Eliminating ambiguity in context free grammars

This note shows how to eliminate ambiguities in context free grammars by
encoding operator precendence and associativity. The point of the note is that
there is a simple algorithm that does this, and so you can do this essentially
without thinking. In fact it is easy to write a program does this.

I use BNF rather than extended BNF (which Coco-R uses) because asso-
ciativity is not clear in extended BNF (EBNF) grammars, which is the second
point of the note (more on this below).

Consider the following ambiguous grammar

R=R&R|R®R|R®R|R*|(R)|a|b|c (1)

The grammar consists of one non-terminal (R) and eight productions (divided by
vertical bars). You should check that the grammar is ambiguous by constructing
three different parsing trees for the string “a&b @ a*”.

One can get rid of the ambiguity by encoding operator precedence and as-
sociativity. Let us assume that * binds more strongly than @ and ® and that
these bind more strongly than &. We also assume that @& and ® bind equally
tight and that ambiguity between these is resolved by choosing left associativity.
This means that a @ b ® ¢ should be parsed as (a ® b) ® ¢. Let us also assume
that & is right associative.

To construct an unambiguous BNF grammar for the same language do as
follows. First encode operator precedence by picking one nonterminal for each
level of operator precedence, using the given R for the least binding such level:

R=R&R|S
S=SaS|S®S|T
T=T"|U

U=(R)|al|b]ec

The idea here is that the first non-terminal is used to divide the string to be
parsed into segments divided by &, then the second non-terminal is used to
divide each of these segments into segments divided by @ and ® symbols and so
on. Note that an S cannot contain a & except if it is contained in parentheses,
and this is why the grammar encodes operator precedence.

Then encode associativity as follows

R=S&R|S (2)
S=SaT|SeT|T
T=T*|U

U=(R)|al|blc

You should check that this encodes operator associativity by checking that
a&b&c can only be parsed in one way. If an exam question asks for an un-
ambiguous grammar in BNF, then (2) is a correct answer.

The above grammar is an unambiguous grammar, but it suffers from left-
recursion, which means that it cannot be parsed using LL-parsing techniques
such as Coco-R uses. It can be parsed using LR~parsing, however. The problem
is that in the productions S = S@®T and S = S® T the same non-terminal (.5)

appears both on the left hand side of the production and as the first symbol of
the right hand side.

I will show two ways of eliminating left recursion in (2). The first uses EBNF
and is similar to what you have all done a few times in the course. The second
stays within BNF.

In EBNF we can write the following

R=S&R| S (3)
S=T{aT | T}
T=U{"}

U=(R)|al|b]|c

I would argue that it is unclear from this grammar whether & and ® are left
associative or right associative. The reason is that the most natural way of
drawing the parse tree of a & b @ c as an S starts like this

S
TeTeT
In a parser generator like Coco-R, the parse trees are really constructed in the
semantic actions (the commands between ’(.” and ’.)’). In the course we have
seen how to construct semantic actions for a grammar like (3) parsing @ and
® as left associtive, and so we consider this as encoding left associtivity. But
in general associtivity is unclear in EBNF. For example, I do not know how to
interpret a production like S = {T@®}T as left or right associative.
We can also eliminate left recursion by staying in BNF as follows

R=S&R|S (4)
S=T8

S'=aTs" | TS|

T = (R)T' | aT" | bT" | T’

T/ — *T/ ‘

(Note that there are three productions for S’ and two for T”: in both cases the
last production is empty). Again this is considered the standard solution to
encoding left associativity without left recursion, but try to construct the parse
tree for S @& S @ S - it actually unfolds to the right! Again this can be saved by
semantic actions.

Summing up: Grammar (1) is ambiguous, (2) is the result of eliminating
ambiguity not worrying about left recursion, and (3) and (4) are unambiguous
with no left recursion in EBNF and BNF respectively.

