
Noname manuscript No.
(will be inserted by the editor)

Fast and Scalable Inequality Joins

Zuhair Khayyat · William Lucia · Meghna Singh · Mourad Ouzzani ·
Paolo Papotti · Jorge-Arnulfo Quiané-Ruiz · Nan Tang · Panos Kalnis

Abstract Inequality joins, which is to join relations

with inequality conditions, are used in various applica-

tions. Optimizing joins has been the subject of intensive

research ranging from efficient join algorithms such as

sort-merge join, to the use of efficient indices such as

B+-tree, R∗-tree and Bitmap. However, inequality joins

have received little attention and queries containing

such joins are notably very slow. In this paper, we intro-

duce fast inequality join algorithms based on sorted ar-

rays and space efficient bit-arrays. We further introduce

a simple method to estimate the selectivity of inequality

joins which is then used to optimize multiple predicate

Z. Khayyat

King Abdullah University of Science and Technology,
Saudi Arabia

E-mail: zuhair.khayyat@kaust.edu.sa

W. Lucia

Qatar Computing Research Institute, HBKU, Qatar
E-mail: williamlucia.wl@gmail.com

M. Singh

Qatar Computing Research Institute, HBKU, Qatar
E-mail: mesingh@qf.org.qa

M. Ouzzani

Qatar Computing Research Institute, HBKU, Qatar

E-mail: mouzzani@qf.org.qa

P. Papotti
Arizona State University, USA
E-mail: ppapotti@asu.edu

J. Quiané-Ruiz

Qatar Computing Research Institute, HBKU, Qatar
E-mail: jquianeruiz@qf.org.qa

N. Tang
Qatar Computing Research Institute, HBKU, Qatar
E-mail: ntang@qf.org.qa

P. Kalnis

King Abdullah University of Science and Technology,

Saudi Arabia
E-mail: panos.kalnis@kaust.edu.sa

queries and multi-way joins. Moreover, we study an in-

cremental inequality join algorithm to handle scenarios

where data keeps changing. We have implemented a

centralized version of these algorithms on top of Post-

greSQL, a distributed version on top of Spark SQL, and

an existing data cleaning system, Nadeef. By com-

paring our algorithms against well known optimization

techniques for inequality joins, we show our solution is

more scalable and several orders of magnitude faster.

1 Once Upon a Time . . .

Bob1, a data analyst working for an international

provider of cloud services, wanted to analyze revenue

and utilization trends from different regions. In particu-

lar, he wanted to find out all those transactions from the

West-Coast that last longer and produce smaller rev-

enues than any transaction in the East-Coast. In other

words, he was looking for any customer from the West-

Coast who rented a virtual machine for more hours than

any customer from the East-Coast, but who paid less.

Figure 1 illustrates a data instance for both tables. He

wrote the following query for such a task:

Qt : SELECT east.id, west.t id
FROM east,west
WHERE east.dur < west.time AND east.rev > west.cost;

Bob first ran Qt over 200K transactions on the dis-

tributed system storing the data (System-X). Given

that the input dataset is ∼1GB, he expected a minute

response time or so. However, he waited for more than

three hours without seeing any result. He immediately

thought that this problem comes from System-X and

killed the query. He then used an open-source DBMS-X

1 We motivate the problem with a real-life story. Names and

queries have been changed for confidentiality reasons.

2

east id dur rev cores
r1 100 140 9 2

r2 101 100 12 8

r3 102 90 5 4

west t id time cost cores

s1 404 100 6 4
s2 498 140 11 2
s3 676 80 10 1

s4 742 90 5 4

Fig. 1 East-Coast and West-Coast transactions

to run his query. Although join is by far the most impor-

tant and most studied operator in relational algebra [1],

Bob had to wait for over two hours until DBMS-X re-

turned the results. He found that Qt is processed by

DBMS-X as a Cartesian product followed by a selection

predicate, which is problematic due to the huge number

of unnecessary intermediate results.

In the meantime, Bob heard that a big DBMS ven-

dor was in town to highlight the power of their recently

released distributed DBMS to process big data (DBMS-

Y). So he visited them with a small (few KBs) dataset

sample of the tables to run Qt. Surprisingly, DBMS-Y

could not run Qt for even that small sample! He spent

45 minutes waiting while one of the DBMS-Y experts

was trying to solve the issue. Bob left the query run-

ning and the vendor never contacted him again. In fact,

DBMS-Y is using underneath the same open-source

DBMS-X that Bob tried before. He thus understood

that a simple distribution of the process does not solve

his problem. Afterwards, Bob decided to call one of

his friends working for a very famous DBMS vendor.

His friend kindly accepted to try Qt on their DBMS-Z,

which is well reputed to deal with terabytes of data.

A couple of days later, his friend came back to him

with several possible ways (physical plans) to run Qt

on DBMS-Z. Nonetheless, all these query plans still had

the quadratic complexity of a Cartesian product with

its inherent inefficiency.

Despite the prevalence of this kind of queries in ap-

plications, such as temporal and spatial databases, and

data cleaning, no off-the-shelf efficient solutions exist.

There have been countless techniques to optimize the

different flavors of joins in various settings [19]. In the

general case of a theta join, these techniques are mostly

based on two assumptions: (i) one of the relations is

small enough to fit in memory, and (ii) queries contain

selection predicates or an equijoin with a high selec-

tivity, which would reduce the size of the relations to

be fed to the inequality join. The first assumption does

not hold when joining two big relations. The second

assumption is not necessarily true with low-selectivity

predicates, such as gender or region, where the obtained

relations are still very large. Furthermore, similar to

Qt, there is a large spectrum of applications where the

above two assumptions do not necessarily hold. For

example, for data analytics in a temporal database, a

typical query would be to find all employees and man-

agers that overlapped while working in a certain com-

pany [18]. In data cleaning, when detecting violations

based on denial constraints, an example of a query is

to find all pairs of tuples such that one individual pays

more taxes but earns less than another individual [10].

Bob then started looking at alternatives. Common

ways of optimizing such queries include sort-merge

joins [13] and interval-based indexing [9, 17, 22]. Sort

merge join reduces the search space by sorting the data

based on the joining attributes and merging them. How-

ever, it still has a quadratic complexity for queries with

inequality joins only. Interval-based indexing reduces

the search space of such queries even further by using

bitmap interval indexing [9]. However, such indices re-

quire large memory space [36] and long index building

time. Moreover, Bob would have to create multiple in-

dices to cover all those attributes referenced in his query

workload. Such indices can be built at query time, but

their long construction time renders them impractical.

With no hope in the horizon, Bob decided to talk

with his friends who happen to do research in data an-

alytics. They happily started working on this interest-

ing problem. After several months of hard work, they

came out with IEJoin, a new algorithm that utilizes

bit-arrays and positional permutation arrays to achieve

fast inequality joins. Given the inherent quadratic com-

plexity of inequality joins, IEJoin follows the RAM lo-

cality is King principle coined by Jim Gray. The use

of memory-contiguous data structures with small foot-

print leads to orders of magnitude performance im-

provement over the prior art. The basic idea of our

proposal is to create a sorted array of tuples for each

inequality comparison and compute their intersection,

which would output the join results. The prohibitive

cost of the intersection operation is alleviated through

the use of a permutation array to encode positions of

tuples in one sorted array w.r.t. the other sorted ar-

ray (assuming that there are only two conditions). A

bit-array is then used to emit the join results.

This work extends [25] along several lines includ-

ing dealing with the not equal operator, improving the

bitmap, optimizing multi-predicate queries and query

planning for multi-way joins through selectivity esti-

mation, and an incremental version of the algorithm.

Contributions. (1) We present novel, fast and space

efficient inequality join algorithms (Sections 2 and 3).

Furthermore, we discuss two optimization techniques to

significantly speed up the computation (Section 3.3).

3

Specifically, we exploit bitmaps to reduce the search

space, and reorganize data to improve data locality.

(2) We discuss selectivity estimation for optimizing

multi-predicate queries and query planning for multi-

way joins (Section 4).

(3) We devise incremental inequality join algorithms

to deal with dynamic data (Section 5). We show that

our proposed algorithms, leveraging Packed-memory

array [5], can be easily adapted to handle data updates.

(4) To handle very large datasets, we present a dis-

tributed version of our algorithm that can be deployed

on systems such as Spark SQL [4]. In particular, we

use attribute metadata (e.g., min and max values) to

greatly reduce data shuffling (Section 6).

(5) We implement our algorithms in three existing sys-

tems, namely PostgreSQL, Spark SQL, and Nadeef

(Section 7). We conduct an extensive experimental

study by comparing against well known optimization

techniques. The results show that our proposed solu-

tion is more general, scalable, and orders of magnitude

faster than the state-of-the-art (Section 8).

Furthermore, we discuss related work in Section 9

and conclude the paper in Section 10.

2 Solution Overview

In this section, we restrict our discussions to queries

with inequality predicates only. Each predicate is of the

form: Ai op Bi where Ai (resp., Bi) is an attribute in

a relation R (resp., S) and op is an inequality operator

in the set {<,>,≤,≥}.

Example 1 [Single predicate] Consider the west table in

Figure 1 and an inequality self-join query Qs:

Qs : SELECT s1.t id, s2.t id
FROM west s1, west s2
WHERE s1.time > s2.time;

Query Qs returns a set of pairs {(si, sj)}
where si takes more time than sj ; the result is

{(s2, s1), (s2, s3), (s2, s4), (s1, s3), (s1, s4), (s4, s3)}.

A natural idea to handle inequality join on one at-

tribute is to leverage a sorted array. For instance, we

sort west tuples on time in ascending order in array

L1:〈s3, s4, s1, s2〉. We denote by L[i] the i-th element in

array L, and L[i, j] its sub-array from position i to posi-

tion j. Given a tuple s, any tuple at L1[k] (k ∈ [1, i−1])

has time value less than L1[i], the position of s in L1.

Consider Example 1, tuple s1 in position L1[3] joins

with tuples in positions L1[1, 2], namely s3 and s4.

Example 2 [Two predicates] Let us now consider a self-

join with two inequality conditions:

Qp : SELECT s1.t id, s2.t id
FROM west s1, west s2
WHERE s1.time > s2.time AND s1.cost < s2.cost;

Qp returns pairs (si, sj) where si takes more time

but pays less than sj ; the result is {(s1, s3), (s4, s3)}.

Similar to attribute time in Example 1, we also
sort attribute cost in ascending order into an array
L2:〈s4, s1, s3, s2〉, as shown below.

L1 s3(80) s4(90) s1(100) s2(140) (sort ↑ on time)

HL2 s4(5) s1(6) s3(10) s2(11) (sort ↑ on cost)

Thus, given a tuple s whose position in L2 is j, any

tuple L2[l] (l ∈ [j + 1, n]) has a higher cost than s,

where n is the size of the input relation. Our observa-

tion here is as follows. For any tuple s′, to form a join

result (s, s′) with tuple s, the following two conditions

must be satisfied: (i) s′ is on the left of s in L1, i.e., s

has a larger value for time than s′, and (ii) s′ is on the

right of s in L2, i.e., s has a smaller value for cost than

s′. Thus, all tuples in the intersection of L1[1, i − 1]

and L2[j + 1, n] satisfy these two conditions and be-

long to the join result. For example, s4’s position in L1

(resp. L2) is 2 (resp. 1). Hence, L1[1, 2− 1] = 〈s3〉 and

L2[1 + 1, 4] = 〈s1, s3, s2〉, and their intersection is {s3},
producing (s4, s3). To obtain the final result, we simply

repeat the above process for each tuple.

The challenge is how to perform the aforementioned

intersection operation in an efficient manner. There al-

ready exist several indices, such as R-tree and B+-tree,

that can possibly help. R-tree is ideal for supporting

two or higher dimensional range queries. However, the

non-clustered nature of R-trees makes them inadequate

for inequality joins; we cannot avoid random I/O ac-

cess when retrieving join results. B+-tree is a clustered

index. The bright side is that for each tuple, only se-

quential disk scan is required to retrieve relevant tu-

ples. However, we need to repeat this n times, where n

is the number of tuples, which is prohibitively expen-

sive. When confronted with such problems, one com-

mon practice is to use space-efficient and CPU-friendly

indices; in this paper, we employ bit-arrays.

As discussed earlier, the idea to handle an inequal-

ity join on one attribute is to leverage a sorted array, as

shown in Example 1. When two different attributes ap-

pear in the join, in order to leverage the similar idea, a

natural solution is to use a permutation array between

two sorted arrays L1 and L2. Given the i-th element in

L1, a permutation array can tell its corresponding po-

sition in L2 in constant time. Moreover, when visiting

items in L1, we need to keep track of the items we have

4

(1) Initialization

L1 s3(80) s4(90) s1(100) s2(140) (sort ↑ on time)

HL2 s4(5) s1(6) s3(10) s2(11) (sort ↑ on cost)

H 1 2 3 4

P 2 3 1 4 (permutation array) B 0 0 0 0 (bit-array)

s3 s4 s1 s2
(2) Visit tuples w.r.t. L2

(a)H· −−→
B 0 0 0 0 ⇒ 0 1 0 0 Output:

(b)H · −→
B 0 1 0 0 ⇒ 0 1 1 0 Output:

(c)H· −−−−→
B 0 1 1 0 ⇒ 1 1 1 0 Output: (s4, s3), (s1, s3)

(d)H ·
B 1 1 1 0 ⇒ 1 1 1 1 Output:

Fig. 2 IEJoin process for query Qp

seen so far, for which we use a bit-array to make such

a connection.

Generally speaking, our method, namely IEJoin,

sorts relation west on time and cost, creates a permuta-

tion array for cost w.r.t. time, and leverages a bit-array

to emit join results. We will briefly present the algo-

rithm below, and defer detailed discussion to Section 3.

Figure 2 depicts the process.

S1. [Initialization] Sort both time and cost values in as-

cending order, as depicted by L1 and L2, respectively.

While sorting, compute a permutation (reordering) ar-

ray of elements of L2 in L1, as shown by P . For example,

the first element of L2 (i.e., s4) corresponds to position

2 in L1. Hence, P [1] = 2. Initialize a bit-array B with

length n and set all bits to 0, as shown by B with ar-

ray indices reported above the cells and corresponding

tuples reported below them.

S2. [Visit tuples in the order of L2] Scan the permuta-

tion array P and operate on the bit-array.

(a) Visit P [1]. First visit tuple s4 (1st element in L2)

and check in P what is the position of s4 in L1 (i.e.,

position 2). Then go to B[2] and scan all bits in po-

sitions higher than 2. As all B[i] = 0 for i > 2, there

is no tuple that satisfies the join condition of Qp w.r.t.

s4. Finish this visit by setting B[2] = 1, which indicates

that tuple s4 has been visited.

(b) Visit P [2]. This is for tuple s1. It processes s1 in a

similar manner as s4, without emitting any result.

(c) Visit P [3]. This visit corresponds to tuple s3. Each

non-zero bit on the right of s3 (highlighted by grey cells)

corresponds to a join result, because each marked cell

corresponds to a tuple that pays less cost (i.e., being

visited first) but takes more time (i.e., on the right side

of its position). It thus outputs (s4, s3) and (s1, s3).

(d) Visit P [4]. This visit corresponds to tuple s2 and

does not return any result.

The final result of Qp is the union of all

the intermediate results from the above steps, i.e.,

{(s4, s3), (s1, s3)}.
A few observations make our solution appealing.

First, there are many efficient techniques for sorting

large arrays, e.g., GPUTeraSort [20]. In addition, after

getting the permutation array, we only need to sequen-

tially scan it once. Hence, we can store the permutation

array on disk, in case there is not enough memory. Only

the bit-array is required to stay in memory, to avoid

random disk I/Os. Thus, to execute queries Qs and Qp

on 1 billion tuples, theoretically, we only need 1 billion

bits (i.e., 125 MB) of memory.

3 Centralized Algorithms

In this section, we describe our inequality join algo-

rithms using permutation arrays and bit-arrays. We

start by discussing the case with two relations and op-

erators in {<,>,≤,≥}, followed by describing the not

equal operator (i.e., 6=) (Section 3.1). We then discuss

the special case of self-joins (Section 3.2). We close this

section by some optimization techniques (Section 3.3).

3.1 IEJoin

We present our join algorithm with two inequality pred-

icates involving two relations. We refer the reader to

Section 4 on how we deal with more than two predi-
cates and inequality joins over multiple relations.

Algorithm. The algorithm, IEJoin, is shown in Al-

gorithm 1. It takes a query Q with two inequality join

conditions as input and returns a set of result pairs.

It first sorts the attribute values to be joined (lines 3-

6), computes the permutation array (lines 7-8) and two

offset arrays (lines 9-10). We defer details of computing

the permutation arrays to Section 7. Each element of an

offset records the relative position from L1 (resp. L2) in

L′1 (resp. L′2). The offset array is computed by a linear

scan of both sorted arrays (e.g., L1 and L′1). The algo-

rithm also sets up the bit-array (line 11) as well as the

result set (line 12). In addition, it sets an offset variable

to distinguish between the inequality operators with or

without equality conditions (lines 13-14). It then visits

the values in L2 in the appropriate order, which is to se-

quentially scan the permutation array from left to right

(lines 15-22). For each tuple visited in L2, it first sets all

bits for those t in T ′ whose Y ′ values are smaller than

5

east west
(1) Initialization

L1 r3(90) r2(100) r1(140) (sort ↑ on dur) L′
1 s3(80) s4(90) s1(100) s2(140) (sort ↑ on time)H

HL2 r3(5) r1(9) r2(12) (sort ↑ on rev) L′
2 s4(5) s1(6) s3(10) s2(11) (sort ↑ on cost)

HP 1 3 2 (permutation array) P ′ 2 3 1 4 (permutation array)

HO1 2 3 4 (offset of L1 w.r.t. L′
1) 1 2 3 4

B′ 0 0 0 0 (bit-array)

O2 1 3 5 (offset of L2 w.r.t. L′
2) s3 s4 s1 s2

(2) Visit tuples w.r.t. L2

(a) visit L2[1] for r3: (i) O2[1] = 1; (ii) P ′[1] = 2 (iii) O1[P [1]] = 2; (iv) · −−−→ (v) Output:

B′ 0 1 0 0 B′ : 0 1 0 0

(b) visit L2[2] for r1: (i) O2[2] = 3; (ii) P ′[2] = 3, P ′[3] = 1 (iii) O1[P [2]] = 4; (iv) · (v) Output:

B′ 1 1 1 0 B′ : 1 1 1 0

(c) visit L2[3] for r2: (i) O2[3] = 5; (ii) P ′[4] = 4 (iii) O1[P [3]] = 3; (iv) · −→ (v) Output: (r2, s2)

B′ 1 1 1 1 B′ : 1 1 1 1

Fig. 3 IEJoin process for query Qt

Algorithm 1: IEJoin

input : query Q with 2 join predicates t1.X op1 t2.X
′

and t1.Y op2 t2.Y
′, tables T, T ′ of sizes m and n

resp.
output: a list of tuple pairs (ti, tj)

1 let L1 (resp. L2) be the array of X (resp. Y) in T

2 let L′
1 (resp. L′

2) be the array of X′ (resp. Y ′) in T ′

3 if (op1 ∈ {>,≥}) sort L1, L′
1 in descending order

4 else if (op1 ∈ {<,≤}) sort L1, L′
1 in ascending order

5 if (op2 ∈ {>,≥}) sort L2, L′
2 in ascending order

6 else if (op2 ∈ {<,≤}) sort L2, L′
2 in descending order

7 compute the permutation array P of L2 w.r.t. L1

8 compute the permutation array P ′ of L′
2 w.r.t. L′

1

9 compute the offset array O1 of L1w.r.t. L′
1

10 compute the offset array O2 of L2w.r.t. L′
2

11 initialize bit-array B′ (|B′| = n), and set all bits to 0
12 initialize join result as an empty list for tuple pairs

13 if (op1 ∈ {≤,≥} and op2 ∈ {≤,≥}) eqOff = 0
14 else eqOff = 1

15 for (i← 1 to m) do

16 off2 ← O2[i]
17 for j ← 1 to min(off2, size(L2)) do

18 B′[P ′[j]]← 1

19 off1 ← O1[P [i]]
20 for (k ← off1 + eqOff to n) do

21 if B′[k] = 1 then
22 add tuples w.r.t. (L2[i], L′

2[k]) to join result

23 return join result

the Y value of the current tuple in T (lines 16-18), i.e.,

those tuples in T ′ that satisfy the second join condition.

It then uses the other offset array to find those tuples in

T ′ that also satisfy the first join condition (lines 19-22).

It finally returns all join results (line 23).

Example 3 Figure 3 shows how Algorithm 1 processes

Qt (from Section 1). In initialization (step 1), L1, L2, L′1
and L′2 are sorted; P (resp. P ′) is the permutation array

between L1 and L2 (resp. L′1 and L′2), where the details

of computation are given in implementation details for

PostgreSQL in Section 7.1 Figure 7; O1 (resp. O2) is

the offset array of L1 relative to L′1 (resp. L2 relative

to L′2), e.g., O1[1] = 2 means that the relative position

of value L1[1] = 90 in L′1 is 2. Clearly, O1 (resp. O2)

can be computed by sequentially scanning L1 and L1

(resp. L2 and L′2); and B′ is the bit-array with all bits

initialized to be 0.

After the initialization, the algorithm starts visiting

tuples w.r.t. L2 (step(2)). For example, when visiting

the first item in L2 (r3) in step (2)(a), it first finds its

relative position in L′2 at step (2)(a)(i). Then it visits

all tuples in L′2 whose cost values are no larger than

r3[rev] at step (2)(a)(ii). Afterwards, it uses the relative

position of r3[dur] at L′1 (step (2)(a)(iii)) to populate all

join results (step (2)(a)(iv)). The same process applies

to r1 (step (2)(b)) and r2 (step (2)(c)), and the only

result is returned at step (2)(c)(v).

Correctness. The algorithm terminates and the re-

sults satisfy the join condition. For any tuple pair

(ri, sj) that should be a result, sj will be visited first

and its corresponding bit is set to 1 (lines 17-18). Af-

terwards, ri will be visited and the result (ri, sj) will

be identified (lines 20-22) by the algorithm.

Complexity. Sorting arrays and computing their per-

mutation array together are in O(m · log m+ n · log n)

time, where m and n are the sizes of the two in-

put relations (lines 3-8). Computing the offset arrays

6

will take linear time using sort-merge (lines 9-10).

The outer loop will take O(m · n) time (lines 15-22).

Hence, the total time complexity of the algorithm is

O(m · log m+ n · log n+m · n). It is straightforward to

see that the total space complexity is O(m+ n).

Not equal operator. In the case of the not equal “6=”

operator, we simply rewrite the query as two queries,

with the (>) and (<) operators, respectively. We then

merge the results of these two queries through the

UNION ALL SQL command.

Example 4 Consider the following query with one 6=
condition:

Qk : SELECT r.id, s.id
FROM Events r,Events s
WHERE r.start ≤ s.end AND r.end 6= s.start;

We translate Qk into the union of two queries as follows:

Q′
k : SELECT r.id, s.id

FROM Events r,Events s
WHERE r.start ≤ s.end AND r.end < s.start
UNION ALL
SELECT r.id, s.id
FROM Events r,Events s
WHERE r.start ≤ s.end AND r.end > s.start;

The performance of IEJoin for queries with a “6=”

operator strongly depends on the attribute domain it-

self. Attributes with smaller ranges will typically lead

to higher selectivity, while larger ranges to lower selec-

tivity. Note that as higher selective attributes produce

fewer results, compared to lower ones, they have a faster

IEJoin runtime.

Outer joins. IEJoin can also support left, right, and

full outer joins. For left outer joins, any tuple that

does not find any matches while scanning the bit-array

(lines 20-22 in Algorithm 1) is paired with a Null value.

The right outer join is processed by flipping the order of

input relations, executing a normal left outer join and

then reversing the order of the join result. The IEJoin

output should return (L′2[k], L2[i]) or (NULL,L2[i]) in-

stead of the original order (line 22 in Algorithm 1) to

generate the correct result for the right outer join. The

full outer join is translated into one left outer join that

includes the normal IEJoin output, and one right outer

join that only emits results with null values.

3.2 IESelfJoin

In this section, we present the algorithm for self-join

queries with two inequality operators.

Algorithm. IESelfJoin (Algorithm 2) takes a self-

join inequality query Q and returns a set of result pairs.

The algorithm first sorts the two lists of attributes to be

Algorithm 2: IESelfJoin
input : query Q with 2 join predicates t1.X op1 t2.X

and t1.Y op2 t2.Y , table T of size n

output: a list of tuple pairs (ti, tj)

1 let L1 (resp. L2) be the array of column X (resp. Y)
2 if (op1 ∈ {>,≥}) sort L1 in ascending order

3 else if (op1 ∈ {<,≤}) sort L1 in descending order

4 if (op2 ∈ {>,≥}) sort L2 in descending order
5 else if (op2 ∈ {<,≤}) sort L2 in ascending order

6 compute the permutation array P of L2 w.r.t. L1

7 initialize bit-array B (|B| = n), and set all bits to 0
8 initialize join result as an empty list for tuple pairs

9 if (op1 ∈ {≤,≥} and op2 ∈ {≤,≥}) eqOff = 0
10 else eqOff = 1

11 for (i← 1 to n) do
12 pos← P [i]
13 B[pos]← 1

14 for (j ← pos + eqOff to n) do

15 if B[j] = 1 then
16 add tuples w.r.t. (L1[j], L1[P [i]]) to

join result

17 return join result

joined (lines 2-5), computes the permutation array (line

6), and sets up the bit-array (line 7) as well as the result

set (line 8). It also sets an offset variable to distinguish

inequality operators with or without equality (lines 9-

10). It then visits the values in L2 in the desired order,

i.e., sequentially scan the permutation array from left

to right (lines 11-16). For each tuple visited in L2, it

needs to find all tuples whose X values satisfy the join

condition. This is performed by first locating its corre-

sponding position in L1 via looking up the permutation

array (line 12) and marked in the bit-array (line 13).

Since the bit-array and L1 have a one-to-one positional
correspondence, the tuples on the right of pos will sat-

isfy the join condition on X (lines 14-16), and these

tuples will also satisfy the join condition on Y if they

have been visited before (line 15). Such tuples will be

joined with the tuple currently being visited as results

(line 16). It finally returns all join results (line 17).

Note that the different sorting orders, i.e., ascend-

ing or descending for attribute X and Y in lines 2-5, are

chosen to satisfy various inequality operators. One may

observe that if the database contains duplicated values,

when sorting one attribute X, its corresponding value

in attribute Y should be considered, and vice versa,

in order to preserve both orders for correct join result.

Hence, in IESelfJoin, when sorting X, we use an al-

gorithm that also takes Y as the secondary key. Specif-

ically, when some X values are equal, their sorting or-

ders are decided by their Y values (lines 2-3), similarly

for the other way around (lines 4-5). Note that if both

attributes are duplicates, we make sure that the sorting

of the attributes is consistent by relying on the inter-

7

op2 sorting order
< > ≤ ≥

op1

sort

order

< Asc/Des Des/Des Asc/Asc Des/Asc
> Asc/Asc Des/Asc Asc/Des Des/Des

≤ Des/Des Asc/Des Des/Asc Asc/Asc
≥ Des/Asc Asc/Asc Des/Des Asc/Des

Table 1 Secondary key sorting order for Y/X in op1/op2

nal record (tuple) ids. In particular, when the values

are equal both in X and Y , we sort them in increasing

order according to their internal id.

Moreover, we show in Table 1 the sorting orders

for op1’s secondary key (Y) and op2’s secondary key

(X) when the dataset contains duplicate values. For

example, if op1’s condition is (≤) and op2’s condition

is (>), according to Table 1, equal values in op1 are

sorted based on ascending order of their Y values while

op2’s equal values are sorted on descending order of

their X values. Please refer to the example in Section 2

for query Qp using IESelfJoin.

Correctness. It is easy to check that the algorithm

will terminate and each result in join result satisfies the

join condition. For completeness, observe the following.

For any tuple pair (t1, t2) that should be in the result,

t2 is visited first and its corresponding bit is set to 1

(line 13). Afterwards, t1 is visited and the result (t1, t2)

is identified (lines 15-16) by IESelfJoin.

Complexity. Sorting two arrays and computing their

permutation array is in O(n · log n) time (lines 2-

8). Scanning the permutation array and scanning the

bit-array for each visited tuple run in O(n2) time

(lines 11-16). Hence, in total, the time complexity of

IESelfJoin is O(n2). It is easy to see that the space

complexity of IESelfJoin is O(n).

3.3 Enhancements

We discuss two techniques to improve performance:

(i) Indices to improve the lookup performance for the

bit-array. (ii) Union arrays to improve data locality and

reduce the data to be loaded into the cache.

Bitmap index to improve bit-array scan. An anal-

ysis on both IEJoin and IESelfJoin shows that for

each visited value (i.e., lines 20-22 in Algorithm 1 and

lines 14-16 in Algorithm 2), we need to scan all the bits

on the right of the current position. When the query

selectivity is high, this is unavoidable for producing the

correct results. However, when the query selectivity is

low, iteratively scanning a long sequence of 0’s will be

a performance bottleneck. We thus adopt a bitmap to

guide which parts of the bit-array should be visited.

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 0 0

C1 C2 C3 C4

(i) pos 6 (ii) pos 9

B

max

Fig. 4 Example of using a bitmap

Given a bit-array B of size n and a predefined chunk

size c, our bitmap is a bit-array with size dn/ce where

each bit corresponds to a chunk in B, with 1 indicating

that the chunk contains at least a 1, and 0 otherwise.

Example 5 Consider the bit-array B in Figure 4. As-

sume that the chunk size c = 4. The bit-array B will

be partitioned into four chunks C1–C4. Its bitmap is

shown above B in the figure and consists of 4 bits. We

consider two cases.
Case 1: visit B[6], in which case we need to find all the

1’s in B[i] for i > 6. The bitmap tells that only chunk

2 needs to be checked, and it is safe to ignore chunks 3

and 4.
Case 2: visit B[9], the bitmap tells that there is no need

to scan B, since there cannot be any B[j] where B[j] =

1 and j > 9.

To further improve the bitmap, we avoid unneces-

sary scanning by stopping at the maximum modified

value in the bitmap index. For example, in Figure 4, we

maintain a max scan index variable (MaxIndex) with

value 2 to stop the bitmap from unnecessarily scanning

bitmap indices 3 and 4. The initial value of this vari-

able is 0, which means that both the bitmap and the

bit-array are empty. As we iteratively modify the bit-

array (line 18 in Algorithm 1 and line 13 in Algorithm 2)

and edit the bitmap, we make sure to update the max

scan index variable if the current updated filter index

is larger than the last recorded max filter index.

Union arrays on join attributes. In testing Algo-

rithm 1, we found that there are several cache loads

and stores. A deeper analysis shows that the extra

cache loads and stores may be caused by cache misses

when sequentially visiting different arrays. Take Fig-

ure 3 for example. In step (2)(a), we visit arrays L2,

O2, P ′, P and O1 in sequence, with each causing at

least one cache miss. Step (2)(b) and step (2)(c) show

a similar behavior. An intuitive solution is to merge

the arrays on join attributes and sort them together.

Again, consider Figure 3. We can merge L1 and L′1
into one array and sort them, which will result in

〈s3(80), r3(90), s4(90), r2(100), s1(100), r1(140), s2(140)〉. Simi-

larly, we can merge L2 and L′2, and P and P ′. Also,

O1 and O2 are not needed in this case, and B′ needs to

be extended to be aligned with the merged arrays. This

solution is similar to IESelfJoin (Section 3.2. How-

ever, we need to prune join results for tuples that come

8

Algorithm 3: IEJoin Selectivity Estimation

input : join predicates t1.X op1 t2.X
′ and

t1.Y op2 t2.Y
′, sample tables Ts & Ts′, block

size n

output: Number of overlapping blocks
1 overlappingBlocks ← 0

2 if (op1 ∈ {<,≤}) then

3 sort Ts & Ts′ in descending order on X and X′

4 else if (op1 ∈ {>,≥}) then

5 sort Ts & Ts′ in ascending order on X and X′

6 Partition Ts & Ts′ into B&B′ blocks of size n
7 for (i← 1 to B) do

8 for (j ← 1 to B′) do

9 if Tsi
⋂
Ts′j then

10 increment overlappingBlocks by 1

11 return overlappingBlocks

from the same table. This can be easily done using a

Boolean flag for each position, where 0 (resp. 1) denotes

that the corresponding value is from the first (resp. the

second) table. Our experiments (Section 8.5) show that

this simple union can significantly reduce the number

of cache misses, and thus improve execution time.

4 Query Optimization

We introduce an approach to estimate the selectivity of

inequality join predicates that is then used to optimize

inequality join queries. In particular, we tackle the cases

of selecting the best join predicate when joining two

relations on more than two join predicates and selecting

the best join order for a multi-way IEJoin. Note that

our goal is not to build a full-fledged query optimizer
and implement it in an existing system, but rather to

propose a simple, yet efficient, approach for optimizing

joins with inequality conditions.

4.1 Selectivity Estimation

To estimate the selectivity of an inequality join predi-

cate, we simply count the number of overlapping sorted

blocks obtained from a sample of the input tables. We

assume that the join has two inequality predicates as in

Algorithm 1. We first obtain a sample from the two ta-

bles to join, using uniform random sampling2. We give

the samples as input to Algorithm 3. We then sort the

two samples based on the attributes involved in one of

the join predicates (lines 2-5), while using the remain-

ing join attributes to sort duplicate tuples. Next, we

divide each sample into smaller blocks (line 6) and test

2 We experimentally show in Section 8.7 that our algorithm

requires only 1% of the input data to be accurate.

all combinations of block pairs for potential overlaps

based on min/max values of all of the join attributes in

each block (lines 7-10). The idea is that overlapping

blocks may generate results for a given query while

non-overlapping blocks cannot generate results at all.

Finally, we return the number of overlapping blocks as

the selectivity estimation of the inequality join (line 11).

The lower the number of overlapping blocks, the higher

the selectivity of the inequality join condition.

While we cannot determine the exact size of the

join output in overlapping blocks before execution, sort-

ing helps with good estimates. This is because sorting

blocks naturally increases the locality of the input re-

lations as we consider inequality join conditions. Thus,

the number of overlapping blocks is a good approxima-

tion of the selectivity of an inequality join condition.

4.2 Join Optimization with Multiple Predicates

Given an inequality join query on two relations and

with more than two join predicates, we need to deter-

mine which two predicates should be joined first to min-

imize the cost. The remaining predicates will be eval-

uated on the result of the join. To this end, we need

to estimate the selectivity of all pair combinations of

the join predicates in the query. For example, we com-

pare the selectivity estimation of three pair combina-

tions (./1-./3) for Qw,

Qw : SELECT s1.t id, s2.t id
FROM west s1, west s2
WHERE s1.time > s2.time and s1.cost < s2.cost
and s1.totalUsers < s2.totalUsers;

as follows:

./1: s1.time > s2.time & s1.cost < s2.cost

./2: s1.time > s2.time & s1.totalUsers < s2.totalUsers

./3: s1.cost < s2.cost & s1.totalUsers < s2.totalUsers

We need to test
(
N
2

)
combinations to choose the

best join predicates for a given query with N in-

put join predicates. Clearly, a large N would in-

crease the overhead of the selectivity estimation. To

lower this overhead, we reuse the sorted input rela-

tions in multiple instances of Algorithm 3 that share

a similar join predicate. For example, IEJoin can

sort on attribute time (or totalUsers) to reuse it in

join predicates 〈time, totalUsers〉 and 〈time, cost〉 (resp.

〈time, totalUsers〉 and 〈cost, totalUsers〉) as they both

share attribute time (resp. totalUsers). Note that sort-

ing based on one attribute or another does not impact

the selectivity estimation of the pair combination.

4.3 Multi-way Join Optimization

For multi-way inequality joins, we follow a common ap-

proach in optimizing such joins, such as in [31]. Gener-

9

ally speaking, we execute a multi-way inequality join as

a series of two-way inequality joins formed as a left-deep

plan. We adopt a greedy approach where we choose the

order of the two-way joins based on their estimated se-

lectivity, i.e., the two-way joins with the higher selectiv-

ity (lowest number of overlapping blocks as computed

by Algorithm 3) are pushed down in the plan.

Algorithm 4 builds the execution plan for a multi-

way join query. We first estimate the selectivity of

all possible combinations of two-way joins using Algo-

rithm 3 (lines 3-6). We discard Cartesian products. At

level one of the left-deep plan, we pick the two relations

with the most selective inequality join (lines 8-11). We

then proceed by selecting the one relation, among the

remaining ones, that would deliver the most selective in-

equality join if joined with the previous level in the plan

(lines 12-18). This is performed by selecting the relation

that has the smallest number of overlapped blocks when

joined with a relation from the previous level. We only

consider joins that share an inequality predicate with

one relation in the previous levels (lines 14-16). In each

level, we append the most selective two-way join to the

final execution plan (lines 17-18) and remove it from

the pool of available joins (line 19). By repeating this

process until there is no more relations to join, we com-

pute a full IEJoin order. Algorithm 4 returns an array

that describes the left-deep plan. The plan is obtained

by joining the relations in the order they appear in the

array, i.e., first join plan[1] with plan[2], then the result

with plan[3] and so on.

5 Incremental Inequality Joins

In this section, we present algorithms for incremental

inequality joins when the data keeps changing with in-

sertions and deletions. We compute Q(D⊕∆D), where

Q is an inequality join on D that contains either one

or two relations, and ∆D is the data updates that are

insertions ∆D+ or deletions ∆D−. Adapting our al-

gorithms for incremental computation faces two chal-

lenges: (i) maintaining the sorted arrays; and (ii) only

computing results w.r.t. ∆D.

Maintain a sorted array. Given a sorted array L

and an unsorted array ∆L, the problem is to compute

a sorted array for elements in L⊕∆L.

(1) Sort-merge [27]. The straightforward solution is to

first sort ∆L and then merge two sorted arrays L and

∆L in linear time. This approach is appropriate for

batch updates.

(2) Packed-memory array [5]. A widely adopted ap-

proach for maintaining a dynamic set of N elements

Algorithm 4: Multi-way IEJoin planner
input : input relations R
output: join plan

1 n ← |R|
2 Est ← empty set
3 for (i← 1 to n) do

4 for (j ← i+ 1 to n) do

5 if Ri & Rj share IEJoin predicates then
6 Est← selectivity estimation of Ri ./ Rj

7 for (planIndex← 1 to n) do
8 if planIndex = 1 then
9 min ← smallest estimation ∈ Est

10 plan[1]← Ri, where i ∈ min
11 plan[2]← Rj , where j ∈ min

12 else if planIndex > 2 then

13 Est′ ← empty set

14 foreach Ri ./ Rj estimation ∈ Est do
15 if (Ri|Rj) ∈ plan[1, planIndex− 1] and

(Ri ∧Rj) 6∈ plan[1, planIndex− 1] then

16 Est′ ← selectivity estimation of Ri ./ Rj

17 min ← smallest estimation ∈ Est′
18 plan[planIndex] ← Ri (or Rj), where

(i ∧ j) ∈ min and Ri (or Rj)
6∈ plan[1, planIndex− 1]

19 remove min from Est

20 return plan

in sorted order in Θ(N)-sized array is to use Packed-

memory array (PMA). The idea is to insert Θ(N)

empty spaces among the elements of the array such

that only a small number of elements need to be shifted

around per update. Thus, the number of element moves

per update is only O(log2N). This approach is ideal for

continuous query answering in a streaming fashion.

Note that, PMA leaves empty spaces in the array.

For instance, the arrays L1 and L2 in Figure 5 are stored

using PMAs, where “|”’s denote the empty spaces. Also,

PMAs handle deletions [5]. Although we use PMAs to

maintain the sorted arrays by leaving gaps (i.e., the

“|”’s) for future updates, our algorithms are unchanged

by simply ignoring these gaps.

Let us start by discussing the incremental inequality

join on one relation with insertions. We will then discuss

the case with deletions, and then on two relations.

Incremental IESelfJoin. We illustrate the idea of

computing incremental results on one relation with in-

sertions by an example.

Example 6 Consider query Qp from Example 2 and the

data T used in Figure 2. Computing Qp(T) is the same

as described in Figure 2, shown as step (1) in Figure 5.

Consider a new tuple insertion ∆D+ = {s5(95, 8)}. As

shown in Figure 5 step (2), it finds the right positions

10

in both sorted arrays, i.e., 95 in position 4 of L′1, 8 in

position 4 of L′2 and the permutation array is updated.

Similar to the process described in Section 2, it visits

tuples in L′2 from left to right (Figure 5 step (3)).

(a) For all tuples whose time values are less than s5 that

is 8, set all corresponding bits as 1’s since they satisfy

one join condition on attribute time.

(b) Visit s5 and output all results for (s5, si) whose

si is on the right of s5 in B (i.e., satisfying both join

conditions), which is {(s5, s1)}.
(c) For other tuples on the right of s5 in L′2, output a

new join result if it contains the new tuple s5. When

visiting s3, output {(s3, s5)}.
(d) When visiting s2, the process is similar to (c), with

an empty output.

From the above example, we can see that only new

results are produced, i.e., those coming from ∆D+. The

incremental algorithm using PMA is a simple adaption

of Algorithm 2, which is thus omitted here. Moreover,

when the update contains a set of insertions, the proce-

dure for each one is the same as described in Example 6.

For deletions ∆D−, we use a similar methodology

as discussed above to compute updated results. The

difference is that, instead of adding these new results,

we remove them from old results.

Incremental IEJoin. We now discuss how to extend

Algorithm 1 on two relations R and S to support in-

cremental processing. We will focus on insertions only

(∆R+ and ∆S+), since deletions are similar to inser-

tions by only removing results.

Take Figure 3 for reference, we perform the following

three steps to run IEJoin: (1) maintain the sorted lists

w.r.t. the insertions ∆R+ and ∆S+; (2) maintain the

offsets for R⊕∆R+ relative to S⊕∆S+; and (3) com-

pute the new results.

Step (1) is the same as discussed in IESelfJoin.

Step (2) can be performed in a way similar to the sorted

merge join by linearly scanning both sorted arrays in

R⊕∆R+ and S⊕∆S+ to set the corresponding offsets.

Step (3) is to run IEJoin by only outputting results

related to ∆R+ or ∆S+, i.e., (∆R+, S), (R, ∆S+) or

(∆R+, ∆S+). If insertions are only ∆R+, IEJoin ends

by visiting the last element of ∆R+ in the bit-array.

Otherwise, it continues until all tuples in R⊕∆R+ are

visited. When processing both insertions and deletions,

results from (∆R+,∆S−) or (∆R−,∆S+) are ignored.

6 Scalable Inequality Joins

We present a scalable version of IEJoin along the same

lines of state-of-the-art general purpose distributed

(1) Compute Qp(T) (see Figure 2)

L1 s3(80) | s4(90) | s1(100) | s2(140) |

HL2 | s4(5) s1(6) | | s3(10) | s2(11)

HP 0 3 5 0 0 1 0 7 (permutation array)

(2) Insert δ = {s5(95, 8)}, maintain L1, L2 and P

L′
1 s3(80) | s4(90) s5(95) s1(100) | s2(140) |

HL′
2 | s4(5) s1(6) s5(8) | s3(10) | s2(11)

HP ′ 0 3 5 4 0 1 0 7 (permutation array)

B 0 0 0 0 0 0 0 0 (bit-array) new pos = 4

(3) Visit tuples w.r.t. L′
2

(a) Set bits as visited before new pos

B 0 0 1 0 1 0 0 0 (for s4 and s1)

(b) visit the new insertion s5· −−→
B 0 0 1 0 1 0 0 0 Output: (s5, s1)

⇒ 0 0 1 1 1 0 0 0

(c) visit s3 (only compare with new insertion s5)· −−→
B 0 0 1 1 1 0 0 0 Output: (s3, s5)

⇒ 1 0 1 1 1 0 0 0

(d) visit s2 (only compare with new insertion s5)· −−→
B 1 0 1 1 1 0 0 0 Output:

⇒ 1 0 1 1 1 0 0 1

Fig. 5 Incremental IESelfJoin process for query Qp

data processing systems, such as Hadoop’s MapRe-

duce [12] and Spark [37]. Our goal is twofold: (i) scale

our algorithm to very large input relations that do

not fit into the main memory of a single machine and

(ii) minimize processing overheads to improve the effi-

ciency even further.

A simple approach for scaling IEJoin is to (i) con-

struct k data blocks of each input relation, (ii) apply

Cartesian product (or self-Cartesian product for a sin-

gle relation input) on the data blocks, and (iii) run

IEJoin (either on a single table or two tables in-

put) on all remaining data block pairs (up to k2).

This approach suffers from a high processing overhead

caused by the excessive block replication. In particu-

lar, this excessive data replication increases the CPU

overhead by scheduling a large number of tasks and

redundantly processing replicated blocks (i.e., sorting

identical blocks in different threads). It also causes high

11

memory overheads where different tasks maintain iden-

tical copies of the same data. In distributed settings,

this approach additionally causes large network over-

heads as it transfers identical copies of the data to dif-

ferent workers. A näıve solution would be to reduce

the number of blocks by increasing their size. However,

very large blocks introduce work imbalance and require

larger memory for each worker.

6.1 Scalable IEJoin

We solve the above challenges through efficient pre-

processing and post-processing phases that reduce data

replication by minimizing the number of required data

block pairs. We achieve this by pruning unnecessary

data block pairs early before wasting any resources.

The pre-processing phase generates space-efficient data

blocks for the input relation(s), predicts which pair of

data blocks may report query results, and only materi-

alizes useful pairs of data blocks. IEJoin, in its scalable

version, returns the join results as a pair of tupleIDs

instead of returning the actual tuples. It is the respon-

sibility of the post-processing phase to materialize the

final results by resolving the tupleIDs into actual tu-

ples. We use the internal tupleIDs of existing systems

to uniquely identify different tuples. We summarize in

Algorithm 5 the implementation of the scalable algo-

rithm when processing two input tables.

Pre-processing. After assigning unique tupleIDs to

each input tuple (lines 2-3), the pre-processing step

globally sorts each relation on a common attribute of

one of the IEJoin predicates (i.e., salary in Q1). Then,

it partitions each sorted relation to k = dMb e equally-

sized partitions, where M is the relation input size

and b is the default block size (lines 4-5). Note that

global sorting before partitioning maximizes data lo-

cality within partitions, which in turn decreases the

overall runtime. This is because global sorting partially

answers one of the inequality join conditions, where it

physically moves tuples closer to their candidate pairs.

In other words, global sorting increases the efficiency

of block pairs that generate results, while block pairs

that do not produce results can be filtered out before

actually processing them. After that, for each sorted

partition, we generate a single data block that stores

only the attribute values referenced in the join condi-

tions in a list. Following the semi-join principle, these

data blocks do not store the entire tuples thus allow-

ing to reduce the memory, disk I/O, and network over-

heads. We also extract metadata that contain the block

ID and the min/max values of each referenced attribute

value from each data block (lines 6-11). Then, we cre-

Algorithm 5: Scalable IEJoin

input : Query Q with 2 join predicates t1.X op1 t2.X
′

and t1.Y op2 t2.Y
′, Table t1,Table t2

output: Table tout
1 //Pre-processing
2 foreach tuple r ∈ t1 and t2 do

3 r ← global unique ID

4 DistT1 ← sort t1 on t1.X and partition to n blocks
5 DistT2 ← sort t2 on t2.X′ and partition to m blocks

6 for (i← 1 to n) do

7 D1i ← all X and Y values in DistT1i
8 MT1i ← min and max of X and Y in D1i

9 for (j ← 1 to m) do

10 D2j ← all X′ and Y ′ values in DistT2j
11 MT2j ← min and max of X′ and Y ′ in D2j

12 Virt ← MT1 × MT2

13 forall the (MT1i,MT2j) pairs ∈ Virt do
14 if MT1i

⋂
MT2j then

15 (MT1i,MT2j) ← (D1i, D2j)

16 else
17 Remove (MT1i,MT2j) from Virt

18 //IEJoin function

19 forall the block pairs (D1i, D2j) ∈ Virt do
20 TupleIDResult ← IEJoin(Q,D1i,D2j)

21 //Post-processing

22 forall the tupleID pairs (v, w) ∈ TupleIDResult do
23 tuplev ← tuple id v in DistT1

24 tuplew ← tuple id w in DistT2
25 tout ← (tuplev ,tuplew)

ate nMT1×mMT2 virtual block combinations and filter

out block combinations with non-intersecting min-max

values since they do not produce results (lines 12-17).

Figure 6 illustrates the pre-processing of two relations

R and S. It starts by sorting and partitioning R into
three blocks and S into two blocks. It then generates the

metadata blocks and executes Cartesian product on all

metadata blocks. Next, it removes all non-overlapping

blocks. Finally, it recovers the original content for all

overlapping metadata blocks, i.e., µR1 recovers its data

from block R1.

IEJoin. We now have a list of overlapping block pairs.

We simply run an independent IEJoin for each of these

pair blocks in parallel. Specifically, we merge the at-

tribute values in D1 and D2 and run IEJoin over the

merged block. The permutation and bit arrays genera-

tion are similar to the centralized version. However, the

scalable IEJoin does not have access to the actual re-

lation tuples. Therefore, each parallel IEJoin instance

outputs a pair of tupleIDs that represents the joined

tuples (lines 19-20).

Post-processing. In the final step, we materialize the

result pairs by matching each tupleID-pair from the

output of the distributed IEJoin with the tupleIDs of

12

Fig. 6 An example of the IEJoin pre-processing stage with two

relations R and S

DistT1 and DistT2 (lines 22-25). We run this post-

processing phase in parallel, as a scalable hash join

based on the tupleIDs, to speed up the materialization

of the final join results.

6.2 Multithreaded and Distributed IEJoin

The scalable solution we just described can be adapted

to a multithreaded setting as follows. For the pre-

processing phase, we sort and partition inputs in par-

allel. If the input does not fit into memory, we apply

external sorting. Next, block metadata are extracted

by all threads, while each thread examines an inde-

pendent set of block metadata pairs to eliminate non-

overlapping blocks in parallel. The remaining block

metadata pairs are then materialized, from either a

cached copy in memory or from disk, into block pairs.

Each thread then applies the IEJoin algorithm on a dif-

ferent block pair to generate partial join results. Once

the complete result is computed, we materialize the

output using multi-threaded hash-based join. In a dis-

tributed setting, we follow the same process, but we use

compute nodes as the main processing units instead of

threads. We discuss in Section 7.2 our distributed ver-

sion on top of Spark SQL.

7 Integration into Existing Systems

We describe the integration of our algorithms into three

existing systems: PostgreSQL, a popular open-source

DBMS (Section 7.1); Spark SQL, a popular SQL-like

engine on top of Spark (Section 7.2); and Nadeef [24],

a distributed data cleaning system (Section 7.3).

7.1 PostgreSQL

PostgreSQL processes queries in three stages: parsing,

planning, and execution. Parsing extracts relations and

predicates and creates query parse trees. Planning cre-

ates query plans and invokes the query optimizer to se-

lect a plan with the smallest estimated cost. Execution

runs the selected plan and emits the output.

Parsing and Planning. PostgreSQL uses merge and

hash join operators for equijoins and näıve nested loop

for inequality joins. PostgreSQL looks for the most suit-

able join operator for each join predicate. We extend

this check to verify that a join is IEJoin-able by check-

ing if a predicate contains a scalar inequality operator.

If it is the case, we save the operator’s oid in the data

structure associated with the predicate. For each opera-

tor and ordered pair of relations, we create a list of pred-

icates that the operator can handle. For example, two

equality predicates over the same pair of relations are

associated to one hash join. In the presence of inequal-

ity joins, we make sure that the PostgreSQL optimizer

chooses our IEJoin algorithm, while optimizations for

other operators are done by PostgreSQL optimizer on

top of the optimized IEJoin.

Next, the Planner estimates the execution cost for

possible join plans. In the presence of both equality and

inequality joins, the optimizer will delay all inequal-

ity joins as they are usually less selective than equality

joins. More specifically, every node in the plan has a

base cost, which is the cost of executing the previous

nodes, plus the cost for the actual node. We added a

cost function for our operator; it is evaluated as the

sum of the cost for sorting inner and outer relations,

CPU cost for evaluating all output tuples (approxi-

mated based on PostgreSQL’s default inequality joins

estimation), and the cost of evaluating additional pred-

icates for each tuple (i.e., the ones that are not involved

in the actual join). Next, PostgreSQL selects the plan

with the lowest cost.

Execution. The executor stores incoming tuples from

outer and inner relations into arrays of type TupleTa-

bleSlot, which is PostgreSQL’s default data structure

that stores the relation tuples. These copies of the tu-

ples are required as PostgreSQL may not have the con-

tent of the tuple at the same pointer location when

the tuple is sent for the final projection. This step is a

platform-specific overhead that is required to produce

an output. The outer relation (of size N) is parsed first,

followed by the inner relation (of size M). If the inner

join data is identical to the corresponding outer join

data (self-join), we drop the inner join data and the

data structure has size N instead of 2N . If there are

13

Sort1 idx time cost pos
s1 3 80 10 1

s2 4 90 5 2

s3 1 100 6 3
s4 2 140 11 4

Sort2 idx time cost pos

s1 4 90 5 2
s2 1 100 6 3

s3 3 80 10 1

s4 2 140 11 4

Fig. 7 Permutation array creation for self-join Qp

more than two IEJoin predicates, then we follow the

procedure explained in Section 4.2, i.e., we pass to the

algorithm the pair of predicates with the highest selec-

tivity.

We illustrate in Figure 7 the data structure and

the permutation array computation with an example

for self-join Qp. We initialize the data structure with

an index (idx) and a copy of the attributes of interest

(time and cost for Qp). Next, we sort the data on the

first predicate (time) using system function qsort with

special comparators (defined in Algorithm 1) to handle

cases where two values for a predicate are equal. The

result of the first sort is reported at the left-hand side

of Figure 7. The last column (pos) is now filled with

the ordering of the tuples according to this sorting. As

a result, we create a new array to store the index values

for the first predicate. We use this array to select tu-

ple IDs at the time of projecting tuples. The tuples are

then ordered again according to the second predicate

(cost), as reported in the right-hand side of Figure 7.

After the second sorting, the new values in pos are the

values for the permutation array.

Finally, we create and traverse a bit-array B of size

(N + M) (N in case of self-join) along with a bitmap,

as discussed in Section 3.3. If the traversal finds a set

bit, the corresponding tuples are sent for projection.

Predicates, not selected by the optimizer in the case

of multi-predicate IEJoin, are evaluated at this stage

and, if the conditions are satisfied, tuples are projected.

7.2 Spark SQL

Spark SQL [4] allows users to query structured data

on top of Spark [37]. It stores the input data as a set

of in-memory Resilient Distributed Datasets (RDD).

Each RDD is partitioned into smaller cacheable blocks,

where each block fits in the memory of a single machine.

Spark SQL takes as input the datasets location(s) in

HDFS and an SQL query, and outputs an RDD that

contains the query result. The default join operation

in Spark SQL is inner join. When passing a join query

to Spark SQL, the optimizer searches for equality join

predicates that can be used to evaluate the inner join

operator as a hash-based physical join operator. If there

are no equality join predicates, the optimizer translates

the inner join physically to a Cartesian product followed

by a selection predicate.

We implemented the distributed version of IEJoin

as a new Spark SQL physical join operator. To make the

optimizer aware of the new operator, we added a new

rule to recognize inequality conditions. The rule passes

all inequality conditions to the IEJoin operator. If the

operator receives more than two inequality join condi-

tions, it deploys the IEJoin optimizer to find the two

highest selective inequality conditions. It executes the

join using such conditions and evaluates the rest of the

join conditions as a post selection operation on the out-

put. Similar to the PostgreSQL case, in the presence of

both equality and inequality joins, it orders inequality

joins after all equality joins. The distributed operator

utilizes Spark RDD operators to run both the IEJoin

and its optimizer. As a result, distributed IEJoin de-

pends on Spark’s default memory management to par-

tition and store the user’s input relation. If the result

does not fit in the memory of a single machine, we tem-

porarily store the result into HDFS. After all IEJoin

instances finish writing into HDFS, the distributed op-

erator passes the HDFS file to Spark, which constructs

a new RDD of the result and passes it to Spark SQL.

Figures 8 and 9 show how the distributed IEJoin

is processed in Spark. First, we globally sort the two

relations using Spark RDD sort (Figure 8(a)). Next, we

generate a set of distributed data blocks for each re-

lation through the RDD mapPartitionsWithIndex()

function (Figure 8(b)). As described in Section 6, the

block transformation does not store the actual tuples;

it only stores the attributes in the join predicates.

We then transform the data blocks into a metadata

blocks using their statistics (Figure 8(c)). Afterwards,

we apply Cartesian product on the block metadata of

R and S and remove non-overlapping block metadata

through RDD filter() operator (Figure 8(d)). Next,

we join the remaining blocks’ metadata with the orig-

inal data blocks to recover their content (Figure 8(e))

through two RDD join() operators; one for each in-

put relation. We then apply an independent instance of

IEJoin on every block pair in parallel by using RDD

flatMapToPair() operator (Figure 9(a)). Finally, we

join the IEJoin result with the original relations R and

S, using two RDD join() operators, to recover the full

attribute information of the result (Figure 9(b)).

14

Fig. 8 Spark’s DAG for the pre-processing phase

Fig. 9 Spark’s DAG for IEJoin the post-processing phase

7.3 NADEEF

Nadeef [11, 15, 16, 24] is a generalized data clean-

ing system3, implemented on top of PostgreSQL and

Rheem [3]. Rheem is a data processing framework

that provides independence from and interoperability

among existing data processing platforms. Given a dirty

dataset where errors are detected as violations of some

data quality rules (e.g., integrity constraints), Nadeef

outputs a data instance free of violations. Nadeef op-

erates in two phases: violation detection and data re-

pair. In the detection phase, it finds all data errors w.r.t.

the data quality rules; in the repair phase, it corrects

data errors by using a repair algorithm, i.e., an algo-

rithm that updates the data instance to make it con-

sistent w.r.t. the rules.

3 http://github.com/daqcri/NADEEF

Dataset Number of tuples Size

Employees 10K – 500M 300KB – 17GB
Employees2 1B – 8B 34GB – 287GB

Events 10K – 500M 322KB – 14GB

Events2 1B – 6B 32GB – 202GB

MDC 24M 2.4GB

Cloud 470M 28.8GB

Grades 100K 1.7MB

Table 2 Size of the datasets

In the data violation detection phase, Nadeef has

to generate all possible violation candidates for veri-

fication. We can see this candidate generation like a

self-join operation as it has to check each input tuple

for possible violations with other tuples. For example,

a rule might state that given a dataset for employees

in the same State, for every two distinct individuals,

the one earning a lower salary should have a lower tax

rate. In this case, Nadeef avoids performing a cross

product by using a distributed sort-merge join-like ap-

proach [24]. In a nutshell, it first range partitions the

input dataset and sorts each of the resulting range par-

titions in order to sort-merge join overlapping data par-

titions in a distributed fashion. It is in this last join-

ing step that we integrate the IEJoin algorithm. That

is, instead of performing a simple sort-merge join, we

perform our algorithm as explained in Section 3. More

specifically, we implemented the distributed version of

IEJoin in Nadeef by (i) extending the Rheem frame-

work in order to expose the new join as a physical oper-

ator, and by (ii) implementing the distributed version

of IEJoin as an execution operator for Spark. Notice

that the IEJoin execution operator is similar to its im-

plementation in Spark SQL discussed in Section 7.2. In

addition, we extended the Nadeef optimizer to take

this new join operator into consideration.

8 Experimental Study

We evaluate IEJoin along several dimensions: (i) Ef-

fect of sorting and caching (Section 8.5); (ii) IEJoin in

a centralized environment (Section 8.6); (iii) Query op-

timization techniques (Section 8.7); (iv) Incremental al-

gorithms (Section 8.8); and (v) IEJoin in a distributed

environment (Section 8.9).

8.1 Datasets

We used both synthetic and real-world data (summa-

rized in Table 2) to evaluate our algorithms.

(1) Employees contains employees’ salary and tax
information [6] with eight attributes: state, married,

dependents, salary, tax, age, and three others for notes.

15

The relation has been populated with real-life data for

tax rates, income brackets, and exemptions which were

then used to generate synthetic tax records. Employ-

ees2 in Table 2 is a group of larger input datasets

with up to 6 Billion records, but with only 0.001% ran-

dom changes to tax values. We lower the percentage of

changes to test the distributed algorithm on large input

files while avoiding extremely large output files.

(2) Events is a synthetic dataset that contains start
and end time information for a set of independent

events. Each event contains the name of the event, event

ID, the number of attending people, and the sponsor ID.

To make sure we generate output for a given query, we

extended end values for 10% random events. Events2

contains larger datasets with up to 6 Billion records and

0.001% extended random events.

(3) Mobile Data Challenge (MDC) is a 50GB real

dataset [26, 28] that contains behavioral data of nearly

200 individuals collected by Nokia Research (https:

//www.idiap.ch/dataset/mdc). The dataset contains

physical locations, social interactions, and phone logs

of the participating individuals.

(4) Cloud [33] is a real dataset that contains cloud re-

ports from 1951 to 2009, through land and ship stations

(ftp://cdiac.ornl.gov/pub3/ndp026c/).

(5) Grades is a synthetic dataset for testing the not

equal (6=) join predicate. It is composed of a list of stu-

dents with attributes id, name, gender, grade, and age.
We encode gender values by using numeric values to be

able to compare them using conditions less than (<)

and greater than (>). The dataset size is fixed (100K

tuples), but we vary the ratio of female students be-
tween 0.01% and 50% to diversify the selectivity of the

query.

8.2 Algorithms

We compare our algorithms with several centralized as

well as distributed algorithms

Centralized Systems. For our centralized setting, we

use the following systems:

(1) C++ IEJoin. This is a standalone C++ imple-

mentation of IEJoin to run experiments that cannot be

executed within a DBMS. For example, we use this im-

plementation to evaluate the incremental experiments

of IEJoin (Section 8.8). The implementation uses opti-

mized data structures from the Boost library4 to max-

imize the performance gain of IEJoin through a faster

array scanning.

4 http://www.boost.org/

(2) PG-IEJoin. We implemented IEJoin inside Post-

greSQL v9.4, as discussed in Section 7.1. We compare

it against the baseline systems below.

(3) PG-Original. We used PostgreSQL v9.4 as a base-

line. We tuned it with pgtune to maximize the benefit

from large main memory.

(4) PG-BTree & PG-GiST. We also used two variants

of PostgreSQL using indices. PG-BTree uses a B-tree

index for each attribute in a query. PG-GiST uses the

GiST access method in PostgreSQL, which considers

arbitrary indexing schemes and automatically selects

the best technique for the input relation.

(5) MonetDB. We used MonetDB Database Server

Toolkit v1.1 (Oct2014-SP2), an open-source column-

oriented database, in a disk partition of size 669GB.

(6) DBMS-X. We used a leading commercial central-

ized relational database.

Distributed Systems. We used the following systems:

(1) Spark SQL-IEJoin. We implemented IEJoin in-

side Spark SQL v1.0.2 (https://spark.apache.org/

sql/) as detailed in Section 7.2. We evaluated the per-

formance of IEJoin against the baseline systems below.

(2) Spark SQL & Spark SQL-SM. Spark SQL is

the default implementation in Spark SQL. Spark SQL-

SM [24] is an optimized version based on distributed

sort-merge join (Section 7.3). We also improve the

above method by pruning the non-overlapping parti-

tions to be joined.

(3) DPG-BTree & DPG-GiST. We used a commer-

cial version of PostgreSQL with distributed query pro-

cessing. This allows us to compare Spark SQL-IEJoin
to a distributed version of PG-BTree and PG-GiST.

8.3 Queries

We evaluate our algorithms from different perspectives

and using several queries with inequality join condi-

tions. It is worth noting that our main goal in the ex-

periments is to show the value of optimizing inequality

queries using our approach irrespective of the presence

of other operators.

For our first experiment, we used the following self-

join query over Employees to find violations of a data

quality rule [10]:

Q1 : SELECT r.id, s.id
FROM Employees r,Employees s
WHERE r.salary < s.salary AND r.tax > s.tax;

The query returns a set of employee pairs, where one

employee earns higher salary than the other but pays

less tax. To make sure that we generate output for Q1,

16

we selected 10% random tuples and increased their tax
values. We also used a self-join query that collects pairs

of overlapping events (in the Events dataset):

Q2 : SELECT r.id, s.id
FROM Events r,Events s
WHERE r.start ≤ s.end AND r.end ≥ s.start
AND r.id 6= s.id;

We extended end values for 10% random events to make

sure we generate output for Q2. Throughout all of our

experiments, we either use these two queries or slightly

modified versions thereof. For example, we added a

third join predicate to Q1 over age to get Q′1 and ex-

tended Q1 and Q2 to get Qmw to study how our al-

gorithms deal with multi-predicate conditions and with

multi-way joins, respectively.

Q′
1 : SELECT r.id, s.id

FROM Employees r,Employees s
WHERE r.salary < s.salary AND r.tax > s.tax
AND r.age > s.age;

Qmw : SELECT count(*)
FROM R r, S s,T t,V v,W w
WHERE r.salary > s.salary AND r.tax < s.tax
AND s.start ≤ t.end AND s.end ≥ t.start
AND t.salary > v.salary AND t.tax < v.tax
AND v.start ≤ w.end AND v.end ≥ w.start;

We also used slightly modified versions of Q1 and Q2

for our comparison with baselines using indexes. This is

because although Q1 and Q2 appear to be similar, they

require different data representation to be indexed with

GiST. The inequality attributes in Q1 are independent,

each condition forms a single open interval, while in Q2

they are dependent, together they form a single closed

interval. Thus, we convert salary and tax attributes into

a single geometric point data type SalTax to get Q1i.
Similarly for Q2, we convert start and end attributes

into a single range data type StartEnd to get Q2i.

Q1i : SELECT r.id, s.id
FROM Employees r,Employees s
WHERE r.SalTax >∧ s.SalTax
AND r.SalTax� s.SalTax;

Q2i : SELECT r.id, s.id
FROM Events r,Events s
WHERE r.StartEnd && s.StartEnd AND r.id 6= s.id;

In the rewriting of these queries for PG-GiST, op-

erator “>∧” corresponds to “is above?”, operator “�”

means “is strictly right of?”, and operator “&&” indi-

cates “overlap?”. For geometric and range types, GiST

uses a Bitmap index to optimize its data access with

large datasets.

In addition to the above two main queries, we used

Q3 to evaluate our algorithms when producing different

output sizes. This query looks for all persons that are

close to a shop up to a distance c along the x-axis (xloc)
and the y-axis (yloc):

Q3 : SELECT s.name, p.name
FROM Shops s,Persons p
WHERE s.xloc− c < p.xloc AND s.xloc + c > p.xloc
AND s.yloc− c < p.yloc AND s.yloc + c > p.yloc;

We also used a self-join query Q4, similar to Q3, to

compute all stations within distance c = 10 for every

station. Since the runtime in Q3 and Q4 is dominated

by the output size, we mostly used them for scalability

analysis in the distributed case.

Furthermore, we used query Q5 for our not equal

join predicates experiment.

Q5 : SELECT r.name, s.name FROM Grades r,Grades s
WHERE r.gender 6= s.gender AND r.grade > s.grade;

Notice that PostgreSQL executes Q5 with nested

loops. In our solution, the query is rewritten to Q′5.

Q′
5 : SELECT r.name, s.name FROM Grades r,Grades s

WHERE r.gender < s.gender AND r.grade > s.grade
UNION ALL
SELECT r.name, s.name FROM Grades r,Grades s
WHERE r.gender > s.gender AND r.grade > s.grade;

As attribute gender in Q5 has only two distinct

values, it might not provide the complete picture of

the performance of (6=) IEJoins. Thus, we addition-

ally used Q6 and Q7 to analyze the effect of non-binary

attributes on IEJoin with (6=) as the join predicates.

Q6 : SELECT r.name, s.name FROM Grades r,Grades s
WHERE r.age 6= s.age AND r.grade > s.grade;

Q7 : SELECT r.name, s.name FROM Grades r,Grades s
WHERE r.gender 6= s.gender AND r.grade 6= s.grade;

8.4 Setup

For the centralized evaluation, we used a Dell Precision

T7500 with two 64-bit quad-core Intel Xeon X5550 and

58GB RAM. For our distributed experiments, we used

a cluster of 17 Shuttle SH55J2 machines (1 master with

16 workers) with Intel i5 processors with 16GB RAM,

and connected to a high-end 1 Gigabit switch. For both

settings, all arrays are stored in memory.

8.5 Parameter Setting

We start our experimental evaluation by showing the

effect of the two optimizations (Section 3.3), as well as

the effect of global sorting (Section 6).

Bitmap. Bitmaps are used when big array scanning is

expensive. The chunk size is an optimization parameter

that is machine-dependent. We run query Q2 on 10M

tuples with size 322MB to show the performance gain

of using a bitmap based on three different implementa-

tions of IEJoin: the centralized C++, the C implemen-

tation of PostgreSQL, and the Java implementation of

17

Chunk size C++ PostgreSQL Spark SQL

(bits) (Sec) (Sec) (Sec)

1 > 1 day > 1 day > 1 day

64 2333 3139 1623
256 558 817 896
1024 158 242 296

4096 81 117 158
16384 139 142 232

Table 3 Bitmaps on 10M tuples (Events data)

Max C++ PostgreSQL Spark SQL

Index? (Sec) (Sec) (Sec)

No 81 117 158

Yes 23 47 46

Table 4 Bitmaps on 10M tuples with max scan index optimiza-
tion (Events data)

Spark SQL. For Spark SQL, we only ran a single in-

stance of IEJoin in a centralized setting.

Results are shown in Table 3. Intuitively, the larger

the chunk size, the better. However, a very large chunk

size defeats the purpose of using bitmaps to reduce

the bit-array scanning overhead. The experiment shows

that the performance gain is 3X between 256 bits and

1,024 bits and around 1.8X between 1,024 bits and

4,096 bits. Larger chunk sizes show worse performance,

as shown with chunk size of 16,384 bits. The experi-

ment in Table 4 shows the performance of the three

implementations of IEJoin when adding the max scan

index optimization to the bitmap. This index opti-

mization improves the performance of IEJoin around

3.5 times compared to the best results achieved by the

bitmap in Table 3.

Union arrays. To study the impact of the union op-

timization, we run IEJoin with and without the union

array using 10M tuples in the Events dataset. We col-

lect the following statistics with Spark SQL-IEJoin,

as shown in Table 5: (i) L1 data caches (dcache), (ii) last

level cache (LLC), and (iii) data translation lookaside

buffer (dTLB). The optimized algorithm with union ar-

rays is 2.6 times faster than the original one. The perfor-

mance gain in the optimized version is due to the lower

number of cache loads and stores (L1-dcache-loads, L1-

dcache-stores, dTLB-loads and TLB-stores), which is

2.7 to 3 times smaller than the original algorithm. This

behavior is expected since the optimized IEJoin has

fewer arrays w.r.t. the original version.

Global sorting on distributed IEJoin. As pre-

sented in Algorithm 5, the distributed version of our

algorithm applies global sorting in the pre-processing

phase (lines 6-7). We report in Table 6 a detailed per-

formance comparison for Q1 and Q2 with and with-

out global sorting on 100M tuples from Employees and

Events datasets. The pre-processing time includes data

Parameter (M/sec) IEJoin (union) IEJoin

cache-references 6.5 8.4
cache-references-misses 3.9 4.8

L1-dcache-loads 459.9 1,240.6

L1-dcache-load-misses 8.7 10.9
L1-dcache-stores 186.8 567.5

L1-dcache-store-misses 1.9 1.9

L1-dcache-prefetches 4.9 7.0
L1-dcache-prefetches-misses 2.2 2.7

LLC-loads 5.1 6.6

LLC-load-misses 2.9 3.7
LLC-stores 3.8 3.7
LLC-store-misses 1.1 1.2

LLC-prefetches 3.1 4.1
LLC-prefetch-misses 2.2 2.9

dTLB-loads 544.4 1,527.2
dTLB-load-misses 0.9 1.6

dTLB-stores 212.7 592.6

dTLB-store-misses 0.1 0.1

Total time (sec) 125 325

Table 5 Cache statistics on 10M tuples (Events data)

Query Pre-process IEJoin Post-process Total

With global sorting (Seconds)

Q1 632 162 519 1,313
Q2 901 84 391 1,376

Without global sorting (Seconds)

Q1 1,025 1,714 426 3,165
Q2 1,182 1,864 349 3,395

Table 6 IEJoin time analysis on 100M tuples and 6 workers

loading from HDFS, global sorting, partitioning, and

block-pairs materialization. One may think that the

global sorting impairs the performance of distributed

IEJoin as it shuffles data through the network. How-

ever, global sorting improves the performance of the

distributed algorithm by 2.4 to 2.9 times. More specif-

ically, the runtime for the pre-processing phase with
global sorting is at least 30% faster compared to the

case without global sorting. Moreover, we also note that

the time required by IEJoin is one order of magni-

tude faster when using global sorting. This is because

global sorting enables to filter out block-pair combina-

tions that do not generate results. This greatly reduces

the network overhead and increases the memory local-

ity in the block combinations that are passed to our

algorithm.

Based on the above experiments, in the following

tests we used 1,024 bits as the default chunk size, the

max scan index optimization, union arrays, and global

sorting for distributed IEJoin.

8.6 Single-node Experiments

In this set of experiments, we study the efficiency of

IEJoin on datasets that fit the main memory of a sin-

gle compute node and compare its performance with

alternative centralized systems.

18

0.01

0.1

1

10

100

1000

10000

10K 50K 100K

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

Input size

PG-IEJoin
PG-Original

MonetDB
DBMS-X

(a) Q1

0.01

0.1

1

10

100

1000

10000

10K 50K 100K
R

u
n
ti

m
e
 (

S
e
co

n
d

s)
Input size

PG-IEJoin
PG-Original

MonetDB
DBMS-X

(b) Q2

Fig. 10 IEJoin vs baseline systems (centralized)

0

500

1000

1500

2000

PG-IEJoin

PG-GiST

PG-BTree

PG-IEJoin

PG-GiST

PG-BTree

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

Indexing Querying
X

2
3

6
5

9

X

4
7

1
1

3
6

Q2Q1

(a) 10M tuples

0

2000

4000

6000

8000

10000

PG-IEJoin

PG-GiST

PG-BTree

PG-IEJoin

PG-GiST

PG-BTree

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

Indexing Querying
X

1
4

6

3
9

2
8

X

3
1

0

6
2

8
7

Q2Q1

(b) 50M tuples

Fig. 11 IEJoin vs. BTree and GiST (centralized)

IEJoin vs. baseline systems. Figure 10 shows the

results for queries Q1 on Employees dataset and Q2

on Events dataset in a centralized environment using

10K, 50K and 100K tuples. The x-axis represents the

input size in terms of the number of tuples and the y-

axis represents the corresponding running time in sec-

onds. The figure reports that PG-IEJoin outperforms

all baseline systems by more than one order of mag-

nitude for both queries and for every reported dataset

input size. In particular, PG-IEJoin is up to more than

three (resp., two) orders of magnitude faster than PG-

Original and MonetDB (resp., DBMS-X). Clearly,

the baseline systems cannot compete with PG-IEJoin

since they all use the classic Cartesian product followed

by a selection predicate. In fact, this is the main reason

why they cannot run for bigger datasets.

IEJoin vs. indexing. We now consider the two vari-

ants of PostgreSQL, PG-BTree & PG-GiST, to eval-

uate the efficiency of our algorithm on bigger datasets.

We run again Q1 and Q2 on 10M and 50M records using

both Employees and Events datasets. Figure 11 shows

the results. In both experiments, IEJoin is more than

one order of magnitude faster than PG-GiST. In fact,

IEJoin is more than three times faster than the GiST

indexing time alone. We stopped PG-BTree after 24

hours of runtime. Our algorithm performs better than

these two baseline indices because it better utilizes the

memory locality.

Memory consumption. The memory consumption

for MonetDB increases exponentially with the input

size. For example, MonetDB uses 419GB for an input

dataset with only 200K records. In contrast to Mon-

Query Input Output Time(secs) Mem(GB)

Q1 100K 9K 0.30 0.1
Q1 200K 1.1K 0.5 0.2

Q1 1M 29K 2.79 0.9
Q1 10M 3M 27.64 8.8

Q2 100K 0.2K 0.34 0.1

Q2 200K 0.8K 0.65 0.2

Q2 1M 20K 3.38 0.9
Q2 10M 2M 59.6 9.7

Q4 100K 6M 2.8 0.1

Q4 200K 25M 10.6 0.2
Q4 1M 0.4B 186 0.9
Q4 10M 50.5B 28,928 8.2

Table 7 Runtime and memory usage (PG-IEJoin)

Query Data Data Bit-array Total
reading sorting scanning time

C++ IEJoin.

Q1 82 31 4 117
Q2 85 31 3 119

PG-IEJoin.

Q1 46 94 4 146
Q2 48 238 24 310

Spark SQL-IEJoin (Single Node).

Q1 158 240 165 563
Q2 319 332 215 866

Table 8 Time breakdown on 50M tuples, all times in seconds

etDB, IEJoin makes better use of the memory. Table 7

shows that IEJoin uses around 200MB for Q1 and Q2

for an input dataset of 200K records, while MonetDB

requires two orders of magnitude more memory. In Ta-

ble 7, we also report the overall memory used by sorted

attribute arrays, permutation arrays, and the bit-array.

Moreover, although IEJoin requires 8.2GB of memory

for an input dataset of 10M records, it runs to com-

pletion in about 8 hours (28,928 seconds) for a dataset

producing more than 50 billion output records.

Time breakdown. We further analyze the breakdown

time of IEJoin on Employees and Events datasets with

50M tuples. Table 8 shows that, by excluding the time

required to load the dataset into memory, scanning

the bit-array takes only 10% of the overall execution

time in C++ IEJoin, 5% in PG-IEJoin, and 40% in

Spark SQL-IEJoin, while the rest is mainly for sort-

ing. This shows the high efficiency of our algorithm.

IEJoin with the not equal (6=) join predicate.

We tested the performance of IEJoin with the not

equal join predicate with Q5 on the Grades dataset.

PG-Original runs the query by using nested loops,

while PG-IEJoin uses two instances of IEJoin to pro-

cess Q′5. As shown in Figure 12(a), PG-IEJoin is from

four times to two orders of magnitude faster than PG-

Original. Note that the query output becomes larger

while increasing the Female frequency in the dataset.

19

0

500

1000

1500

2000

0.01% 0.1% 1% 10% 50%
 0.1

 1

 10

 100

 1000

 10000

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

R
e
su

lt
 s

iz
e
 (

M
ill

io
n
s)

Female frequency

PG-IEJoin
PG-Original
Result Size

(a) Q5

0

1000

2000

3000

4000

5000

6000

Q5 Q6 Q7
 1

 10

 100

 1000

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

R
e
su

lt
 s

iz
e
 (

x
1

0
0

 M
ill

io
n
s)

PG-IEJoin
PG-Original
Result Size

(b) Q5, Q6 and Q7

Fig. 12 Q5 runtime with different Female distributions, and Q5,

Q6 and Q7 runtimes with 10% Female distribution

L3 cache

IEJoin Naive CP Cache-efficient CP

L3 cache

IEJoin Naive CP Cache-efficient CP

L3 cache

IEJoin Naive CP Cache-efficient CP

1e+00

1e+01

1e+02

1e+03

L1 cache

Ti
m

e
 (

m
s)

(a) L1 cache

1e+00

1e+01

1e+02

1e+03

1e+04

L2 cache

Ti
m

e
 (

m
s)

(b) L2 cache

1e+00

1e+02

1e+04

1e+06

L3 cache

Ti
m

e
 (

m
s)

(c) L3 cache

Fig. 13 Q1 runtime for data that fits caches

We also tested the effect of a non-binary attribute

by using queries Q5, Q6, and Q7. For PG-IEJoin, the

queries were transformed into a union of inequality joins

as discussed before. Figure 12(b) shows that running

PG-IEJoin on Q5 and Q7 is an order of magnitude

faster than PG-Original, while on Q6 it is four times

faster. This is because the join attribute in Q5 and one

of the join attributes in Q7 generate far less results than

Q6. In fact, the output of Q6 is five times higher than

the one of Q5 and three times higher than the one of Q7.

This difference on Q6 is expected since both attributes

of the not equal join predicates are not binary.

IEJoin vs. cache-efficient Cartesian product. We

further push our evaluation to better highlight the
memory locality efficiency on Q1 using Employees

dataset. We compare the performance of C++ IEJoin

with both näıve and cache-efficient Cartesian product

joins for Q1 on datasets that fit the L1 cache (256 KB),

L2 cache (1 MB), and L3 cache (8 MB) of the Intel

Xeon processor. We used 10K tuples for L1 cache, 40K

tuples for L2 cache, and 350K tuples for L3 cache. We

do not report results for query Q2 because they are sim-

ilar to Q1. In Figure 13, we see that when the dataset

fits in the L1 cache, IEJoin is two orders of magnitude

faster than both the cache-efficient Cartesian product

and the näıve Cartesian product. Furthermore, as we in-

crease the dataset size for Q1 to be stored at the L2 and

L3 caches, we see that IEJoin becomes almost three

and four orders of magnitude faster than the Cartesian

product. This is because of the delays of L2 and L3

caches and the complexity of the Cartesian product.

Single-node summary. IEJoin outperforms existing

baselines by at least an order of magnitude for two main

Join Predicates

Estimation on a % sample

(number of overlapping blocks)
1% 5% 10% 20%

salary & tax 501 2535 5130 10K
salary & age 125250 3.1M 12M 50M
tax & age 125250 3.1M 12M 50M

Table 9 Q′
1’s selectivity estimation on 50M tuples Employees

dataset with low selectivity age attribute

Join Predicates

Estimation on a % sample

(number of overlapping blocks)
1% 5% 10% 20%

salary & tax 500 2545 5144 10K
salary & age 503 2559 5237 11K

tax & age 124750 3M 12M 50M

Table 10 Q′
1’s selectivity estimation on 50M tuples Employees

dataset with high selectivity age attribute

reasons: it avoids the use of Cartesian product and it

exploits memory locality by using memory-contiguous

data structures with small footprint. In other words,

our algorithm avoids as much as possible going to mem-

ory to fully exploit the CPU speed.

8.7 IEJoin Optimizer Experiments

In this section, we evaluate the accuracy of the IEJoin

optimizer when dealing with multi-predicate and multi-

way queries. We use Q′1 for multi-predicate IEJoin and

Qmw for multi-way IEJoin. For the multi-predicate ex-

periment, we evaluate the performance of IEJoin by

using the highest selective predicates, found by Algo-

rithm 3, compared to using other predicates. For the

multi-way IEJoin, we compare the runtime of the plan

generated by Algorithm 4 against other plans.

Multi-predicate IEJoin. We evaluate the accuracy

of the selectivity estimation algorithm on query Q′1 us-

inmg C++ IEJoin. We first use Algorithm 3 to cal-

culate the selectivity estimation for all three predicate

pairs using the join attributes salary, tax, and age.

To evaluate the estimation algorithm, we gener-

ated two different distributions of attribute age for

query Q′1: a low selectivity distribution that gener-

ates a large output with salary and tax attributes,

and a high selectivity distribution that generates a

small output with attribute salary. The low selec-

tivity distribution injects random noise on age at-

tribute in each tuple, generating a large output for

the IEJoin on (r.salary < s.salary AND r.age > s.age)
or on (r.tax > s.tax AND r.age > s.age). For the high

selectivity distribution, however, we carefully assign a

value proportional to the salary attribute to generate

a small output for the IEJoin on (r.salary < s.salary
AND r.age > s.age). We show the selectivity estimation

20

1

10

100

1000

Salary & Tax
Salary & Age

Tax & Age

IE
Jo

in
 o

u
tp

u
t

(M
ill

io
n
 t

u
p

le
s)

IEJoin predicates

Low selective (age)

High selective (age)
X X X

(a) Result size

0

100

200

300

400

500

Salary & Tax
Salary & Age

Tax & Age
R

u
n
ti

m
e
 (

S
e
co

n
d

s)
IEJoin predicates

Low selective (age)

High selective (age)
X X X

(b) Runtime

Fig. 14 Result size and runtime for Q′
1

for both distributions of the age attribute in Tables 9

and 10. The tables report selectivity estimations when

using input sample of size 1%, 5%, 10%, and 20%. We

determine the best join predicate pair for Q′1 by select-

ing the predicate pair with the minimum overlapping

blocks. According to Tables 9 and 10, the (salary, tax)
join predicate pair has the highest selectivity in all in-

put samples. Although the difference between predi-

cates pairs (salary, tax) and (salary, age) in Table 10 is

relatively small, we notice that it gets larger as we in-

crease the size of the sample input. To validate this

observation, we execute IEJoin on each join predicate

pair and compare the output size and runtime values.

We show in Figure 14(a) that choosing (salary, tax) is

the right decision. In fact, the output size of (salary, tax)
with the low selectivity age attribute is at least two or-

ders of magnitude lower than the results with other

predicates, and it is 50% lower than (salary, age) with

the high selectivity age attribute. In Figure 14(b), we

show the runtime difference among predicate pairs with

the high selectivity age attribute. Join predicate pair

(salary, tax) is orders of magnitude faster than predi-

cate pair (tax, age), but only a couple of seconds faster

than predicate pair (salary, age). Although the perfor-

mance difference between (salary, tax) and (salary, age)
pairs are small in the dataset with high selectivity age,
the IEJoin query optimizer was able to detect that

using (salary, tax) is faster than using (salary, age). We

also notice that the runtime for the low selectivity age
dataset is orders of magnitude faster with predicate pair

(salary, tax) compared with other combinations.

Multi-way IEJoin. We test the multi-way IEJoin

optimization in Algorithm 4 with the five relations in

Qmw. Each relation in Qmw contains a random num-

ber of tuples from both Employees and Events datasets.

We summarize in Table 11 the size of each relation, the

selectivity estimation (computed with Algorithm 3 on

1% sample size), and the join result size based on the

inequality conditions in Qmw. Table 11 shows that the

selectivity estimation is consistent with the actual join

result size; the lower the estimation the smaller the out-

put size and the higher the estimation the larger the

Number of Join Selectivity

tuples Join Estimation Result size

R 2M R./S 388 576961

S 38M S./T 6.7M 31.5M
T 28M T./V 1999 876513
V 10M V./W 0.5M 12.5M

W 22M – – –

Table 11 Relation sizes, selectivity estimations and actual out-
put for individual joins in Qmw

1st Join 2nd Join 3rd Join 4th Join Total

R./S 106s ./T 77s ./V 21s ./W 53s 257s

S./T 390s
./R 41s ./V 21s ./W 51s 503s

./V 67s
./R 4s ./W 51s 512s

./W 55s ./R 4s 516s

T./V 103s
./S 108s

./R 4s ./W 53s 268s

./W 58s ./R 4s 273s
./W 57s ./S 106s ./R 3s 269s

V./W 319s ./T 91s ./S 108s ./R 4s 522s

Table 12 Runtime of different multi-way join plans for Qmw

output size. Based on Algorithm 4, the optimal plan

for Qmw is ((((R ./ S) ./ T) ./ V) ./ W) accord-

ing to the selectivity estimations in Table 11. To eval-

uate the quality of the optimal plan, we evaluate the

performance of all multi-way IEJoin plans for Qmw

with PG-IEJoin, and report the results in Table 12.

Plan (((R ./ S) ./ T) ./ V) ./ W that was gener-

ated by Algorithm 4 is indeed the fastest one. Although

(R ./ S) has higher selectivity than (T ./ V), evaluat-

ing (T ./ V) is slightly faster than (R ./ S). Indeed

(R ./ S) produces less results compared to (T ./ V)
(Table 11), but since sorting dominates the performance

for IEJoin, as shown in Table 8, (R ./ S) becomes

slightly slower with a larger number of tuples to sort

(40M tuples) compared to (T ./ V) (38M tuples). Nev-

ertheless, ((((R ./ S) ./ T) ./ V) ./ W) remains the

fastest plan because it eliminates more tuples earlier-

compared to the rest.

Optimizer experiments summary. With only 1% of

the data, selectivity estimation in Algorithm 3 is able

to accurately distinguish between high and low selec-

tive IEJoins. Note that the 1% sample size may not be

applicable for other datasets since the minimum sample

size depends on the distribution of the join attributes.

The performance degradation of not selecting the opti-

mal query execution plan for multi-predicate and multi-

way IEJoins varies between 5% and orders of magni-

tude performance drop. With negligible overhead, our

selectivity estimation allows a DBMS to tune its query

optimizer to select the optimal plan for multi-predicate

and multi-way IEJoins.

21

8.8 Incremental IEJoin Experiments

We developed the incremental algorithm in Section 5

using C++ IEJoin and tested it on Q1. Again, we do

not report results for Q2 since they were similar to those

of Q1. We used five different implementations for the

experiments in this section: (1) Non-incremental (our

original implementation), (2) incremental non-batched

sort-merge (∆Inc), (3) incremental batched sort-merge

(B-∆Inc), (4) incremental with the packed-memory ar-

ray (PMA) data structure to dynamically maintain the

cached input (P -∆Inc), and (5) σInc which is similar

to B-∆Inc but returns the full output. The three vari-

ations of ∆Inc return results that correspond only to

the updates while σInc generates results from both the

updates and the cached input.

Incremental IEJoin with small updates. We first

study the advantage of our P -∆Inc algorithm on small

updates. In Figure 15, we compare the runtime of ∆Inc,

B-∆Inc, non-incremental, and P -∆Inc by using 80M

tuples as cached input. We consider ∆Inc as the base-

line for incremental IEJoin. In Figure 15, ∆Inc is twice

faster than the non-incremental IEJoin for update of

size 1. As the size of the update increases, ∆Inc slows

down because it processes each update individually. To

avoid this overhead, we use P -∆Inc to increase the ef-

ficiency of individual updates and B-∆Inc to process

updates in a batched fashion. Since the update sizes are

relatively small, the runtime of both B-∆Inc and the

non-incremental algorithm across different update sizes

remain constant. Figure 15 shows that B-∆Inc is al-

ways twice faster than the non-incremental algorithm,

while P -∆Inc is 30% better than B-∆Inc and three
times faster than the non-incremental with update of

size 1. The processing overhead of P -∆Inc is directly

proportional to the update size, and its performance de-

clines as the update size increases. Although P -∆Inc

is up to two orders of magnitude faster than ∆Inc on

higher update sizes, B-∆Inc is better than P -∆Inc on

updates larger than 50. The limitation of P -∆Inc on

updates larger than 50 is inherited from the design of

PMA which works better with individual updates. Note

that P -∆Inc has an extra 60% memory overhead, com-

pared to the non-incremental IEJoin, due to the extra

empty spaces maintained by the PMA.

Incremental IEJoin with large updates. In these

experiments, we focus on B-∆Inc and σInc since both

∆Inc and P -∆Inc do not work well with large updates.

We show in Figures 16(a), 16(b), and 16(c) a compari-

son between the runtime (without data loading) of B-

∆Inc and non-incremental IEJoin with different up-

date and cached input sizes. In Figure 16(a), we start

1

10

100

1000

10000

1 5 10 50 100 500

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

Update size (tuples)

ΔInc
B-ΔInc

Non-inc
P-ΔInc

Fig. 15 Runtime of ∆Inc, B-∆Inc, non-incremental, and P -

∆Inc on small update sizes

with 10M tuples as cached input. B-∆Inc is 40% faster

on the update of size 1M tuples and has 5 times less

output compared to the non-incremental algorithm. For

updates larger than 1M, however, we notice that the

performance of B-∆Inc significantly drops as the dif-

ference in the output sizes between the B-∆Inc and

the non-incremental becomes insignificant. Similar be-

havior can be observed in Figures 16(b) and 16(c) with

cached input of 20M and 30M tuples, respectively.∆Inc

is 50% and 30% faster than the non-incremental algo-

rithm on updates of sizes 1M and 5M tuples, respec-

tively, while its performance drops on updates larger

than 5M tuples in both cases. We also notice that B-

∆Inc on the 1M tuples update has 10 times smaller

output in Figure 16(b) and 15 times smaller output

in Figure 16(c) compared to the non-incremental al-

gorithm. From the above three figures, B-∆Inc clearly

shows significant improvement over the non incremental

algorithm (up to 50%) with update sizes that generate

significantly smaller output. In this experimental setup,

an efficient update size for B-∆Inc does not exceed 25%

of the cached input size.

We further tested the effect of update sizes on disk

reading and memory consumption on B-∆Inc when us-

ing 30M tuples as cached input. Based on Figure 17(a),

B-∆Inc gains up to 90% performance increase in disk

reading time compared to the non-incremental algo-

rithm with small updates sizes. The downside of the

incremental algorithm is that it has 60% higher memory

overhead compared to the non-incremental one, caused

by data structures required to enable fast IEJoin up-

dates. We also compare the performance difference be-

tween B-∆Inc and σInc in Figure 17(b) using 30M

tuples as cached input, where the only difference be-

tween them is the size of the output. σInc is at most

20% slower than B-∆Inc when the output difference

between them is large on the 1M tuples update. How-

ever, the performance gap between B-∆Inc and σInc

becomes negligible as the output difference gets smaller

on larger update sizes.

22

0

5

10

15

20

1 5 10 15 20 25 30 35 40
 0.1

 1

 10

 100

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

O
u
tp

u
t

si
ze

 (
M

ill
io

n
 t

u
p

le
s)

Update size (Million tuples)

B-ΔInc Runtime
Non-inc Runtime
B-ΔInc Output
non-Inc Output

(a) 10M cached input

0

5

10

15

20

1 5 10 15 20 25 30
 0.1

 1

 10

 100

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

O
u
tp

u
t

si
ze

 (
M

ill
io

n
 t

u
p

le
s)

Update size (Million tuples)

B-ΔInc Runtime
Non-inc Runtime
B-ΔInc Output
non-Inc Output

(b) 20M cached input

0

5

10

15

20

25

1 5 10 15 20
 0.1

 1

 10

 100

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

O
u
tp

u
t

si
ze

 (
M

ill
io

n
 t

u
p

le
s)

Update size (Million tuples)

B-ΔInc Runtime
Non-inc Runtime
B-ΔInc Output
non-Inc Output

(c) 30M cached input

Fig. 16 Runtime and output size of non-incremental and B-∆Inc IEJoin on big update sizes

0

20

40

60

80

100

120

140

1 5 10 15 20
 0

 1

 2

 3

 4

R
e
a
d

in
g

 t
im

e
 (

S
e
co

n
d

s)

M
e
m

o
ry

 f
o
o
tp

ri
n
t

(G
B

)

Update size (Million tuples)

B-ΔInc Reading Time
non-Inc Reading Time
B-ΔInc Memory
non-Inc Memory

(a) Memory & I/O overhead

0

5

10

15

20

1 5 10 15 20
 0.1

 1

 10

 100

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

O
u
tp

u
t

si
ze

 (
M

ill
io

n
 t

u
p

le
s)

Update size (Million tuples)

B-ΔInc Runtime
σInc Runtime
B-ΔInc Output
σInc Output

(b) B-∆Inc vs. σInc

Fig. 17 Memory and I/O overhead of B-∆Inc, and runtime and
output size of B-∆Inc and σInc (30M cached input)

0

4000

8000

12000

16000

20000

Parallel-IEJoin

Distributed-IEJoin

DPG-GiST

DPG-BTree

SparkSQL-SM

SparkSQL

R
u
n
ti

m
e
 (

S
e
co

n
d

s) Indexing Querying
X X X X

4
3

0
2

1
3

1
3

(a) Q1

0

4000

8000

12000

16000

20000

Parallel-IEJoin

Distributed-IEJoin

DPG-GiST

DPG-BTree

SparkSQL-SM

SparkSQL

R
u
n
ti

m
e
 (

S
e
co

n
d

s) Indexing Querying
X X X

4
9

6
5

1
3

7
6

(b) Q2

Fig. 18 Distributed IEJoin (100M tuples, 6 nodes/threads)

Incremental experiments summary. When the up-

date size is smaller than 50, the PMA-based incremen-

tal algorithm performs 30% better than the sort-merge

incremental algorithm and three times better than the

original IEJoin. As we increase the size of the up-

dates, the batched sort-merge-based incremental algo-

rithm becomes more efficient than the PMA-based one.

For update sizes that do not exceed 25% of the cached

input size, the batched sort-merge-based incremental

algorithm is twice faster than the original algorithm.

8.9 Multi-node Experiments

We now evaluate our proposal in a distributed environ-

ment and by using larger datasets.

Scalable IEJoin vs. baseline systems. We should

note that we had to run these experiments on a cluster

of 6 compute nodes only due to the limit imposed by

the free version of the distributed PostgreSQL system.

100

1000

10000

100000

100M 200M 300M 400M 500M
0.01

0.1

1

10

100

1000

10000

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

R
e
su

lt
 s

iz
e
 (

M
ill

io
n
s)

Q1 time
Q2 time

Q1 result
Q2 result

(a) Employees & Events

100

1000

10000

100000

1B 2B 3B 4B 5B 6B
0.01

0.1

1

10

100

1000

10000

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

R
e
su

lt
 s

iz
e
 (

M
ill

io
n
s)

Q1 time
Q2 time

Q1 result
Q2 result

(b) Employees2 & Events2

Fig. 19 Distributed IEJoin, 6B tuples, 16 nodes

Additionally, in these experiments, we stopped the ex-

ecution of any system that exceeded 24 hours. We test

the scalable IEJoin using the parallel IEJoin (with 6

threads in a single machine while enabling disk caching)

and the distributed IEJoin (on 6 compute nodes). Fig-

ure 18 shows the results of all distributed systems we

consider for queries Q1 and Q2. This figure shows again

that both versions of our algorithm significantly outper-

form all baselines. It is on average more than one or-

der of magnitude faster. In particular, we observe that

only DPG-GiST could terminate before 24 hours for

Q2. The distributed IEJoin is twice faster than the

time required to run GiST indexing alone. Moreover,

distributed IEJoin is, as expected, faster than the par-

allel multi-threaded version. This is because the multi-

threaded version has a higher processing overhead due

to resource contention. These results show the high su-

periority of our algorithm over all baseline systems.

Scaling input size. We further push the evaluation of

the efficiency in a distributed environment with bigger

input datasets: from 100M to 500M records with large

results size (Employees and Events), and from 1B to

6B records with smaller results size (Employees2 and

Events2). As we now consider IEJoin only, we run this

experiment on our entire 16 compute nodes cluster. Fig-

ure 19 shows the runtime results as well as the output

sizes. We observe that IEJoin gracefully scales along

with input dataset size in both scenarios. We also ob-

serve in Figure 19(a) that, when the output size is large,

23

the runtime increases accordingly as it is dominated by

the materialization of the results. In Figure 19(a), Q1

is slower than Q2 as its output is three orders of mag-

nitude larger. When the output size is relatively small,

both Q1 and Q2 scale well with increasing input size

(see Figure 19(b)). Below, we study in more details the

impact of the output size on performance.

Scaling dataset output size. We test our system’s

scalability in terms of the output size using two real

datasets (MDC and Cloud) as shown in Figure 20. To

have full control on this experiment, we explicitly limit

the output size from 4.3M to 430M for MDC, and 20.8M

to 2050M for Cloud. The figures clearly show that the

output size affects runtime; the larger the output size,

the longer it will take to produce them. They also show

that materializing a large number of results is costly.

Take Figure 20(a) for example, when the output size is

small (i.e., 4.3M), materializing them or not will have

similar performance. However, when the output size is

big (i.e., 430M), materializing the results takes almost

2/3 of the entire running time.

In order to run another set of experiments with a

much bigger output size, we created two variants of Q3

for MDC dataset by keeping only two predicates over

four (less selectivity). Figure 21 shows the scalability

results of these experiments with no materialization of

results. For Q3a, IEJoin produced more than 1, 000B

records in less than 3, 000 seconds. For Q3b, we stopped

the execution after 2 hours with more than 5, 000B tu-

ples in the temporary result. This demonstrates the

good scalability of our solution.

Speedup and scaleup. We also test speedup and

scaleup efficiency of the distributed IEJoin by using

Employees2 dataset and query Q1. Figure 22(a) shows

that our algorithm has outstanding speedup thanks to

the scalability optimizations. IEJoin was only 4%, 3%

and 16% slower than the ideal speedup when process-

ing 8B rows on 4, 8 and 16 workers respectively. Fig-

ure 22(b) shows the scaleup efficiency of IEJoin as

we proportionally increase the cluster size and input

size. We observe that distributed IEJoin also has good

scaleup: on 4 workers (2B rows) and 8 workers (4B

rows) it was only 5% and 20% slower than the ideal

scaleup. However, due to the increase in dataset size,

the sorting overhead in IEJoin becomes larger. This

explains why scalable IEJoin, on 16 workers with 8B

rows input, is 46% slower than the ideal scaleup.

Multi-node summary. Similarly to the centralized

case, IEJoin outperforms existing baselines by at least

one order of magnitude. In particular, we observe that

it gracefully scales in terms of input (up to 6B tuples).

This is because our algorithm first join the metadata,

0

100

200

300

400

500

600

4.3M 43M 430M

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

IEJoin output size limit

With materialization
Without materialization

(a) MDC - Q3

0

3000

6000

9000

12000

15000

18000

20.8M 208M 2050M

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

IEJoin output size limit

With materialization
Without materialization

(b) Cloud - Q4

Fig. 20 Runtime of IEJoin (c = 10)

0

1000

2000

3000

4000

5000

6000

7000

8000

c=5 c=10

R
u
n
ti

m
e
 (

S
e
co

n
d

s)

Q3 Q3a Q3b
X X

(a) Runtime

0

1000

2000

3000

4000

5000

6000

c=5 c=10

R
e
su

lt
 s

iz
e
 (

B
ill

io
n
s)

Q3 Q3a Q3b

X X

(b) Output size

Fig. 21 Without result materialization (c = 5, 10)

0

20

40

60

80

100

120

2 4 8 16

R
u
n
ti

m
e
 (

H
o
u
rs

)

Cluster size

IEJoin Speedup
Ideal Speedup

+4%

+3%
+16%

(a) Speedup

0

5

10

15

20

25

2,1B 4,2B 8,4B 16,8B

R
u
n
ti

m
e
 (

H
o
u
rs

)
Cluster size, Dataset size (rows)

IEJoin Scaleup
Ideal Scaleup

+5%
+20%

+46%

(b) Scaleup

Fig. 22 Speedup (8B rows) & Scaleup on Q1

which are orders of magnitude smaller than the actual

data. As a result, it shuffles only those data partitions

that can potentially produce join results. Typically,

IEJoin processes a small number of data partitions.

9 Related work

Several cases of inequality joins have been studied in

the literature; these include band joins, interval joins

and, more generally, spatial joins. IEJoin is specially

optimized for joins with at least two predicates in

{“<”, “>”, “≤”, “≥”}.
A band join [13] of two relations R and S has a

join predicate that requires the join attribute of S to

be within some range of the join attribute of R. The

join condition is expressed as R.A− c1 ≤ S.B & S.B ≤
R.A + c2, where c1 and c2 are constants. The band-

join algorithm [13] partitions the data from relations R

and S into partitions Ri and Si respectively, such that

for every tuple r ∈ R, all tuples of S that join with r

appear in Si. It assumes that Ri fits into memory. Con-

trary to IEJoin, band join is limited to a single inequal-

ity condition type, involving one single attribute from

24

each column. IEJoin works for any inequality condi-

tions and attributes from the two relations. While band

join queries can be processed using our algorithm, not

all IEJoin queries can be reduced to band join.

Interval joins are frequently used in temporal and

spatial data. The work in [17] proposes the use of the re-

lational Interval Tree to optimize joining interval data.

Each interval intersection is represented by two inequal-

ity conditions, where the lower and upper times of any

two tuples are compared to check for overlaps. This

work optimizes non-equijoins on interval intersections,

where they represent each interval as a multi-value at-

tribute. Compared to our work, they only focus on im-

proving interval intersection queries and cannot process

general purpose inequality joins.

Spatial indexing is widely used in several applica-

tions with multidimensional datasets, such as bitmap

indices [8, 30], R-trees [21] and space filling curves [7].

In PostgreSQL, support for spatial indexing algorithms

is provided through a single interface known as Gen-

eralized index Search Tree [22] (GiST). From this col-

lection of indices, bitmap index is the most suitable

technique to optimize multiple attribute queries that

can be represented as 2-dimensional data. Examples of

2-dimensional datasets are intervals (e.g., start and end

time in Q2), GPS coordinates (e.g., Q3), and any two

numerical attributes that represent a point in an XY

plot (e.g., salary and tax in Q1). The main disadvan-

tage of the bitmap index is that it requires large mem-

ory footprint to store all unique values of the composite

attributes [9,36]. Bitmap index is a natural baseline for

our algorithm, but, unlike IEJoin, it does not perform

well with high cardinality attributes, as demonstrated

in Figure 8. R-trees, on the other hand, are not suit-

able because an inequality join corresponds to window

queries that are unbounded from two sides, and conse-

quently intersect with a large number of internal nodes

of the R-tree, generating unnecessary disk accesses.

The patent in [32] also presents an algorithm to op-

timize the Cartesian product when joining two tables

based on a single inequality condition. The algorithm

partitions the input relations into smaller blocks based

on the value distribution and min/max values of the

join predicate. It then applies Cartesian product on a

subset of the input partitions, where it eliminates un-

necessary partitions depending on the join condition.

Compared with our approach, this algorithm optimizes

the Cartesian product through partitioning based on

only one single inequality join predicate.

Several other proposals have been made to speed-

up join executions in MapReduce (e.g., [14]). However,

they focus on joins with equalities thus requiring mas-

sive data shuffling to be able to compare each tuple

with each other. There have been few attempts to de-

vise efficient implementation of theta-join in MapRe-

duce [33,38]. [33] focuses on pair-wise theta-join queries.

It partitions the Cartesian product output space with

rectangular regions of bounded sizes. Each partition

is mapped to one reducer. The proposed partitioning

guarantees correctness and workload balance among the

reducers while minimizing the overall response time.

[38] further extends [33] to solve multi-way theta-joins.

It proposes an I/O and network cost-aware model for

MapReduce jobs to estimate the minimum time exe-

cution costs for all possible decomposition plans for a

given query, and selects the best plan given a limited

number of computing units and a pool of possible jobs.

We propose a new algorithm to do the actual inequal-

ity join based on sorting, permutation arrays, and bit

arrays. The focus in these previous proposals is on ef-

ficiently partitioning the output space and on provid-

ing a cost model for selecting the best combination of

MapReduce jobs to minimize response time. In both

proposals, join is performed with existing algorithms,

where inequality conditions correspond to Cartesian

product followed by selection.

A large number of approaches focused on selectivity

estimation. However, most existing work on selectivity

estimation has focused on equijoins [2, 23, 29, 34, 35].

There are few proposals for the general case of theta-

join [38] and spatial join [31]. Nevertheless, most of

these proposals estimate the selectivity of the inequal-

ity join to be O(n2) because it is evaluated as Cartesian

product. IEJoin significantly differs from these works

as it does not consider Cartesian product. It uses an

efficient selectivity estimation technique that computes

the number of overlapping sorted blocks obtained from

a sample of the input relations.

10 . . . The End

To help Bob with his inequality join queries, we pro-

posed novel algorithms for efficiently evaluating these

queries. We rely on auxiliary data structures that en-

able efficient computations and require a small mem-

ory footprint. Our algorithms exploit data locality

to achieve orders of magnitude computation speedup.

We introduced selectivity estimation to support multi-

predicate and multi-way join queries. We devised in-

cremental versions to deal with continuous queries on

changing data. We implemented these algorithms on

both a centralized and a distributed system, namely

PostgreSQL and Spark SQL, respectively. We addition-

ally implemented IEJoin in Nadeef, an open source

data cleaning system. Our experiments demonstrate

that IEJoin is superior to baseline systems: it is 1.5

25

to 3 orders of magnitude faster than commercial and

open-source centralized databases; and at least 2 orders

of magnitude faster than the original Spark SQL. While

the algorithm does not break the theoretical quadratic

time bound, our experiments show performance results

that are proportional to the size of the output.

11 Acknowledgments

Portions of the research in this paper used the MDC

Database made available by Idiap Research Institute,

Switzerland and owned by Nokia.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

2. F. N. Afrati and J. D. Ullman. Optimizing Joins in a Map-
reduce Environment. In EDBT, pages 99–110, 2010.

3. D. Agrawal, S. Chawla, A. K. Elmagarmid, Z. K. M. Ouzzani,

P. Papotti, J. Quiané-Ruiz, N. Tang, and M. J. Zaki. Road

to Freedom in Big Data Analytics. In EDBT, pages 479–484,
2016.

4. M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: Relational Data Processing in

Spark. In SIGMOD, pages 1383–1394, 2015.

5. M. A. Bender and H. Hu. An Adaptive Packed-memory Ar-
ray. TODS, 32(4), 2007.

6. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsiet-

sidis. Conditional Functional Dependencies for Data Clean-
ing. In ICDE, pages 746–755, 2007.

7. C. Böhm, G. Klump, and H.-P. Kriegel. XZ-Ordering: A

Space-Filling Curve for Objects with Spatial Extension. In

SSD, pages 75–90, 1999.

8. C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design and

Evaluation. In SIGMOD, pages 355–366, 1998.

9. C.-Y. Chan and Y. E. Ioannidis. An Efficient Bitmap En-
coding Scheme for Selection Queries. In SIGMOD, pages

215–226, 1999.

10. X. Chu, I. F. Ilyas, and P. Papotti. Holistic Data Cleaning:

Putting Violations into Context. In ICDE, pages 458–469,
2013.

11. M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.

Ilyas, M. Ouzzani, and N. Tang. NADEEF: A Commodity
Data Cleaning System. In SIGMOD, 2013.

12. J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. Communications of the ACM,
51(1):107–113, 2008.

13. D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An

Evaluation of Non-Equijoin Algorithms. In VLDB, pages
443–452, 1991.

14. J. Dittrich, J. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a Yellow Elephant Run

Like a Cheetah (Without It Even Noticing). PVLDB,
3(1):515–529, 2010.

15. A. Ebaid, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani,

J. Quiané-Ruiz, N. Tang, and S. Yin. NADEEF: A Gen-
eralized Data Cleaning System. PVLDB, 6(12):1218–1221,

2013.

16. A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, J. Quiané-Ruiz,
N. Tang, and S. Yin. NADEEF/ER: Generic and Interactive

Entity Resolution. In SIGMOD, pages 1071–1074, 2014.
17. J. Enderle, M. Hampel, and T. Seidl. Joining Interval Data

in Relational Databases. In SIGMOD, pages 683–694, 2004.
18. D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join

Operations in Temporal Databases. VLDB J., 14(1):2–29,

2005.
19. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database

Systems. Pearson Education, 2009.
20. N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.

GPUTeraSort: High Performance Graphics Co-processor
Sorting for Large Database Management. In SIGMOD, pages

325–336, 2006.
21. A. Guttman. R-trees: A Dynamic Index Structure for Spatial

Searching. In SIGMOD, pages 47–57, 1984.
22. J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized

Search Trees for Database Systems. In VLDB, pages 562–
573, 1995.

23. A. Kemper, D. Kossmann, and C. Wiesner. Generalised Hash

Teams for Join and Group-by. In VLDB, pages 30–41, 1999.
24. Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani,

P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and S. Yin. Big-

Dansing: A System for Big Data Cleansing. In SIGMOD,
pages 1215–1230, 2015.

25. Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani, P. Papotti, J.-

A. Quiané-Ruiz, N. Tang, and P. Kalnis. Lightning Fast and
Space Efficient Inequality Joins. PVLDB, 8(13):2074–2085,

2015.
26. N. Kiukkonen, B. J., O. Dousse, D. Gatica-Perez, and L. J.

Towards Rich Mobile Phone Datasets: Lausanne Data Col-

lection Campaign. In ICPS, 2010.
27. D. E. Knuth. The Art of Computer Programming, Volume

III: Sorting and Searching. Addison-Wesley, 1973.
28. J. K. Laurila, D. Gatica-Perez, I. Aad, B. J., O. Bornet,

T.-M.-T. Do, O. Dousse, J. Eberle, and M. Miettinen. The

Mobile Data Challenge: Big Data for Mobile Computing Re-

search. In Pervasive Computing, 2012.
29. G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay,

P. Selinger, and P. Wilms. Query Processing in R*. In Query

Processing in Database Systems, pages 31–47. 1985.
30. T. L. Lopes Siqueira, R. R. Ciferri, V. C. Times, and C. D.

de Aguiar Ciferri. A Spatial Bitmap-based Index for Geo-

graphical Data Warehouses. In SAC, pages 1336–1342, 2009.
31. N. Mamoulis and D. Papadias. Multiway Spatial Joins.

TODS, 26(4):424–475, 2001.
32. J. Morris and B. Ramesh. Dynamic Partition Enhanced

Inequality Joining Using a Value-count Index, 1 2011. US

Patent 7,873,629 B1.
33. A. Okcan and M. Riedewald. Processing Theta-Joins using

MapReduce. In SIGMOD, pages 949–960, 2011.
34. D. A. Schneider and D. J. DeWitt. A Performance Evalu-

ation of Four Parallel Join Algorithms in a Shared-nothing
Multiprocessor Environment. In SIGMOD, 1989.

35. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In SIGMOD, pages 23–34,

1979.
36. K. Stockinger and K. Wu. Bitmap Indices for Data Ware-

houses. Data Warehouses and OLAP: Concepts, Architec-

tures and Solutions, 5:157–178, 2007.
37. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica. Spark: Cluster Computing with Working Sets. In

HotCloud, pages 10–10, 2010.
38. X. Zhang, L. Chen, and M. Wang. Efficient Multi-way Theta-

Join Processing Using MapReduce. PVLDB, 5(11):1184–
1195, 2012.

