
NADEEF/ER: Generic and Interactive Entity Resolution

Ahmed Elmagarmid1 Ihab F. Ilyas2 Mourad Ouzzani1
Jorge-Arnulfo Quiané-Ruiz1 Nan Tang1 Si Yin1

1Qatar Computing Research Institute 2University of Waterloo
{aelmagarmid, mouzzani, jquianeruiz, ntang, siyin}@qf.org.qa ilyas@uwaterloo.ca

ABSTRACT
Entity resolution (ER), the process of identifying and even-
tually merging records that refer to the same real-world enti-
ties, is an important and long-standing problem. We present
Nadeef/Er, a generic and interactive entity resolution sys-
tem, which is built as an extension over our open-source
generalized data cleaning system Nadeef. Nadeef/Er pro-
vides a rich programming interface for manipulating enti-
ties, which allows generic, efficient and extensible ER. In
this demo, users will have the opportunity to experience the
following features: (1) Easy specification – Users can easily
define ER rules with a browser-based specification, which
will then be automatically transformed to various functions,
treated as black-boxes by Nadeef; (2) Generality and ex-
tensibility – Users can customize their ER rules by refining
and fine-tuning the above functions to achieve both effec-
tive and efficient ER solutions; (3) Interactivity – We also
extended the existing Nadeef dashboard with summariza-
tion and clustering techniques to facilitate understanding
problems faced by the ER process as well as to allow users
to influence resolution decisions.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous - Data
cleaning

Keywords
NADEEF, Entity resolution, Generic, Interactive

1. INTRODUCTION
Entity resolution (ER) (a.k.a. record linkage and dedupli-

cation) is a well known problem that arises in many appli-
cations. The goal is to identify and link different represen-
tations (e.g., records in a relational database) of the same
real world entity. A large chunk of research has been dedi-
cated to tackle different issues related to ER such as using
entity features and relational features for matching, leverag-
ing machine learning techniques, combining crowd sourcing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594511.

and active learning, taking into different constraints on the
data during ER, and so on (see [8] for a tutorial).

ER is usually computationally expensive, since it may re-
quire comparing all possible pairs of entities. Multiple tech-
niques such as blocking, sorted neighborhood, clustering,
and canopies (see [6] for a survey) have been proposed. In
addition, parallelization and Hadoop-based solutions have
also been studied to further improve efficiency, e.g., De-
doop [9]. Crowd has been used to improve effectiveness [12].
There have been also some efforts in supporting general-
ity for ER. For example, Swoosh [1] proposes a generic ap-
proach where the users implement two user defined functions
(UDFs): match() and merge(). Swoosh would then take care
of how to invoke these two UDFs.

Despite all of these rich contributions, allowing easy user-
tunable parameters as well as providing generic interfaces
for users to implement application specific functions remain
hard to achieve in one single system.

We recently presented Nadeef, an open-source1 data
cleaning system [3]. Nadeef distinguishes between a pro-
gramming interface and a core to achieve generality and ex-
tensibility for data cleaning. We demonstrated these two
features in [4]. This work inspired us in our solution to the
above stated ER issues: How to allow both easy user-tunable
parameters and generic interfaces for ER? In this demo, we
present Nadeef/Er, a generic and interactive ER system.
Nadeef/Er, which is built on top of Nadeef, supports a
large variety of ER applications by providing a rich program-
ming interface and an interactive dashboard. The demo will
demonstrate the following three key features:

(1) Easy specification. Nadeef/Er provides a succinct
GUI that allows users to declare advanced ER rules.
Nadeef/Er, in turn, automatically transforms these rules
into various UDFs, following Nadeef model, for execution.

(2) Generality and extensibility. Users can modify or over-
ride any Nadeef/Er interface functions in order to manip-
ulate entities more effectively and efficiently. For example,
users might provide their own matching, merging, blocking,
and clustering functionalities. This offers freedom to fully
customize Nadeef/Er for specific ER applications. Users
can perform any of these code editing/checking via the GUI
provided by Nadeef/Er.

(3) Interactivity. Nadeef/Er provides a dashboard where
users can better visualize duplicated entities. This will not

1https://github.com/Qatar-Computing-Research-Institute/
NADEEF

NADEEF/ER

Users

NADEEF Core

ER Rules (GUI)

1

similarity

blocking

detect()

block()

iterator()

repair()

Rule compiler

Duplicate detection

Duplicate resolution

Resolved data
2

3

4

5

ER Dashboard

Operators

Input data

Figure 1: Architecture of Nadeef/Er

only help users to understand resolution problems, but also
permit users to influence resolution decisions.

Related work. Matching techniques (see [6] for a more
comprehensive survey) are a crucial tool for ER. These tech-
niques range from character-based similarity metrics (e.g.,
edit distance, Jaro distance, Q-gram distance) and token-
based similarity metrics (e.g., tf.idf) to phonetic similarity
metrics (e.g., Soundex). In Nadeef/Er, we use the Sim-
Metrics library2 that supports many of these techniques.
Moreover, using Nadeef/Er generic interface, users can
implement other functions for numeric metrics and prob-
abilistic matching models (e.g., Bayes decision rules).

Achieving efficiency in ER aims to reduce the number
of entity comparisons and has been tackled with tech-
niques such as blocking, sorted neighborhood, clustering and
canopies. Nadeef/Er supports these techniques through
two functions, block() and iterator(). The former partitions
entities into blocks, while the latter specifies how entities
are actually compared within a block. Other researchers
have also studied different indexing techniques for improv-
ing efficiency (e.g., inverted indices, suffix arrays, see [2] for
a comprehensive study). Supporting these indices is not the
focus of Nadeef/Er.

There have also been many ER systems in the past. Some
provide a declarative language (e.g., AJAX [7]) or a GUI for
rich user-tunable parameters (e.g., TAILOR [5], Febrl and
FRIL). Others target generic ER solutions e.g., Swoosh [1].
In contrast, Nadeef/Er aims at a generic yet efficient sys-
tem, by providing various functions to customize the system,
to achieve both effective (as match() and merge() in Swoosh)
and efficient (via block() and iterator()) ER solutions.

Another line of work is to learn ER rules with training
datasets (e.g., ALIAS [11]). These are essentially orthogo-
nal, but complementary, to Nadeef/Er.

2. NADEEF/ER ARCHITECTURE
In this section, we discuss the architecture of Nadeef/Er

(Fig. 1), an ER system built on top of Nadeef [3].
Nadeef/Er consists of the following components: a GUI

2https://github.com/Simmetrics/simmetrics

for defining ER rules, a programming interface for defining
data quality rules, Nadeef core for duplicate detection and
resolution, and an ER dashboard for user interaction.

Nadeef/Er works as follows. (1) Users specify ER rules
via a GUI. (2) User-specified ER rules via the GUI will be
automatically transformed into data quality rules, expressed
in a set of basic functions: block(), iterator(), detect(), and
repair(). Users can also customize these rules by refining
any of these four functions. (3) Nadeef core then com-
piles these rules and uses them to detect duplicated entities
and eventually merge them. Nadeef treats these four func-
tions as black-boxes. (4) Users can interact with the dash-
board to explore and visualize information for duplicated
entities. This allows users to refine ER rules as in steps
(1) and (2), or to influence resolution decisions (by confirm-
ing duplicates/non-duplicates). (5) After iterations of the
above process, Nadeef returns all detected duplicates, or
produces a duplicate-free dataset if a repair() function for
merging duplicates is provided by the users.

ER rules. This component collects user-specified ER rules
via a GUI, as shown in Fig. 2. Given two tables (which
might be the same table), users can drag lines to define
attributes to be compared and define the similarity functions
as well as corresponding thresholds. For each ER rule, the
users can also specify the blocking strategy along with the
generation function for its blocking key. Nadeef/Er will
then automatically transform rules into four basic functions
(or operators), as we explain below.

Operators. The unified programming interface for a data
quality rule in Nadeef is as follows:
class Rule {
Collection〈Table〉 block(Collection〈Table〉 tb);
void iterator(Collection〈Table〉 tbs, IteratorStream〈TuplePair〉 is);
Collection〈Violation〉 detect(TuplePair tp);
Collection〈Fix〉 repair(Violation v);
}

While one can use these four functions for generalized data
cleaning tasks, in the following, we explain them in the con-
text of entity resolution only.

(1) block() takes a set of tables as input and returns parti-
tions for each table. One can use this function to implement

Figure 2: ER rule specification

most blocking/clustering algorithms, allowing a more gen-
eralized blocking strategy beyond key-based blocking.

(2) iterator() takes a set of tables which could be base tables
or blocks from the function block() as input and outputs
pairs of tuples. Intuitively, this function allows users to im-
plement smart ways to populate pairs of entities to be com-
pared, e.g., sorted neighborhood, in contrast to enumerating
all pairs of entities within a given block.

(3) detect() takes a pair of tuples as input. If they are dupli-
cates, it will return both tuples, referred to as a Violation.
Otherwise, it returns an empty result, indicating that the
two input tuples are not duplicates.

(4) repair() takes a pair of duplicated tuples (i.e., a Viola-
tion) as input and specifies how to merge them.

When users specify ER rules via GUI, Nadeef/Er will
transform them to the above four functions as follows. The
similarity metrics on how to decide whether two entities are
duplicates will be transformed into the detect() function.
The blocking strategy will be transformed into the block()
function. The other two functions, repair() (for merging en-
tities) and iterator() (for smartly populating entity pairs),
will have to be implemented by users. In Section 3, we show
how these can be easily done.

NADEEF core. This module takes all user provided rules
as input and treats all UDFs as black-boxes. Nadeef is re-
sponsible for efficiently invoking these black-boxes to iden-
tify and resolve duplicates.

ER dashboard. The ER dashboard (by extending Nadeef
dashboard [4]) helps users understand the results of the ER
process, by showing summarized, sampled, ranked and clus-
tered duplicates. This facilitates the solicitation of user feed-
back for refining ER rules.

Implementation details. We have developed Nadeef/Er as
a single-page application (SPA) with modern web applica-
tion stack. The HTML5 client provides GUI and visualiza-
tion to help users build ER rules, set a blocking strategy, and
view the output matrix. Client requests for rule execution
are processed asynchronously by a thin Java based server
layer. The server wraps the requests and sends them to the
Nadeef service for execution. Nadeef/Er’s architecture

Figure 3: ER rule editor

is designed to be scalable to process multiple requests and
multiple users at the same time. The communication among
different services is built using Apache Thrift infrastructure,
which is able to make requests execution scalable to many
compute nodes.

3. DEMONSTRATION OVERVIEW
In this demonstration, we will use real-life datasets to give

users the opportunity to experience the features provided by
Nadeef/Er. Notice that this demonstration significantly
differs from the one presented in [4] in two main aspects:
(1) we will show the audience how easily they can specify
ER rules via the Nadeef/Er GUI; and (2) we will also show
the audience how to modify the four provided functions for
customized ER rules via a web-browser. Additionally, we
will show: (3) how the data quality dashboard can help users
understand duplicate data, and how users can interact with
Nadeef/Er to further refine ER rules; and (4) how existing
ER algorithms can be easily implemented in Nadeef/Er.

(1) ER rule specification. Figure 2 displays the
Nadeef/Er GUI for specifying ER rules. For each ER
rule, the audience will be able to specify, by dragging lines
between two attributes, the attributes to compare and the
similarity (or equality) metrics to employ. Moreover, the
audience can select pre-defined blocking functions for each
ER rule. After specifying the parameters of one ER rule,
the audience can press the “Add” button (on the top-right
of Fig. 2) to register this rule in Nadeef/Er. Similarly, the
audience will be able to specify more ER rules. Each ER
rule will be automatically transformed into the four func-
tions provided by Nadeef/Er.

(2) ER rule customization editor. We will demonstrate
how to customize an ER rule by modifying any of the four
functions provided by Nadeef/Er. For each ER rule, we
will invite the audience to select one of these functions to
revise, as shown in Fig. 3. After revision, Nadeef/Er check
and highlight syntactic errors in the audience’s provided
code. If the code is syntactically correct, the audience can
submit their changes by pressing the “Save changes” button.

Notice that in the context of ER, one can consider Nadeef
detect() (resp. repair ()) having the same functionality as
Swoosh match() (resp. merge()) function. In general, how-

Figure 4: Co-occurrence matrix of duplicates

ever, the detect() (resp. repair ()) function is more general
than their Swoosh counterparts (see [3] for more details).

Moreover, we will demonstrate two functions that are not
present, neither in Nadeef [3,4] nor Swoosh [1]: the block()
and iterator() functions.

• block() function: besides standard blocking functions,
we will show how users can implement clustering-based
method canopies [10].

• iterator() function: we will show how users can imple-
ment a sorted neighborhood approach, assuming du-
plicated records will be close at a certain sorted order.
Beyond this, we also want to show that for a specific
application and under certain assumptions, users can
write a better iterator() function that would help re-
duce the number of entity pairs to be examined.

(3) Dashboard and user interaction. Nadeef/Er
comes with a dashboard to allows user to better understand
ER results. This dashboard differs from the dashboard pre-
sented in [4] as it provides a new graph that is especially
designed for entity resolution: the co-occurrence matrix of
duplicates. But also, Nadeef/Er dashboard inherits the ex-
isting visualization tools from Nadeef: a pie chart to show
the overall number of tuples that have duplicates (overview);
a bar chart to show the number of duplicates for each ER
rule (duplicate distribution); a bar chart to show, for each at-
tribute, the number of different values involved in duplicate
entities (duplicate distribution on attributes); and a graph
to visualize tuples with duplicates, where each node is a tu-
ple and an edge between two tuples means that they are
duplicates (violation graph).

Figure 4 depicts the co-occurrence matrix of duplicates.
Each coloured cell in the matrix diagram represents two en-
tities that have been detected as duplicates; darker cells
indicate duplicates that co-occurred more frequently, i.e.,
detected as duplicates by more ER rules. Clustering algo-
rithms are used to group these cells. Cells with the same
color indicate that they belong to the same cluster, e.g., all
yellow cells. A grey cell means that this cell is an island, i.e.,
not in any cluster. By clicking a cell, Nadeef/Er provides
its details, shown on top of Fig. 4. The users can investigate
and decide to include/exclude them as duplicates. Based on
user decisions, Nadeef/Er automatically adds special con-
ditions to refine corresponding functions (operators). With
the drop-down menu, users can select how to re-order the
matrix, by e.g., sorting on Name attribute to further explore
the data. It is worth noting that this matrix only shows tu-
ples that are detected as duplicates. When the number of
(possible) duplicated tuples is large, partitioning techniques
are used to show this matrix. It is also worth noting that the
result about including/excluding uncertain duplicates can
be used as training datasets for learning-based algorithms.

(4) Extensibility. Besides showing that Nadeef/Er can
support generic entity matching and various optimization
techniques, we will also show how various algorithms can be
easily implemented in Nadeef/Er.

Summary. This demonstration aims at exhibiting the fea-
tures of Nadeef/Er. We focus on: (i) A GUI that pro-
vides a rich set of user-tunable parameters for defining ER
rules ((1) above); (ii) The nadeef programming interfaces
that helps users specify highly customized rules ((2) above);
(iii) The data quality dashboard that can help users effec-
tively interact with the system to refine ER rules((3) above);
(iv) Nadeef/Er is generic and extensible ((4) above); (v) A
real application exploiting all features of Nadeef/Er.

4. REFERENCES
[1] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,

S. E. Whang, and J. Widom. Swoosh: a generic approach
to entity resolution. VLDB J., 18(1), 2009.

[2] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Trans. Knowl.
Data Eng., 24(9), 2012.

[3] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: a
commodity data cleaning system. In SIGMOD, 2013.

[4] A. Ebaid, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A.
Quiané-Ruiz, N. Tang, and S. Yin. NADEEF: A
generalized data cleaning system. PVLDB, 2013.

[5] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios.
Tailor: A record linkage tool box. In ICDE, 2002.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 2007.

[7] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax:
An extensible data cleaning tool. In SIGMOD, 2000.

[8] L. Getoor and A. Machanavajjhala. Entity resolution for
big data. In KDD, 2013.

[9] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient
deduplication with hadoop. PVLDB, 2012.

[10] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In KDD, 2000.

[11] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, 2002.

[12] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 2012.

