
www.itu.dk

Introduction to Database Design

KBL chapters 1-3
Rasmus Pagh

2

Some figures are borrowed from the ppt slides from the book
used in the course, Database systems by Kiefer, Bernstein, Lewis
Copyright © 2006 Pearson, Addison-Wesley, all rights reserved.

www.itu.dk

Today's lecture

• Who are we? Why are we here?
• Overview of intended learning

outcomes.
– Introduction to the relational model.
– Brief SQL primer.

3

www.itu.dk

Who am I?

• Rasmus Pagh, associate professor.
– Office 4D26, e-mail: lastname@itu.dk

• PhD from Aarhus University, 2002.
Topic: Hashing.

• Worked at ITU since then
– Research in algorithms and data structures,

databases (indexing), and data mining.
– Previous teaching in databases and

algorithms.

4

www.itu.dk

Who are you?

• About 70% BSWU, 30% SDT.
• We are too many for a presentation

round…
• Instead: During exercises, please

spend a few minutes to talk to at least
one person that you did not know
before (good to do this in small
groups).

5

www.itu.dk

Teaching

•  Lectures, 8.00-9.50
– No preparation expected
– Problem sessions

•  Exercises, 10-12
– In 2A14 and nearby, computers in 3A50
– Current week, no preparation
– Previous week, homework

•  Project work – 4 mandatory hand-ins
(more info next week)

•  You must check the course pages in
LearnIT and itu.dk/people/pagh/idb11/
regularly for news and resources.

6

www.itu.dk

Terminology 1: Database

•  “a usually large collection of
data organized especially for
rapid search and retrieval (as by
a computer)” - from m-w.com

•  “a collection of data items
related to some enterprise” – KBL

• Other more involved queries than just
search and retrieval

7

www.itu.dk

Terminology 2: DBMS

• DataBase Management System
• Software system used when

implementing databases.
• Provides efficient, convenient, and safe

storage of, and multiuser access to
(possible massive) amounts of
persistent data.

• Supports a high-level language for
access (queries and updates) to the
data.

8

www.itu.dk

Motivation

9

www.itu.dk

Levels of data independence

10

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

Data independence example

11

Idea: Use Excel for course planning.

First try: One view.

www.itu.dk

Second try: Multiple views

12

www.itu.dk 13

Were are trying to use a data
model (spreadsheet) that does

not separate logical
organization from views on data

The result is a clash of
conflicting goals

www.itu.dk

Relational databases

•  In relational databases data is logically stored
in tables (aka. relations).

•  A table is a set of rows (aka. tuples).
•  Columns (aka. attributes) have a name and a

type.

14

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

E. F. Codd, 1970

www.itu.dk

Relational databases, cont.

•  Conceptual difference from tables in C, Java,
…: There is no order of tuples and attributes.
•  In a pure relational model, values are atomic
(think primitive type).
•  In modern relational DBMSs (object
relational): Values can be objects.

Terminology:
Relation schema: description of the columns
(names, types) of a relation
Relation instance: a relation with a specific set
of rows and named columns

15

www.itu.dk

Relation schema example

CREATE TABLE CAR (!
! Regnr VARCHAR(8),!
! Ownerid INTEGER,!
! Color VARCHAR(15))!

16

www.itu.dk

Course goal

 After the course the students should
be able to:

• suggest a database design according to
the relational model, and present it as
an SQL schema, using the concepts
key, type, and constraint.

17

www.itu.dk

Problem session

 (In small groups, about 5 minutes)

 Discuss and suggest ways to represent a
teaching plan using one or more relations.

 As we saw, using a single relation is not a
good idea:

 Can you avoid (or reduce) duplication of
information?

18

www.itu.dk

Normalization

Redundant information is a problem:
•  Extra storage
•  Hard to update

Normalization theory helps to refine the
design to get a more efficient way to
organize data in relations.

19

www.itu.dk

Course goal

 After the course the students should
be able to:

•  find functional dependencies in a
relation and perform decomposition to
eliminate unwanted dependencies.

20

www.itu.dk

E-R Modeling

21

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

Course goal

 After the course the students should
be able to:

• define a database design by E-R
modeling, using the concepts entity,
attribute, key, cardinality, and
relationship

22

www.itu.dk

SQL

• The most important programming
language for databases

• Structured Query Language (“sequel”)
• Declarative: specify what you want,

not how to get it
• SQL queries takes one or more tables

as arguments and produces a table as
a result

• Not only queries, also updates and
schema definition

23

www.itu.dk

Course goal

 After the course the students should
be able to:

• write SQL queries, involving multiple
relations, compound conditions,
grouping, aggregation, and subqueries.

24

www.itu.dk

SELECT statement

SELECT Id, Name
FROM STUDENT
WHERE Status=‘Senior’

25

Figures: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT Name
FROM STUDENT
WHERE Id=987654321

returns a table with one row and one column

26

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT *
FROM STUDENT
WHERE Id=987654321

returns a table with one row and all 4 columns

27

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

* means “all columns” - but is
not a “wildcard” character

www.itu.dk

SELECT statement

SELECT COUNT(*)
FROM STUDENT
WHERE Status=‘Senior’

returns a table with the value 2, i.e. #rows with ‘Senior’
COUNT is an aggregate function

28

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT *
FROM STUDENT
WHERE Id<66666666 AND NOT (Status=’Senior’)

returns a table with three rows
A condition in WHERE can be any Boolean expression

29

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

More general form of SELECT

Suppose:
– A1, A2, … are column names,
– R1, R2, … are tables,
– <condition> is a boolean expression

involving columns from R1, R2, …

Then:
 SELECT A1,A2,…!
! FROM R1,R2,…!
! WHERE <condition>!
returns the subset of the cartesian product of

R1, R2, … that satisfy <condition>.

30

www.itu.dk

Integrity constraint

• An integrity constraint is a statement
about legal instances of a database

• Examples:
– All students have unique ids (a key)
– A student can’t change status from senior

to freshman
– Enrolment date is before graduation date

31

www.itu.dk

Key constraints, definition

A key constraint key(K) associated with a
relational schema S, consists of a subset K of
attributes in S satisfying:

Uniqueness property:
No instance of S contains a pair of distinct tuples
whose values agree on all the attributes in K.

SQL allows specifiction of key constraints. One
key is declared to be primary key.

32

www.itu.dk

SQL key example

CREATE TABLE CAR (!
! Regnr VARCHAR(8) NOT NULL,!
! Ownerid INTEGER,!
! Color VARCHAR(15),!
! PRIMARY KEY (Regnr),!
! UNIQUE (Ownerid, Color))!

Here we assume that one person can
only have one car of each color.

33

www.itu.dk

SQL: CHECK

CREATE TABLE CAR (!
! Regnr VARCHAR(8) NOT NULL,!
! Ownerid INTEGER,!
! Color VARCHAR(15),!
! PRIMARY KEY (Regnr),!
! CHECK (Ownerid>999 AND NOT Color=‘Lilac’))!

Two semantic constraints that say that Ownerids
always have at least 4 digits and that cars can
not be lilac.

Note: CHECK is not implemented in MySQL.

34

www.itu.dk

Referential integrity

Referential integrity:
“When a tuple has a reference to another
tuple, then the referenced tuple must exist.”

STUDENT(Id:INT, Name:STRING)!
Key:{Id}!

TRANSCRIPT(StudId:INT, CrsCode:STRING, Grade:STRING)!
Key:{StudId,CrsCode}!

Often the referenced value is the primary key (a
foreign key).

35

www.itu.dk

Foreign key constraint

All non-null values of a foreign key must
exist in the referenced table. SQL syntax:

FOREIGN KEY StudID references STUDENT(id)!

36

Figure: Copyright © 2006 Pearson
 Addison-Wesley. All rights
reserved.

www.itu.dk

Maintaining integrity

What happens when a referenced tuple in
STUDENT is changed or deleted?

Three options:
SET NULL: Set reference to NULL !
NO ACTION: Update or delete rejected!
CASCADE: Delete/update the reference!

37

www.itu.dk

Problem session

Consider the following relations:
•  PERSON(Cpr,Name,Birthday)!
•  ADDRESS (Id,Street,Number,Zip,City)!
•  LIVESAT(Cpr,AddressId)!
•  PHONE(SubCpr,Number,Type,AddressId)!

What are (probably) the keys?
What are suitable primary/foreign keys?
What should happen when an address is

deleted?

38

www.itu.dk

Course goal

 After the course the students should
be able to:

• express simple relational expressions
using the relational algebra operators
select, project, join, intersection, union,
set difference, and cartesian product.

39

www.itu.dk

Relational algebra

The mathematical basis of SQL.

SQL expressions can be translated into
relational algebra expressions and vice
versa.

40

SELECT Lastname, Regnr, Color
FROM Car, Owner
WHERE Id=Ownerid AND Color=‘Pink’

www.itu.dk

Relational algebra

SQL is declarative (what)
Relational algebra is procedural (how)

The DBMS translates SQL to relational
algebra.

The query optimizer translates the
expression to an equivalent expression
that can be evaluated more efficiently.

41

www.itu.dk

Course goals

 After the course the students should
be able to:

• decide if a given index is likely to
improve performance for a given query.

42

www.itu.dk

Transaction

A transaction is a sequence of operations on a
database that belong together.
Useful when multiple users update the database
in parallel.

Example:
Two persons with a shared bank account try to
withdraw 100 kr at the same time.
Transaction:
1) read balance and store in variable B
2) if B>=100 then B:=B-100
3) write B to balance

43

www.itu.dk

ACID Properties

Atomicity: A transaction runs to
completion or has no effect at all

Consistency: After a transaction
completes, the integrity constraints are
satisfied

Isolation: Transactions executed in
parallel has the same effect as if they
were executed sequentially

Durability: The effect of a committed
transaction remains in the database
even if the computer crashes.

44

www.itu.dk

Course goals

 After the course the students should
be able to:

•  identify possible problems in
transaction handling, related to
consistency,
atomicity, and isolation.

• apply a simple technique for avoiding
deadlocks

45

www.itu.dk

Course goals

 After the course the students should
be able to:

• use SQL in applications (Java).

46

www.itu.dk

Course goals

• write simple XML Schemas and simple
Xquery expressions.

• explain the meaning of a DTD, and the
effect of simple XSLT transformations.

47

www.itu.dk

XML

• eXtensible Markup Language
• A format for semistructured data
• Framework for defining markup

languages
• Resembles HTML, but “you decide the

tags”
• XML describes any content, while HTML

describes appearance

48

www.itu.dk

XML example

<dictionary>!
! <entry id=31> !
! ! <word>banana</word>!
! ! <meaning>yellow fruit</meaning>!
! </entry>!
! <entry id=83>!
! ! <word>milk</word>!
! ! <meaning>white fluid</meaning>!
! </entry>!
</dictionary>!

49

www.itu.dk

XML Schema

Data definition language for XML
documents, i.e. describes the structure of
an XML document.

Describes tag names and types,
constraints and more.

DTD is another (more limited) data
definition language for XML documents.

50

www.itu.dk

XQuery

A query language for XML.

Similar to SQL:

 FOR variable declaration!
! WHERE condition!
! RETURN result!

New: “Path expressions” are used to
extract data from the XML document.

51

www.itu.dk

Next steps…

• Exercises today:
– Databases without a DBMS.
– Modeling exercise.

• Lecture next week:
– E-R modeling

52

