
TagSniff: Simplified Big Data Debugging for Dataflow Jobs
Bertty Contreras-Rojas

Qatar Computing Research Institute
Data Analytics Group

Doha, Qatar
brojas@hbku.edu.qa

Jorge-Arnulfo Quiané-Ruiz
Qatar Computing Research Institute

Technische Universität Berlin
DFKI GmbH

jorge.quiane@tu-berlin.de

Zoi Kaoudi
Qatar Computing Research Institute

Technische Universität Berlin
DFKI GmbH

zoi.kaoudi@tu-berlin.de

Saravanan Thirumuruganathan
Qatar Computing Research Institute

Data Analytics Group
Doha, Qatar

sthirumuruganathan@hbku.edu.qa

ABSTRACT
Although big data processing has become dramatically easier over
the last decade, there has not been matching progress over big
data debugging. It is estimated that users spend more than 50% of
their time debugging their big data applications, wasting machine
resources and taking longer to reach valuable insights. One cannot
simply transplant traditional debugging techniques to big data. In
this paper, we propose the TagSniff model, which can dramatically
simplify data debugging for dataflows (the de-facto programming
model for big data). It is based on two primitives – tag and sniff –
that are flexible and expressive enough to model all common big
data debugging scenarios. We then present Snoopy – a general
purpose monitoring and debugging system based on the TagSniff
model. It supports both online and post-hoc debugging modes.
Our experimental evaluation shows that Snoopy incurs a very low
overhead on the main dataflow, 6% on average, as well as it is highly
responsive to system events and users instructions.

CCS CONCEPTS
• Information systems→ Data management systems; • Soft-
ware and its engineering→ Software testing and debugging.

KEYWORDS
data debugging, dataflow systems, distributed systems, big data.

ACM Reference Format:
Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Zoi Kaoudi, and Sara-
vanan Thirumuruganathan. 2019. TagSniff: Simplified Big Data Debugging
for Dataflow Jobs. In SoCC ’19: ACM Symposium of Cloud Computing confer-
ence, Nov 20–23, 2019, Santa Cruz, CA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The dataflow programming model has become the de-facto model
for big data processing. The abstraction of data processing as a series
of high-level transformations on (distributed) datasets has been very
influential. Users code their big data applications in a high-level
programming model without caring about system complexities,
such as node coordination, data distribution, and fault tolerance.
The resulting code forms a dataflow, which is typically a directed
acyclic graph (DAG): the vertices are transformation operators and
the edges represent data flowing from one operator to the other.
Almost all of the popular big data processing platforms, such as
Hadoop [3], Spark [4], and Flink [1], support this programming
model. It is not an exaggeration to claim that this approach was a
key enabler of the big data revolution.

1.1 The State of Big Data Debugging
While big data processing has become dramatically easier in the last
decade, the state of big data debugging is very much in its infancy.
Debugging has always been a tedious and time-consuming task.
It is estimated that users spend 50% of their time debugging their
applications, resulting in a global cost of 312 billion dollars per
year [8, 17]. This only gets exacerbated for (big) data debugging,
which focuses on the finding and fixing errors caused by the intri-
cate interplay between code and data. Data debugging is more like
looking for a needle in a haystack.

Traditional debugging tools are inadequate for two main reasons.
First, they are designed for code and not data debugging. Bugs in
big data processing could stem from either the code or the data:
although the code is correct, it still fails due to errors in the data,
e. g., a null or malformed value. Second, they are not appropriate for
distributed data debugging on multiple workers with a huge amount
of intermediate data. Users typically debug their applications on a
local machine and in a trial and error basis: They sample the data
and follow some guidelines given by expert users.

The research community has recognized this problem and has
carried out several attempts to tackle it [10, 12, 14, 16, 18]. How-
ever, the proposed solutions are often ad-hoc, task-specific, and
not sufficiently flexible. Inspector Gadget [18] proposed a power-
ful debugging model based on monitors, coordinators, and drivers.
While powerful, it is still challenging for non-expert users to write

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

their debugging tasks using the proposed APIs. BigDebug [12]
tried to re-think the traditional debugging primitives and proposed
their corresponding big data brethren: simulated breakpoints and
on-demand watchpoints. Nonetheless, it requires extensive modifica-
tion to the data processing systems, incurs considerable overhead,
and does not provide support for post-hoc debugging. Arthur [10]
introduced the concept of selective replay as a powerful tool for
enabling common debugging tasks, such as tracing and post-hoc de-
bugging. However, replay-based debugging approaches are limited
to post-hoc debugging and hence do not support online debug-
ging. Other works, such as Titian [14] and Newt [16], focus on
efficiently implementing lineage for specific debugging tasks and
hence cannot support a wider variety of debugging tasks.

1.2 Simplifying Big Data Debugging
Big data debugging is fundamentally very different from traditional
code debugging. It thus requires a new suite of abstractions, tech-
niques, and toolkits. In this paper, we make progress towards this
elusive goal: We introduce the TagSniff model, an abstract debug-
ging model with two powerful primitives and present Snoopy, an
efficient implementation of the TagSniff model.
The TagSniff model. TagSniff is an abstract debugging model
that is based on two primitives – tag and sniff – that are flexible
enough to allow users to instrument their dataflows for their so-
phisticated debugging requirements. The tag primitive attaches
annotations (tags) as metadata to a tuple if the tuple satisfies the
user’s conditions. The sniff primitive is used for identifying tuples
requiring debugging or further analysis based on either their meta-
data or values. The flexibility of these primitives stems from the fact
that users can specify their requirements through UDFs. TagSniff
also comes with a set of convenience methods, which are syntactic
sugar for users facilitating online and post-hoc debugging tasks.
They internally use the tag and sniff primitives. We show that with
TagSniff one can express most of the popular debugging scenarios.
An efficient implementation of TagSniff. Snoopy implements
the TagSniff model in Spark. It uses wrappers on the vertices of the
dataflow and injected Spark operators in the edges of the dataflow.
The wrappers annotate (using the tag primitive) tuples in the
dataflow. The sniffers can pull (using the sniff primitive) relevant
information out of the main dataflow for remotely debugging the
dataflow job. The goals of Snoopy are: (i) provide the TagSniff ab-
straction for users to easily instrument their applications, (ii) allow
a wide variety of debugging tasks, (iii) allow users to add custom
functionality for debugging data of interest, (iv) be as lightweight
as possible to not affect the performance of the application dataflow,
and (v) be portable to any underlying data processing system. A
key characteristic of Snoopy is its novel architecture that enables
both in-place and out-of-place debugging. TagSniff is built on top of
Rheem [7], a cross-platform system, and thus does not require any
modification of the underlying data processing platform.

The rest of the paper is organized as follows. Section 2 discusses
the challenges and desiderata of big data debugging. Section 3
introduces the TagSniff model. Sections 4 and 5 explain how one
can use the TagSniff model for online and post-hoc debugging.
Sections 6 and 7 describe and evaluate Snoopy. Section 8 discusses
related work and Section 9 concludes with final remarks.

2 MOTIVATION
We begin by enumerating the major debugging challenges encoun-
tered by programmers of big data applications when using tradi-
tional debugging approaches. We then discuss the changes needed
for two major debugging modes – online and post-hoc. By synthe-
sizing various user studies [18, 23] and prior work [10–12, 20], we
identify the desiderata for big data debugging.

2.1 The Changing Face of Debugging
Frameworks like Spark have made big data processing much easier.
However, big data debugging is still at its infancy. Suppose an ana-
lytic task on a terabyte of data failed to produce the expected results.
There are two common, but ineffective, approaches to debugging
this analytical task:

(i) The first approach brings the tools developed for “small data”
debugging to big data. So, one could attach a debugger to a
remote Spark process and try the traditional mechanisms,
such as issuing watchpoints, pausing the Spark runtime, and
stepping the code line by line. This approach is expensive as
it results in the pausing of the entire Spark runtime. Further-
more, due to the sheer size of the data, one cannot simply
step through the code and watch the intermediate results for
each tuple. Doing so is extremely time-consuming.

(ii) The second approach tries to evaluate the task on a local
machine over a sample of the input dataset. This is based on
the fact that erroneous outputs are typically triggered by a
small fraction of data. Therefore, one could take a sample of
the input dataset and evaluate it on a local machine. If the
sample does not trigger the issue, try a larger sample and
so on. Eventually, the data becomes too large to hold in a
single machine and/or use traditional debugging techniques.
This approach is doomed to fail too.

We make the following three observations:
(1) Most of the bugs are often caused by the interplay between

code and data. Traditional debugging tools are designed for
code debugging and not data debugging.

(2) Traditional debugging tools are not appropriate for dis-
tributed debugging. Typical data processing jobs involve
hundreds of tasks that are run on dozens of workers gener-
ating a huge amount of intermediate data.

(3) Recent attempts for big data debugging are ad hoc, task-
specific and inflexible. There is a need for an abstraction
that can address the code-data distributed debugging while
hiding the internal complexity of the system.

2.2 Debugging Modes
We distinguish between two major modes, online and post-hoc, for
debugging big data jobs.
Onlinemode. Online debugging happens when the main dataflow
job is still alive. Users can inspect intermediate results and do trial-
and-error debugging. Providing such verisimilitude is quite chal-
lenging as popular data processing systems operate in a batch mode.
If one pauses the dataflow job, this could potentially pause the com-
putation done by thousands of workers. This results into reduced
throughput and wastage of processing resources. Ideally, the online

TagSniff: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

Table 1: Desired debugging tasks.

Debugging mode Task Description
O
nl
in
e

crash culprit When a crash is triggered, return the tuple, the operator and the node that caused
it.

pause
Allow the user to pause execution (virtually or truly) when a certain (user-defined)
condition is met and step through, either to go the next tuple or to go to the next
operator for the same tuple.

alert Alert the user when a certain (user-defined) condition is met. Conditions can be on
a single tuple, on a set of tuples or on a latency metric.

Po
st
-h
oc

replay Replay the execution of the entire or part of the main dataflow job.

trace Forward or backward trace of tuples: given a tuple t , find all tuples that either stem
from t (forward) or led to t (backward).

profile Profile any kind of metric, such as data distribution, latency distribution, runtime
overhead, and memory usage.

assert Evaluate if the input or output tuples satisfy certain assertions, which is also useful
for comparison with ground truth input/output tuples.

mode should: (i) allow a user to inspect intermediate results with
or without pausing the dataflow execution, and (ii) provide a set
of primitives so that a user can select intermediate data relevant
for debugging programmatically. Very few systems [12] provide
support for online big data debugging.
Post-hocmode. This is themost commonmode for big data debug-
ging. Users instrument the main dataflow job to dump information
into a log. One can then write another job (e. g., in Spark) to ana-
lyze the log and identify the issue. While common, this approach
of using log files is often not sufficient. This is because a logical
view [12] is not available in the logs, such as which input records
produce a given intermediate result or the eventual output (i. e., lin-
eage). This information is often invaluable for effective debugging.
Ideally, the post-hoc mode should allow a user to (i) get the logical
view of the job without any effort and (ii) provide an easy way to
express common post-hoc debugging scenarios. Very few systems
provide extensive support for post-hoc debugging. Most of them
support specific scenarios, such as lineage [16] or task replay [10],
and cannot be easily generalized to others.

2.3 Desiderata
Commondebugging tasks. Based on various user studies [18, 23]
and prior work [10–12, 20], we identify the most popular debugging
tasks in Table 1 and grouped them in seven major categories. Very
few systems can support all of them. Typically, the users roll their
sleeves and implement task-specific variants of these common tasks
at a significant development cost.
Desiderata for primitives. The requirements for primitives in-
clude (i) concise enough to handle the scenarios from Table 1, (ii) be
flexible enough to handle customized debugging scenarios, (iii) pro-
vide support for both monitoring and debugging.
Desiderata for a debugging system. To be an effective tool for
big data debugging, it must (i) provide holistic support for the
debugging primitives, (ii) handle common debugging scenarios
with no changes to the main dataflow job, (iii) allow users to add
custom functionality for identifying tuples of interest, (iv) have
detailed granularity at different levels (machine, dataset, and tuple

Table 2: An example of tuple tags.

Tag Description
crash Caused the dataflow to fail
debug Requires online debugging
display Needs to be displayed to the user
log Has to be stored in a log

pause Requires the dataflow execution to pause
trace Needs to be tracked through the execution
skip Has to skip the remaining transformations

level), (v) have very low overhead to the main dataflow job, and
(vi) be generic to common big data processing systems without
modifying them.

3 THE TAGSNIFF MODEL
We introduce the tag-and-sniff debugging abstraction, TagSniff for
short. TagSniff provides the dataflow instrumentation foundations
for supporting most online and post-hoc debugging tasks easily
and effectively. It is composed of two primitives, tag and sniff, that
operate on the debug tuple. A unique characteristic of these primi-
tives is that users can easily add custom debugging functionality
via user defined functions (UDF). In the following, we call TagSniff
system any system that implements this abstract debugging model.

Example 1 (Running example: Top100Words). We consider the task
of retrieving the top-100 most frequent words. The following listing
provides the (slightly simplified) Spark code:

1 val tw = textFile.flatMap(l => l.split(" "))
2 val wc = tw.map(word => (word, 1))
3 val wct = wc.reduceByKey(_ + _)
4 val top100 = wct.top(100)

Listing 1: Top-100 frequent words (Top100Words).

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us first define the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that flows between the dataflow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple prefixed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identifier. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from dataflow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
▷ add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
▷ get_tag (tag: String): String: returns all the tags that start
with the input string value.
▷ has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
▷ get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sniff Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
▷ tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSniff system should
then react to such tags.
▷ sniff (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSniff system is responsible for reacting to the sniffed
tuples based on their tags.

A TagSniff system can materialize this abstract model in many
different ways. We believe that two non-intrusive approaches for
exposing the tag and sniff primitives is to specify them as anno-
tations or additional methods in the dataflow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
dataflow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSniff model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sniff primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag("pause"))
2 sniff(t => return t.has_tag("pause"))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identifier for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sniff primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identifiers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag("id-"+id)
4 t.add_tag("log")})
5 sniff(t => return t.has_tag("log"))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
dataflows using the tag and sniff primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we defined TagSniff at the tuple granularity only. The reader might
then wonder how to use TagSniff on a set of tuples, i. e., tagging
and sniffing a set of tuples that satisfies a certain condition. This
is possible if the dataflow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the dataflow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSniff in
a post-hoc manner (i. e., after the dataflow execution terminates)
as we will see in Section 5. To sum up, TagSniff is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be notified with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSniff by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSniff system should react to specific tag
and sniff calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

TagSniff: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

4.1 Data Breakpoints
Dataflow jobs are typically specified as a series of operators that
perform pre-defined transformations over the datasets. That is,
whenever an interesting tuple arrives and the dataflow pauses
(either virtually or truly), a user would like to proceed by further
inspecting how (i) an operator affects tuples, and/or (ii) a tuple is
transformed by the rest of the dataflow. For this reason, we advocate
two interactivity actions: next tuple and next operator.
Next tuple by TagSniff. Suppose that the dataflow is paused on
the first tuple containing a null value by providing the tag and
sniff functions of Listing 2. In other words, the user is interested in
inspecting tuples containing a null value. Once the user has finished
inspecting a given tuple, one has to show the next tuple thatmatches
the user defined constraints. Showing the next tuple in the dataset
instead – as done by traditional debugging – is not appropriate.
We now describe how this functionality could be achieved using
TagSniff. Once a TagSniff system receives the next tuple instruction,
it should remove the tag pause from that tuple and send it to the
next operator. This resumes the execution. The TagSniff system
would then apply the tag and sniff function to the next incoming
tuple in the inspected operator. If it satisfies the user condition (in
this case it contains a null value), the dataflow execution is paused
again. This results in having the dataflow execution being resumed
and paused at any tuple satisfying the tag conditions.
Next operator by TagSniff. Suppose now the user wants to re-
sume a paused dataflow by checking how the tuple, which caused
the dataflow to pause, is transformed by the downstream operators.
Again, she can achieve this with the sniff function of Listing 2. A
TagSniff system would simply propagate the tag pause together
with the tuple in order to pause the execution with the sniff func-
tion in the downstream operator. Thus, this functionality is relevant
when users want to “follow” tuples and observe how they are being
transformed by the operators in the dataflow.
Interactivity convenience methods. To facilitate users who
want to use the next tuple and next operator tasks, we propose
two convenience methods that a TagSniff system could provide: the
next_tuple() and next_operator(). Internally, they instantiate the
tag and sniff primitives as discussed above. Note that the system
could expose these convenience methods to users via a debugging
user interface: a graphical one, where these methods are ideally
implemented as built-in buttons, or as a command-line one.

4.2 Crash Culprit
A crash culprit is a tuple that causes a system to crash. In a dataflow
job, a crash culprit causes an operator, and hence the entire dataflow,
to crash. The objective is, thus, to identify not only the tuple but
also the operator and node where a runtime exception occurs.
Crash culprit byTagSniff. Whenever a runtime exception occurs,
a TagSniff system should catch the exception and invoke the tag
primitive. The latter annotates the tuple with the tag “crash” as well
as with the exception trace TRC, the operator id OID, and the node
IP address. Then, the system invokes the sniff primitive to identify
this tuple by inspecting for the crash tag. Note that these tag and
sniff instances are specified by the TagSniff system and not by the
user. We illustrate these two instances below:

1 tag(t => t.add_tag("crash-"+TRC+":"+OID+":"+IP))
2 sniff(t => return t.has_tag("crash"))

Listing 4: Catch crash culprits.

4.3 Alert
An alert functionality notifies a user that a tuple satisfied some
condition of interest to the user. Users can add conditions on a
single tuple or set of tuples as well as on information computed at
runtime, e. g., on a latency metric.
Alert by TagSniff. Assume a user wants to be notified in the
Top100Words example whenever there is a group of words that
takes too long to be processed as this can be a potential bottleneck.
This is possible with a tag primitive that adds a timestamp to the
tuple metadata. A TagSniff system should then call this primitive
before and after a tuple is executed by the ReduceByKey operator.
The sniff primitive would then retrieve the timestamp metadata
from the debug tuple to get the first and second timestamps, com-
pute the latency of the ReduceByKey invocation and check if it is
above some threshold. Listing 5 illustrates these primitives:

1 tag(t => t.add_tag("timestamp-"+ System.currentTimeMillis()))
2 sniff(t => {timestamps = put_in_array(t.get_tag("timestamp"))
3 return (timestamps[1] - timestamps[0] > THRESHOLD)})

Listing 5: Identify performance bottlenecks.

5 POST-HOC DEBUGGING
Post-hoc debugging takes place on the execution logs once the main
dataflow job finishes. As mentioned previously, simple execution
logs only provide a simplistic view where the input, intermediate,
and output tuples are decoupled. Here, we describe how users can
leverage the TagSniff primitives to produce much richer execution
logs with a logical view. Users can then analyze these logs to identify
the underlying issue. This calls for new querying functionalities that
facilitate the analysis of rich execution logs. For example, obtaining
lineage information or replaying a part of the dataflow execution
for a subset of tuples might require quite some coding expertise.
Although TagSniff can support awide variety of post-hoc debugging
tasks, our exposition focuses on how one can achieve each of the
common post-hoc tasks listed in Table 1.

Similar to the online debugging cases described in the previ-
ous section, here we discuss how a TagSniff system should react
to specific tag and sniff calls to support post-hoc debugging. We
also introduce a set of convenience methods that prevent users
from writing many lines of code. There are many ways in which a
TagSniff system could expose these post-hoc convenience methods.
Depending on the dataflow language used by the user, these meth-
ods can be special keywords in case of a declarative language, such
as Pig Latin [19], or operators in case of a programmatic language.
For example, one could write a Spark-like extension for these meth-
ods, which a TagSniff system should parse. We opted for the latter
choice. In the following, we thus present our illustrative examples
assuming the latter choice.

5.1 Forward and Backward Tracing
Intuitively, forward tracing allows users to identify which output
tuples were generated from a given input tuple. More generally, this

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

process allows users to understand how a given tuple is transformed
by various operators in the dataflow. Conversely, backward tracing
allows users to identify the input tuple(s) that generated a given
output tuple, which could be construed as a special case of lineage.
Note that both forward and backward tracing could be executed on
the entire dataflow or a portion of it.
Forward tracingwith TagSniff. Suppose a user wants to trace an
input tuple throughout the entire dataflow if it contains an empty
word. Using the logs, the user can either run an ad-hoc dataflow
or run the original dataflow properly instrumented with TagSniff.
We argue the latter is much simpler. The tag primitive annotates
all tuples containing an empty value as trace, otherwise as skip. A
TagSniff systemwould apply this tag function at the source operator
followed by a sniff function. This sniff function returns true for
all tuples because each of them requires the system to act: either
display the tuple to the user (trace) or remove the tuple from the
dataflow (skip). The TagSniff system would also apply this sniff
function in all the following operators to keep displaying the tuples.
Note that if an operator is many-to-one (e. g., an aggregate), sniff
will return true if any of the input tuples have the tag trace attached
to it. Listing 6 illustrates the above tag and sniff:

1 tag(t => if (t.equals(" ")) t.add_tag("trace")
2 else t.add_tag("skip"))
3 sniff(t => return true)

Listing 6: Trace words with an empty string.

Backward Tracing with TagSniff. Suppose now a user wants to
trace which input tuples contributed to a specific output tuple. If
the execution log has enough information from the main dataflow
instrumentation, the user can simply run an ad-hoc dataflow on
the log to find out the contributing input tuples. If not enough
lineage information is available, the user can then achieve the
same by running the original dataflow properly instrumented with
TagSniff on the logs. A TagSniff system would proceed to execute
the dataflow in reverse from the last operator back to the first
operator: It would fetch from the log all the tuples output by the
reduceByKey operator, i. e., datasetwct in Listing 1, and run the top
operator; It would then tag each tuple inwctwith a unique identifier
and trace them to identify the input tuples that contributed to the
specific output tuple; Once the contributing tuples are identified, it
would repeat this process until the first operator (i. e., flatMap) in
the dataflow is reached.
Tracing convenience methods. To prevent users of writing a lot
of code, we propose two convenience methods that a TagSniff sys-
tem can provide: the forward_trace() and backward_trace(). These
two convenience methods use internally the tag and sniff primitives
as explained above. Let us illustrate how a user would express the
backward tracing task explained above with the backward_trace()
method. Listing 7 provides an idealized demonstration of how the
user can do this.

1 val r = new Reader("debugging.log")
2 val ds = r.get_dataset(4)
3 val es = ds.filter(pair => pair[0] == " ")
4 val lines = es.backward_trace()
5 lines.collect().foreach(println)

Listing 7: Backward Tracing of Empty String

The user utilizes the Reader class to read and parse the execution
log. She then uses the function get_dataset, which allows her to get
any of the intermediate datasets: either by using the code line num-
ber of the main dataflow (Listing 1 in this example) or the operator
identifier. Once she got the output dataset (top100), she filters it out
by retaining only the empty words. Next, she applies the function
backward_trace to track all these empty words (i. e., dataset es) all
the way to the beginning. She could also trace only a limited num-
ber of steps by passing an argument to this convenience method.
Finally, she prints all the input tuples that produced an empty word.

5.2 Selective Replay
Selective replay allows a user to replay portions of the dataflow
graph. Selective replay has several applications [10], such as un-
derstanding how a subset of the dataset is affected by the dataflow,
performing interactive queries on intermediate datasets for debug-
ging, and re-executing part of the workflow with modified inputs.
Selective replay with TagSniff. Suppose that a user is interested
in selectively replaying the execution of themap and reduceByKey
operators (lines 2-3 in Listing 1). To achieve this, she can load the
intermediate output of line 1 (i. e., dataset tw) and run the rest of the
original dataflow instrumented with TagSniff. A TagSniff system
would add a tag and sniff primitive after the reduceByKey operator,
where the tag primitive adds the skip tag to all tuples output from
that operator and sniff returns true for all tuples. The TagSniff
system would then be responsible to remove all tuples tagged as
skip from the main dataflow. This would lead the system to halt
with the output of the reduceByKey operator. Listing 8 illustrates
these tag and sniff functions:

1 tag(t => t.add_tag("skip"))
2 sniff(t => return true)

Listing 8: Skip all tuples after ReduceByKey.

Replay convenience method. To facilitate this
task we propose the replay convenience method:
replay(from=start_line, until=end_line), which is built
on top of the TagSniff model. Listing 9 provides an idealized
demonstration of how the user could use this method for the above
example.

1 val r = new Reader("debugging.log")
2 val ds = r.get_dataset(1)
3 val output = ds.replay(from=2, until=3)

Listing 9: Selective replay.

5.3 Post-hoc Assertions
One can apply post-hoc assertions on input, intermediate, or output
datasets to verify if a given condition is satisfied. Note that this could
be combined with other methods to perform more sophisticated
debugging, such as comparing the final output against a known
ground truth.
Post-hoc assertions with TagSniff. Suppose that a user wants
to verify if all strings passed as input to the map function in our
WordCount running example (Listing 1) had at least length 1. This
could be easily achieved with TagSniff where tag applies the display
tag to tuples that fail to satisfy this condition. Then sniff returns

TagSniff: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag("display"))
2 sniff(t => if (t.has_tag("display"))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSniff
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader("debugging.log")
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Profiling
Performance profiling is the task of analyzing execution logs to
understand the dataflow footprint in terms of different performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance profiling with TagSniff. A particular interesting
scenario for performance profiling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identified. This can
be achieved by running an ad-hoc dataflow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sniff in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sniff
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader("debugging.log")
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag("timestamp"))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Profiling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into Snoopy, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSniff primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: Snoopy internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag("pause"))
3 val tw = ln.flatMap(l => l.split(" ")))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag("pause"))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag("now-"+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag("now"))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag("alert")}, POST)
11 .setSniff(t => return t.has_tag("alert"))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Snoopy implements the tag and sniff primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially dataflow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main dataflow.
Snoopy comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of Snoopy and the user
interaction, in the following, we consider the example of finding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of Snoopy API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSniff prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Spark jobs between stages, Snoopy allows for instrumentation, and
hence debugging, at the operator level. This allows more flexibility
in debugging at varying granularities, such as individual tuples,
RDD or a node. Also, in contrast to Inspector Gadget [18], our in-
strumentation is lightweight and the user does not have to learn a
new API. Listing 13 shows how she has to instrument the top-100
frequent words job to enable the three above debugging scenar-
ios. We use this as our running example to illustrate the system
functionality as well as the user interaction.

6.1 Tagging Tuples
To be able to annotate tuples, Snoopy adds a wrapper on each
UDF in the dataflow, e. g., split and count in the WordCount job of
Figure 1. The wrapper is mainly responsible for attaching system-
defined and user-defined tags to every single tuple before (pre-tag)
and after (post-tag) the tuple is processed by a Spark operator. The
user can optionally specify when to apply her tag function by
passing a PRE or POST constant as parameter in the setTag method.
Snoopy annotates a tuple using the UDF provided in the setTag
method of the RDDbug. By default, it also annotates a tuple with
a unique identifier and the operator identifier that transforms the
tuple. Note that Snoopy differs from Titian [14] in that it does not
modify the RDD itself but it simply adds the appropriate identifiers
in the tuple metadata, which is then processed out-of-place.
User interaction. Let’s now see how the user should tag the tu-
ples in her job to enable the debugging example scenarios outlined
above. First, she has to invoke the setTag method on the RDDbug
to identify the input lines satisfying the pausing condition, i. e., ev-
ery 10k lines, and add the “pause" tag to these tuples (Line 2 in
Listing 13). For the alert scenario, she has to invoke the setTag
method on the reduceByKey operator and annotate a tuple with a
timestamp before the tuple is processed by the operator (via the
PRE constant in Line 7). She then annotates the tuple once it has
been processed by the operator (via the POST constant): She inputs
a UDF that parses the start timestamp of the tuple and adds the tag
“alert” if it took more than 60 seconds to be processed (Lines 8–10).
For the crash culprit scenario, she does not have to instrument the
dataflow. Snoopy handles crash culprits behind the scenes with-
out user intervention: it catches any runtime exception in the job
and invokes the setTag method in the operator where the crash
occurred to insert the tag “crash” as well as the exception trace,
such as in Listing 4.

6.2 Sniffing Tuples
Snoopy reacts to tuple annotations by inspecting every single tuple
that flows between two Spark operators and identifies those tuples
requiring an action. It does so by injecting a sniffer operator (which
is a flatMap operator in Spark) between each pair of operators in
the dataflow. This sniffer operator identifies tuples of interest by
applying the UDF function of the setSniff method. If it outputs
true, Snoopy needs to perform a given action. It can perform three
actions: (i) send a copy of the tuple out of the main dataflow for
out-of-place debugging (send-out action); (ii) remove the tuple from
the main dataflow (skip-tuple action); and/or (iii) pause the dataflow
execution (job-halt action). Table 3 illustrates how pre-defined tags
map to these actions. Users can add their own tags and map them

Table 3: Pre-defined tag-based actions.

Action Tuple tags

send-out
alert, breakpoint, crash, display, fix, log,
profile, trace

skip-tuple crash, skip, fix
job-halt pause

to these actions via a configuration file. In this way, Snoopy is
extensible to ad-hoc debugging analysis that users may wish to
perform.

If the action that Snoopy has to perform is send-out, it clones
the entire tuple together with its metadata and sends the copy for
out-of-place debugging. It then clears the tuple metadata and sends
the tuple to the next downstream operator: it keeps only the tuple
identifier and the trace tags (if they exist). Clearing the metadata
is crucial for keeping the memory overhead low. In case the tuple
requires a skip-tuple action, Snoopy does not put it back into the
dataflow.

If a job-halt action is required, Snoopy pauses the dataflow exe-
cution by simply holding the tuple3. As Spark processes tuples in a
pull-model fashion, holding a tuple causes the entire dataflow to
pause in that particular Spark worker: the sniffer does not request
for a new tuple to the upstream operator; the downstream operators
keep waiting for the next tuple to arrive. Additionally, if the job-
action is at the RDD level, the sniffer requests all the other sniffers
located at the same position in the dataflow (level-mate sniffers,
for short), but running on different Spark workers, to pause too. In
case a level-mate sniffer is not active anymore, Snoopy forwards
the request to the first active sniffer in the downstream operators.
Then, all sniffers resume the execution, either after a timeout or by
user instruction, by sending the held tuple to the next downstream
operator. Snoopy can resume the job by receiving the user’s instruc-
tion via the next_tuple or the next_operator convenience methods
(see Section 4.1). When receiving next_tuple, Snoopy removes the
“pause” tag from the current pausing tuple and sends it to the next
downstream operator. This causes the job execution to resume and
pause again whenever another pausing tuple is found. In the case of
receiving next_operator, Snoopy simply sends the pausing tuple to
the next downstream operator. In contrast to next_tuple, this causes
the job to resume and pause when the next operator (reduceByKey
in our example) finishes processing the pausing tuple.
User interaction. Let us discuss now how the user has to in-
strument her job to enable Snoopy to sniff tuples. For the data
breakpoint scenario, she has to inject her setSniff method two op-
erators after her setTag method (Line 5) so that she can inspect
the intermediate results in this part of the dataflow. Snoopy, thus,
pauses and sends the intermediate results to the GUI whereby
she can resume the job by invoking either the next_tuple or the
next_operator convenience methods (see Section 4.1). For the alert
scenario, she invokes the setSniff method right after its correspond-
ing setTag methods (Lines 7–10). She inputs a UDF to send-out
every tuple with an “alert” tag for displaying it to the user. Finally,

3We discuss how it achieves a simulated pause in Section 6.3.

TagSniff: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

for the crash culprit, the user does not need to set any sniff func-
tion. It is Snoopy that inserts a sniff function (as in Listing 4) in
the operator where the crash occurred. This, makes the system to
send-out the tuple for out-of-place debugging and remove the tuple
from the main dataflow.

6.3 Debugging Tuples
It is the out-of-place debugger that is responsible for analyzing
the (meta-)data produced by the job instrumentation, i. e., the tu-
ples with their tags (tuples, for short). The out-of-place debugger
consists mainly of two main parts: a data stream source (Elastic-
StreamSource) and a set of auxiliary dataflows to further process
the tuples coming from the job instrumentation. The right-side of
Figure 1 illustrates these two parts.

The ElasticStreamSource receives tuples with tags that map to
the send-out action (see Table 3) and dispatches them to the user
for further analysis. In detail, it sends them to the GUI, for manual
user inspection, and to the subscribed auxiliary dataflows, for auto-
matic debugging, such as value imputation. The GUI and auxiliary
dataflows get tuples of interest in a publish-subscribe fashion but
with a pull-model for consuming the tuples. Internally, this compo-
nent uses a double buffering mechanism to temporarily store tuples
until the GUI and auxiliary dataflows consume them.

An auxiliary dataflow is a regular Spark job that is executed apart
from the main dataflow. The auxiliary dataflow consumes tuples
annotated with a tag of interest and perform a user-defined analysis
with them. Snoopy comes with two default auxiliary dataflows: the
(i) monitoring and (ii) logging dataflows.

(i) The monitoring dataflow allows the GUI to consume tuples
from the ElasticStreamSource component. It provides the
GUI with online notifications of the user’s dataflow instru-
mentation, e. g., alerts and crash traces. In detail, the monitor-
ing dataflow consumes all tuples with the alert, breakpoint,
crash, display, and trace tags. In the GUI, the user can then
visualize, log, modify and re-inject tuples back to the main
dataflow as well as pause and resume the job execution. For
instance, assume an incoming tuple tagged as “display”. The
monitoring dataflow would pull such a tuple and immedi-
ately display it to the user in the GUI. Besides, this dataflow is
in charge of providing simulated breakpoints, such as in [12].
A simulated breakpoint virtually pauses the job execution.
For this, the monitoring dataflow checks if the tuple has the
“breakpoint” tag before sending it to the GUI. If so, it buffers
the tuple together with the following incoming tuples. Once
the job is resumed by the user, it sends all the buffered tuples
until the next breakpoint to the GUI.

(ii) The logging dataflow is responsible for storing tuples having
the “log” tag for post-hoc debugging purposes (see Section 5).
By default, Snoopy stores the logs in HDFS. Investigating
more sophisticated methods for storing logs, such as in [14],
is out of the scope of this paper.

User interaction. The user can debug tuples either by using the
GUI of Snoopy or plugging an auxiliary dataflow to manipulate
tuples containing a set of tags she inserted during instrumenta-
tion. In the latter case, she can use the convenience methods for
post-hoc debugging and provide a job as shown in the examples

of Section 5. For simplicity, we assume the user utilizes the GUI
when dealing with our three debugging example scenarios. For the
data breakpoint scenario, the user receives a message notifying
that the system has been paused: she can then analyze the inter-
mediate results produced so far and resume the job by invoking
the next_tuple or next_operator method. For the alert and crash
culprit scenarios, the user simply receives a warning in the GUI
with the tuple that caused such an alert or crash.

7 EVALUATION
The goal of our evaluation is to determine the performance effi-
ciency of Snoopy. In more detail, we carried out our experiments
to answer three main questions:

(1) Performance efficiency: how obtrusive is Snoopy to the per-
formance of an original dataflow? Although users may be
used to high overhead in performance when debugging their
dataflow jobs, we argue that it is crucial that a debugging
system incurs low overhead. This not only increases pro-
ductivity, but also makes it possible to debug dataflows in
production.

(2) Scalability: how well does Snoopy scale to large dataflows
and compute nodes? It is crucial that a debugging system
scales with the size of the dataflow and number of nodes.
That is, increasing the number of operators in a dataflow
and of compute nodes in a cluster should not increase the
overhead of the system.

(3) Responsiveness: how responsive Snoopy is to system events
and user instructions? We believe that allowing interactivity
with users is not a nice-to-have feature but a must. Users
must be able to guide the system in their debugging tasks in
a real time fashion, i. e., users should not wait more than a
second to see the result (for the system to react) [22].

Setup. We ran all our experiments on a cluster of 10 machines, each
with: 2 GHz quad-core CPU, 32GB memory, 1TB storage, 1 Gigabit
network, and 64-bit Ubuntu OS. Assuming that the 10-machines
cluster is a production cluster, we used a Mac Pro for out-of-place
debugging: 2.7 GHz 12-core CPU, 64GB memory, 1TB storage, 1
Gigabit network, and macOS Mojave. We used Java 9, Spark 2.4.0,
and HDFS 2.6.5. We used each of these platforms with their default
settings and 20 GB of max memory. We only set Spark to run one
worker per core, which results into a cluster size of 40 workers for
the production cluster and 12 workers for the debugging node. We
use Spark as the baseline and consider three different tasks: grep,
wordcount, and join (PigMix L2). We use the Wikipedia-abstracts
dataset for grep, wordcount and PigMix dataset for join and vary
the dataset sizes from 1GB to 1TB. We run each of our experiments
5 times, removed the slowest and fastest results, and report the
average time of the remaining 3 executions.

7.1 Performance Efficiency
We first evaluate the overhead that Snoopy incurs on Spark jobs.
For this experiment, we considered all three tasks (grep,wordcount,
and join) with varying input dataset sizes. We instrumented Snoopy
to annotate tuples in order to support all tasks of Table 1. Note that
this represents the worst case for Snoopy in terms of performance,
because it has to use all tags to annotate a tuple (including tuple

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.
Ru

nt
im

e
(s

)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
5%

5%

6%

SNOOPY overhead

�1

(a) Grep

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

5%

7%

7%
7%

SNOOPY overheadSpark

�1

(b) WordCount

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
6%

5%
7%

SNOOPY overhead

�1

(c) Join

Figure 2: Overhead when debugging Spark jobs with Snoopy.

Ru
nt

im
e

(s
)

0

25

50

75

100

Number of sniffers
0 1 2 4 8 16 32

Spark

5% 6% 6% 8% 7% 8%

SNOOPY overhead

�1

(a) Dataflow size

Ru
nt

im
e

(s
)

0

17.5

35

52.5

70

Number of nodes
2 4 8 16 30

Spark

5%

6%

6% 5% 5%

SNOOPY overhead

�1

(b) Cluster size

Figure 3: Snoopy scalability.

and operator identifiers). We measure the runtime of a task running
on Spark without any debugging (Spark) and the runtime of the
task with debugging. We then report the difference (overhead).

Figure 2 illustrates the results of this set of experiments. Overall,
we observe that Snoopy incurs a very low overhead of only 5-7%
regardless of the task or dataset size. This is because the out-of-
place debugger absorbs most of the overhead. Recall that the actual
debugging, e. g., fixing or formattingmalformed tuples, is done apart
from the cluster running the main dataflow. Thus, the overhead
depends mostly on the socket connections that the out-of-place
debugger receives and hence on the number of sniffers. The number
of sniffers in these three tasks is small: it ranges from 2 to 7. This
is why Snoopy has a similar incurred overhead for all three tasks.
In the following, we shall show the scalability of Snoopy in terms
of number of sniffers. These results show the high performance
efficiency of Snoopy, which leads to retaining the Spark execution
time almost intact. This means one can use Snoopy in production.
In fact, it incurs 10x less overhead than BigDebug [12] for grep and
wordcount.

7.2 Scalability
We now evaluate the scalability of Snoopy in terms of dataflow and
cluster size.
Increasing dataflow size. For this experiment, we composed
synthetic Spark jobs with varying number of operators, from 2
to 33, and instrumented them with one sniffer per operator pair
connection. We considered the Wikipedia-abstracts dataset with
a size of 10 GB. Figure 3(a) shows the results. As we noted earlier,
the overhead depends on the number of sniffers instrumented in

the dataflow. We observe how the overhead incurred by Snoopy
increases slightly as the number of sniffers increases. This is because
the out-of-the place debugger has to deal with more connected
sniffers. Still, we observe that Snoopy scales gracefully to large
dataflows. For instance, for a dataflow of 33 operators (i. e., 32
sniffers), which is already a relatively large dataflow in practice,
the overhead is only 8%.
Increasing number of compute nodes. The goal of this exper-
iment is to determine if Snoopy allows Spark to retain its node
scalability. For this experiment, we used the grep task with an input
dataset size of 10 GB and varied the number of compute nodes.
Figure 3(b) illustrates the results. We observe that Snoopy incurs
an almost constant overhead: it ranges from 5% to 6%. This minor
difference is mainly due to the cluster variance.

Therefore, the above results allow us to conclude that Snoopy
scales gracefully with the dataflow size and along with Spark for
increasingly larger clusters.

7.3 Responsiveness
We end our evaluation with a set of experiments to evaluate how re-
sponsive Snoopy is to system events (e. g., alerts and crashes) as well
as user instructions (e. g., system pauses and tuple re-injections).
For this, we consider two debugging scenarios for the join task on
100GB: crash culprit and online debugging.
Crash culprit. Recall a crash culprit is a tuple that causes the
dataflow to fail. We constructed this scenario by inserting a varying
number of tuples with null values into the input dataset, which
causes the join task to fail. Snoopy catches such exceptions and
sends them to the out-of-place debugger for user inspection (system-
event). The user inspects and fixes the failing tuple (tuple-repair).
Then, she re-inserts the fixed tuple into the main dataflow (user-
instruction). We report the average times only for the system-event
and user-instruction, because the tuple-repair time depends on
several external factors.

Figure 4(a) shows the results of this experiment. The x-axis
shows the total number of system events and, thus, user interac-
tions (i. e., the number of crash culprits). We observe that Snoopy
ensures an immediate response to system events as well as to user
instructions. From the moment a crash occurs, in the worst case
(when having 10 failing tuples), it will take (i) 16.7 ms to send the
crash culprit (the failing tuple with its metadata) to the user for

TagSniff: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA
La

te
nc

y
(m

s)

0

6

12

18

24

Number of events/instructions

10 100 1k 10k

1.21.3
1.9

5.5

1.92.34.3

16.7

System-event User-instruction

�1

(a) Interaction time
Ti

m
e

(m
s)

0

1.5

3

4.5

6

Number of sniffers
2 4 8 16 32

4.24.4
5.3

4.3
3.5

4.34.7
5.3

4.3
3.6

Pause Resume

�1

(b) Time to pause or resume

Figure 4: Snoopy responsiveness.

out-of-place debugging and (ii) 5.5 ms to receive back the fixed
tuple. Surprisingly, we see that the responsiveness of Snoopy in-
creases with the number of events and instructions. This is because
the TCP/IP protocol buffers up data until there is a decent amount
of data to send. Thus, when having more events/instructions, this
waiting time goes down significantly: it takes 3.1 ms for sending
10k crash culprits and receiving back the fixed tuples.
Online debugging. Here, we assume the user decides to pause the
system to inspect how tuples are being transformed by the dataflow
(via the next_tuple and next_operator convenience methods). For
this, Snoopy must “instantly” react so that she can inspect a par-
ticular observed behavior. We measured the time Snoopy takes to
pause the entire dataflow from the moment the user instructs it
and the time to resume the computation. We varied the number
of sniffers instrumented in the dataflow. Figure 4(b) shows these
results. We observe that Snoopy takes 4 − 5ms on average to either
pause or resume the entire dataflow, regardless of the number of
sniffers. This is because they ping to each other directly without
any server among them (and hence no possible bottleneck).

These results show the high responsiveness of our system, which
makes it a truly interactive debugging system.

8 RELATEDWORK
The popularity of dataflow based systems such as Hadoop and Spark
has created the need for more advanced big data debugging tools.
Almost all of the prior research work has focused on simplifying a
specific debugging scenario. In contrast, TagSniff provides a holis-
tic approach based on powerful primitives that could be used to
implement almost all of the common debugging tasks. Additionally,
Snoopy supports both online and post-hoc debugging.

The closest to our work is Inspector Gadget (IG) [18] which
provides a programming framework for coding any monitoring or
debugging task. IG provides a set of JavaAPIs that a user needs to im-
plement for enabling a given debug task. Although we share many
of IG’s goals, we have some core differences: (i) our primitives re-
quire less coding effort from the users, (ii) our architecture employs
an out-of-core debugging mechanism which significantly decreases
the overhead, and (iii) we support any post-hoc analysis while IG
supports only forward tracing. BigDebug [12] provides support for
simulated watchpoints and breakpoints for debugging Spark jobs,
but requires the modification of the underlying dataflow engine.
The primitives proposed in BigDebug are more coarse-grained and

do not support post-hoc solutions. Arthur [10] supports selective re-
play based post-hoc debugging scenarios but not online debugging.
Graft [20] is a post-hoc debugger for Apache Giraph [2] where users
can replay their graph dataflows. Daphne [15] is a visualization
and debug tool for DryadLINQ jobs. It is based on an abstraction of
different sources of information about a job (e. g., job plan, runtime
logs, application logs, input/output). While debugging, a user has
to select the vertex that caused the failure and re-execute it via the
Dryad runtime. BigShift [11] automates a specific task by combin-
ing data provenance and delta debugging [21]: given a test function,
the system automatically finds a minimum set of fault-inducing
input data responsible for a faulty output. However, this technique
is used for debugging anomalous results and requires as input a
user-defined test function.

There are also many prior works that seek to support provenance
in dataflow engines as it could be used for many debugging tasks,
such as forward/backward tracing. Some works [9, 24] are based
on offline provenance and require to re-execute the job to record
any required information. Although this approach occurs no extra
overhead on the main dataflow, it requires much time to capture
the provenance, especially for long running jobs. On the contrary,
we instrument the job and gather the information needed on the fly
with a minimum overhead. Similarly to our approach, RAMP [13]
and Newt [16] use wrapper functions to capture tuple-level lin-
eage on dataflow engines. RAMP records provenance for forward
and backward tracing in MapReduce workflows but can incur an
overhead of up to 76%. Newt records the arrival and departure of
each tuple to an operator and can reconstruct the lineage offline. It
incurs a lower overhead of 12 − 49%, but does not support debug-
ging itself: one has to query the provenance stored in the system
and implement her debugging tasks. Titian [14] extends Spark’s
RDD to capture lineage information and stores it using Spark’s
internal structures. However, this requires a modified version of
Spark, which may not always be feasible, e. g., in large companies
that require SLAs.

9 CONCLUSION
We made two major contributions that could dramatically simplify
big data debugging. First, we introduced the TagSniff model, which
is based on two powerful primitives. We demonstrated via numer-
ous examples how they could concisely specify almost all of the
common debugging scenarios. Second, we described Snoopy, an
efficient implementation of TagSniff built on top of Spark. Snoopy
makes a number of innovative architectural choices that allows it
to support both online and post-hoc debugging with an average
overhead of 6%. Furthermore, it does not need any modification to
the underlying system thereby making it portable. We believe that
both TagSniff and Snoopy have the potential to reduce the tedious
and time consuming task of big data debugging.

ACKNOWLEDGMENTS
This work has been supported by the German Ministry for Ed-
ucation and Research as BBDC 2 (ref. 01IS18025A) and BZML
(ref. 01IS18037A).

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A. Quiané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

REFERENCES
[1] Apache Flink. https://flink.apache.org/.
[2] Apache Giraph. https://giraph.apache.org/.
[3] Apache Hadoop. https://hadoop.apache.org/.
[4] Apache Spark. https://spark.apache.org/.
[5] D. Agrawal, M. L. Ba, L. Berti-Équille, S. Chawla, A. K. Elmagarmid, H. Hammady,

Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse, M. Ouzzani, P. Papotti, J. Quiané-Ruiz,
N. Tang, and M. J. Zaki. Rheem: Enabling Multi-Platform Task Execution. In
SIGMOD, pages 2069–2072, 2016.

[6] D. Agrawal, S. Chawla, A. Elmagarmid, Z. Kaoudi, M. Ouzzani, P. Papotti, J.-A.
Quiané-Ruiz, N. Tang, and M. J. Zaki. Road to freedom in big data analytics. In
Proceedings of the International Conference on Extending Database Technology
(EDBT), pages 479–484, 2016.

[7] D. Agrawal, B. Corteras-Rojas, S. Chawla, A. Elmagarmid, Y. Idris, Z. Kaoudi,
S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang,
and A. Troudi. Rheem: Enabling Cross-Platform Data Processing – May The Big
Data Be With You! PVLDB, 11(11):1414–1427, 2018.

[8] T. Britton, L. Jeng, G. Carver, and P. Cheak. Reversible debugging software
“quantify the time and cost saved using reversible debuggers”. 2013.

[9] Y. Cui and J. Widom. Lineage Tracing for General Data Warehouse Transforma-
tions. The VLDB Journal, 12(1):41–58, 2003.

[10] A. Dave, M. Zaharia, S. Shenker, and I. Stoica. Arthur: Rich Post-Facto Debugging
for Production Analytics Applications. Technical report, University of California,
Berkeley, 2013.

[11] M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim. Automated
Debugging in Data-intensive Scalable Computing. In SoCC, pages 520–534, 2017.

[12] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein, and M. Kim.
BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark. In

ICSE, pages 784–795, 2016.
[13] R. Ikeda, H. Park, and J. Widom. Provenance for Generalized Map and Reduce

Workflows. In CIDR, 2011.
[14] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. Millstein, and

T. Condie. Titian: Data Provenance Support in Spark. PVLDB, 9(3):216–227, Nov.
2015.

[15] V. Jagannath, Z. Yin, and M. Budiu. Monitoring and Debugging DryadLINQ
Applications with Daphne. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, pages 1266–1273, 2011.

[16] D. Logothetis, S. De, and K. Yocum. Scalable Lineage Capture for Debugging
DISC Analytics. In SOCC, pages 17:1–17:15, 2013.

[17] D. H. O’Dell. The Debugging Mindset. ACM Queue, 15(1):50:71–50:90, 2017.
[18] C. Olston and B. Reed. Inspector Gadget: A Framework for Custom Monitoring

and Debugging of Distributed Dataflows. PVLDB, 4(12):1237–1248, 2011.
[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-so-

foreign Language for Data Processing. In SIGMOD, pages 1099–1110, 2008.
[20] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, and J. Widom. Graft: A Debugging

Tool For Apache Giraph. In SIGMOD, pages 1403–1408, 2015.
[21] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing Input.

IEEE Transactions on Software Engineering, 28(2):183–200, 2002.
[22] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. How progres-

sive visualizations affect exploratory analysis. IEEE Trans. Vis. Comput. Graph.,
23(8):1977–1987, 2017.

[23] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin. An empirical study on
quality issues of production big data platform. In ICSE, pages 17–26, 2015.

[24] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
Network Provenance. In SOSP, pages 295–310, 2011.

https://flink.apache.org/
https://giraph.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/

	Abstract
	1 Introduction
	1.1 The State of Big Data Debugging
	1.2 Simplifying Big Data Debugging

	2 Motivation
	2.1 The Changing Face of Debugging
	2.2 Debugging Modes
	2.3 Desiderata

	3 The TagSniff Model
	3.1 Debug Tuple
	3.2 Tag and Sniff Primitives
	3.3 Examples
	3.4 Discussion

	4 Online Debugging
	4.1 Data Breakpoints
	4.2 Crash Culprit
	4.3 Alert

	5 Post-hoc Debugging
	5.1 Forward and Backward Tracing
	5.2 Selective Replay
	5.3 Post-hoc Assertions
	5.4 Performance Profiling

	6 A TagSniff Instantiation
	6.1 Tagging Tuples
	6.2 Sniffing Tuples
	6.3 Debugging Tuples

	7 Evaluation
	7.1 Performance Efficiency
	7.2 Scalability
	7.3 Responsiveness

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

