
shipments at time t

shipments in dataset

For the sake of simplicity and to replicate the same formu-

lation as in [3], we compute a single probability for 6 different

intervals of time steps, resulting in 10 time steps per interval.

For each interval we take the average of the 10 single time

steps that belong to this interval. The results are shown in the

bottom of Table II. Given pi the probability of an incoming

type i at any time, and pt the probability of getting any type

of booking at time t, the probability of getting a booking of

product type i at time t is pi,t = pipt.

B. Predictive evaluation

We first evaluate our prediction module. For our evaluation,

we use 3-fold cross-validation on the full real dataset of two

years cargo bookings. We make a prediction on each single

booking and we evaluate the aggregated flight leg predicted

volume vs. the flight-leg received volume. For this reason, we

implemented cross-validation so that all the bookings from the

same flight leg are kept in the same split. Based on grid-search

results, we set the XGBoost regressor with 0.9 subsample ratio

of columns for each split, 300 estimators, a maximum tree

depth of 20 and a learning rate of 0.05. All other parameters

are set as default.

We use the mean relative absolute error on our predictive

model: e = 1
N

∑N
1
|rcsvoli−fθ(bkvoli)|

rcsvoli
. The average error on

the entire historical data is 7.8%. Figure 6 shows that the

prediction error is under 5% in almost half of the flights, while

it is under 10% for the 74.8% of the flights. By using the

predictive model instead of the actual booked volume values

we have a greater number of flights that have a small error. It

468

TABLE II
THE TOP TABLE SHOWS THE PROBABILITIES (pi) OF MAKING A BOOKING FOR A PRODUCT TYPE i. THE BOTTOM TABLE SHOWS THE PROBABILITIES (pt)

OF A BOOKING ARRIVING IN A TIME PERIOD t.

Product type Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9 Type10

pi 0.856 0.042 0.036 0.035 0.012 0.007 0.005 0.003 0.002 0.002

Time period 1-10 11-20 21-30 31-40 41-50 51-60

pt 0.05 0.03 0.009 0.004 0.003 0.005

Error %E %Flights with
prediction error

below %E

%Flights with
booking error

below %E

5% 48.9% 41.5%

10% 74.8% 61.5%

15% 86.7% 73.7%

20% 92.5% 81.6%

Fig. 6. Prediction error for flight legs in test splits. Each data point is a
flight leg. Below each dotted line are all the flights with an error below the
respective percentage.

is also noteworthy that our prediction error is lower for higher

capacity flights, where it has the biggest impact.

TABLE III
AVERAGE ERROR DECREASE FOR EACH PRODUCT TYPE, AT BOOKING

LEVEL, IN PRODUCTION ENVIRONMENT.

Product type % of booking
% error decrease

from bkvol

Type1 73.3% -33.4%
Type2 10.1% -38.3%
Type3 3.7% -61.9%
Type4 3.5% -66.9%
Type5 3.1% -34.1%
Type6 2.7% -7.2%
Type7 1.4% -43.9%
Type8 0.8% -96.6%
Type9 0.7% +25.8%

Type10 0.1% -30.7%

Table III shows the benefits of the prediction on the

shipment level for the 10 most frequent product types.

Specifically, it shows the decrease in percentage of the

prediction error (predicted rcsvol vs. actual rcsvol) from the

booking error (original booked volume vs. actual rcsvol).

The predicted volume has decreased the error considerably

for 9 out of the 10 product types. The increase in error for

product type9 is on a very rare product type and, thus, there

are not enough data to train the model. However, as it is rare

it does not influence the total flight-leg predicted volume.

Impact of prediction. We evaluate the impact of using

predicted volume, instead of booked volume, in terms of

revenue benefits and offload costs using dynamic programming

for decision making. First, we compute the V F (x, t) table by

using the entire dataset and taking the booking volume for each

time step. Then, we consider two different test cases in order

to evaluate the power of our system by combing predictive

modeling with decision making:

(1) BKD to RCS: no prediction is made. The decision to

whether accept or reject an incoming booking by applying

DS2 is based on the reported bkvol, i.e., fθ(bvi) = bvi. Final

offloading cost is then calculated based on the rcsvol.

(2) PRED to RCS: The received booking is processed for

DMV identification and the resulting feature vector is used to

output a prediction fθ(bvi) using our prediction model. The

decision to accept or reject an incoming shipment using D2S
is based on this predicted volume.

At each time step we draw bookings from the dataset

following the probabilities of Table II and apply the decision

rule D2S. Figure 7 shows the results on eleven different flight

capacities kv and ten thousand flights each, for a total of 220

thousand flights.
The top graph of Figure 7 clearly shows that for various

capacity constraints (kv) the offloading cost is lower almost

by a factor of ten and with a much lower standard devia-

tion. This suggests that using predictions instead of booked

volume (bkvol) not only reduces the offloading cost but

adds substantial amount of certainty into the whole air cargo

booking process. In the bottom graph of Figure 7, we show

the final revenue, i.e., after subtracting the offloading costs,

for various flight capacity constraints. We observe that the

revenue increases when using a predicted booked volume,

albeit slightly, indicating that the decision function selected

better-value shipments during the booking time horizon. Still

the standard deviation of the revenue is lower when using

the predictions. Note that, the way the decision making pro-

cess is designed, excess overbooking incurs negative penalty

(i.e., offloading), while underbooking results to zero penalty

(i.e., V F (x, 0) is zero when the total volume is less than the

flight capacity). It is thus more beneficial to reduce the risk

469

TABLE IV
EVALUATION OF PRESCRIPTIVE RL ON A TESTING SET OF 1000 FLIGHTS. Booked MODELS HAVE ACCESS ONLY TO BOOKED VOLUME OF EACH BOOKING,

WHILE Prediction MODELS HAVE ACCESS TO THE PREDICTED VOLUME FROM THE GBM.

Model Observed load True load Observed revenue Offloading cost Final revenue

FCFS (Booked) 0.99 0.47 176.31 2.08 82.27
DQN (Booked) 1.04 0.52 183.44 2.53 91.25
FCFS (Prediction) 0.99 0.69 177.61 7.65 115.9
D2S (Prediction) 1.14 0.79 198.64 1.54 117.86
DQN (Prediction) 1.09 0.75 195.17 10.7 123.74

DQN with uncertainty (Prediction) 1.09 0.73 194.78 5.97 124.84

20 25 30 35 40 45 50 55 60 65 70
0.1

1

10

100

Capacity kv

O
ffl

oa
di

ng
 c

os
t

20 25 30 35 40 45 50 55 60 65 70
0

20

40

60

80

Capacity kv

Fi
na

l r
ev

en
ue

BKD to RCS

PRED to RCS

BKD to RCS

PRED to RCS

Fig. 7. Offloading cost (A) and final revenue (B) for varying levels of capacity
kv for the two dynamic programming proposed methods D1S (BKD to RCS)
and D2S (PRED to RCS), showing the positive impact of using the prediction
output. Note: scale of offloading cost is logarithmic.

of offloading by using a predictive model that overpredicts

leading to less shipments getting accepted. This is a design

choice that is driven by business objectives.

C. Prescriptive evaluation with DQN and uncertainty

We now evaluate the overall prescriptive solution using

Reinforcement Learning with a DQN and uncertainty-aware

Q-values. The following models are considered in the com-

parison:

1) FCFS (Booked): a first-come first-served (FCFS) policy

using the booked volume for decision making. In the

FCFS policy, every incoming booking is accepted until

the capacity, estimated using bkvol, runs out. FCFS is a

greedy strategy in the sense that it will accept immediate

revenue instead of waiting for a potential booking from

which more revenue can be made.

2) FCFS (Prediction): a FCFS policy using the predicted

volume fθ(bkvol) for decision making.

3) D2S (Prediction): the dynamic programming model de-

fined in Section III, using predicted volume fθ(bkvol)
for decision making.

4) DQN (Booked): the DQN model trained and tested using

the booked volume bkvol as observable variable.

5) DQN (Prediction): the DQN model trained and tested

using the predicted volume fθ(bkvol) as observable

variable.

6) DQN with uncertainty (Prediction): the DQN model,

trained on prediction, using the proposed uncertainty-

aware Q-values for decision making on the predicted

volume fθ(bkvol) and the prediction intervals [bl, bu].

In our experiments, the architecture of the DQN is a

fully connected network with 3 hidden layers of dimensions

[128, 64, 16]. Training is performed in batch of 64 bookings

tuples, sampled from a replay buffer of 1024 tuples. All

the DQN models are trained for 800’000 steps and around

10’000 episodes of variable lengths (Figure 8). Each episode

corresponds to one flight, while bookings are randomly

sampled at each timestep from historical data using the

probabilities in Table II. The testing set is a dataset of 1000

flights following the same design and probability distribution

used to generate episodes in the training, however the flights

are newly generated and cannot be found in the training set.

Fig. 8. DQN Performance during training: As expected, rewards using
predicted volume is higher than booked and lower than received. Note, DQN
agents using received volume cannot be implemented in practice.

470

Results. In Table IV we summarize the results on the testing

set, sorted by ascending value of final revenue. As expected

the policies that rely on the booked volume for decision

making are the worst-performing, confirming the results of

the dynamic programming experiments. However the DQN

model on booked volume outperform the related FCFS with a

9% improvement on the final revenue.

Note that FCFS (Booked) and FCFS (Prediction) have an

observed load of 99%. If the booking value was ideally equal

to the received value, FCFS will not incur any offloading

costs. However, since the two values are rarely the same, the

advantage of FCFS is not realized and the experiments bear

that out: the average true load is much less then observed, with

47% and 69% respectively for booked and prediction, while

it also incurs in offloading costs for some of the flights.

The advantage of D2S over FCFS (Prediction), despite

an observed load of 114%, shows how the decision rule

keeps overbooking if the revenue rate is advantageous, while

rejecting the less profitable shipments once the capacity is

reached. Both the proposed DQN models using the predicted

volume outperform other policies despite having a lower true

load than D2S, suggesting a better ability in picking profitable

bookings based on prediction, product type and time left.

Finally, the DQN model with uncertainty on predicted

volume has obtained a slightly higher reward than the simple

DQN while accepting on average less true volume. Since the

observed load is the same as the DQN (Prediction), while

the true load is 4% less, it follows that the DQN with

uncertainty tends to accept more the overpredicted bookings.

Consequently at departure time the offloading cost is reduced

by 44%, showing how the uncertainty-aware Q-value leads to

safer actions which in turn leads to higher final revenue.

V. DISCUSSION AND FUTURE WORK

In this paper we have described the components of RL-

Cargo, an intelligent and data-driven air-cargo revenue man-

agement system that combines predictive analytics and de-

cision making under a prescriptive learning framework. RL-

Cargo was developed in conjunction with a large commercial

airliner over a two year period.

The project started with the stated objective of predicting

received volume (rcsvol) of air-cargo bookings as most flights

are volume constrained, i.e., they run out of volume space

before weight capacity. However, over time, we realized that

prediction per se cannot be carried out in isolation. We have

to analyze the upstream sources of data and understand how

the data was being generated. We also had to get a better

understanding of how the outcome of the prediction task will

be consumed by end users for decision making. This led us to

formulate the prediction-driven revenue optimization problem.

First a dynamic programming solution was proposed to

optimize the decision making based on the predicted volume.

The restrictions imposed by the model-based method led

us to design a Reinforcement Learning approach that could

incorporate both prediction uncertainty and decision making

with the final goal of optimizing the revenue.

Our general conclusion is that in order to make real and

tangible impact, data science techniques have to be situated

and combined with an overall objective. For future work we

plan to extend the RL-Cargo system so that it can be used

by shippers and freight-forwarders and not just the revenue

management teams within an airline.

REFERENCES

[1] A. Popescu, “Air cargo revenue and capacity management,” Ph.D.
dissertation, Georgia Institute of Technology, 2006.

[2] T. Boonekamp, J. Gromicho, W. Dullaert, and B. Radstaak, “Air cargo
revenue management,” Unpublished masters thesis, Vrije Universiteit,
Amsterdam, 2013.

[3] K. Amaruchkul, W. L. Cooper, and D. Gupta, “Single-leg air-cargo
revenue management,” Transportation science, vol. 41, no. 4, pp. 457–
469, 2007.

[4] W.-C. C. Chiang, J. Chen, and X. Xu, “An overview of research on
revenue management: current issues and future research,” International
Journal of Revenue Management (IJRM), vol. 1, no. 1, 2007.

[5] J. I. McGill and G. J. V. Ryzin, “Revenue Management: Research
Overview and Prospects,” Transportation Science, vol. 33, no. 2, pp.
233–256, 1999.

[6] R. D. Lawrence, S. J. Hong, and J. Cherrier, “Passenger-based Predictive
Modeling of Airline No-show Rates,” in Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2003, pp. 397–406.

[7] C. Hueglin and F. Vannotti, “Data Mining Techniques to Improve
Forecast Accuracy in Airline Business,” in Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’01, 2001, pp. 438–442.

[8] Y. Lan, M. O. Ball, and I. Z. Karaesmen, “Regret in overbooking and
fare-class allocation for single leg,” Manufacturing & Service Operations
Management, vol. 13, no. 2, pp. 194–208, 2011.

[9] A. Popescu, P. Keskinocak, E. Johnson, M. LaDue, and R. Kasilingam,
“Estimating air-cargo overbooking based on a discrete show-up-rate
distribution,” Interfaces, vol. 36, no. 3, pp. 248–258, May 2006.

[10] R. G. Kasilingam, “Air cargo revenue management: Characteristics and
complexities,” European Journal of Operational Research, vol. 96, no. 1,
pp. 36–44, 1997.

[11] S. Budiarto, H. P. Putro, P. Pradono, and G. Yudoko, “Revenue man-
agement of air cargo service in theory and practice,” IOP Conference
Series: Earth and Environmental Science, vol. 158, pp. 12–22, 2018.

[12] B. Slager and L. Kapteijins, “Implementation of cargo revenue man-
agement at klm,” Journal of Revenue Pricing Management, vol. 3, pp.
80–90.

[13] D. Beidermand, “New freight dimensions: For shippers, finding the real
cost of a shipment shouldn?t be a matter of weight and see,” Air Cargo
World, vol. 92, no. 8, pp. 34–40, 2002.

[14] R. K. Pearson, “The Problem of Disguised Missing Data,” SIGKDD
Explor. Newsl., vol. 8, no. 1, pp. 83–92, 2006.

[15] A. A. Qahtan, A. Elmagarmid, R. Castro Fernandez, M. Ouzzani,
and N. Tang, “Fahes: A robust disguised missing values detector,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 2100–2109.

[16] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: ACM, 2016, pp. 785–794. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939785

[17] T. Tibshirani and J. Friedman, Elements of Statistical Learning, 2009.
[18] W. B. Powell, Approximate Dynamic Programming: Solving the curses

of dimensionality. John Wiley & Sons, 2007, vol. 703.
[19] R. Bellman, “A markovian decision process,” Journal of Mathematics

and Mechanics, 1957.
[20] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,

Dynamic programming and optimal control. Athena scientific Belmont,
MA, 2005, vol. 1, no. 3.

[21] A. G. B. Richard Sutton, Reinforcement learning: An introduction. MIT
press, 2018.

[22] D. P. Watkins, C.J., “Q-learning,” Machine Learning, pp. 279–292, 1992.
[23] e. a. Mnih, Volodymyr, “Playing atari with deep reinforcement learning.”

arXiv preprint arXiv:1312.5602, 2013.

471

