
Introduction to Database Design

Query processing

Rasmus Pagh

Literature: KBL 10 and 12.2

1

Introduction to Database Design 2

Today’s lecture

• Strategies for query evaluation, by
example.

• DBMS query evaluation algorithms."
•  A primer on query optimization"
•  Making use of this knowledge:"

– Schema tuning"

Introduction to Database Design

Recap: Indexing

• The choice of whether to use an index
is made by the DBMS for every
instance of a query
– May depend on query parameters
– Don’t have to take indexes into account

when writing queries

• Clustering indexes store tuples that
match a range condition together.
– Only primary indexes can be clustering.

• Some queries can be answered looking
only at the index (”covering index”).

3

Introduction to Database Design 4

Query optimization, query tuning

• Query optimization is the process
where the DBMS tries to find the ”best
possible” way of evaluating a given
query.

• Standard approach builds on finding a
”good” relational algebra expression
and then choosing how and in what
order the operations are to be
executed.

• Query tuning is a ”manual” effort to
make query execution faster.

Introduction to Database Design 5

Query evaluation in a nutshell
• SQL can be rewritten to (extended)

relational algebra
• The building blocks in DBMS query

evaluation are algorithms that
implement relational algebra operations.

• May be based on:
– sorting (quicksort is bad!),
– hashing, or
– using existing indexes

• The DBMS knows the characteristics of
each approach, and attempts to use the
best one in a given setting.

Introduction to Database Design

Query plans in MySQL

• EXPLAIN <Query>!
• Always sequence of ”select types”

– Simple (part of outermost SELECT)
– Derived (=subquery)
– Dependent subquery (=correlated subquery) …

• Specification of algorithms used:
– ref (eq_ref): select or index nested loop join

using (primary) index
– range: index is used for range query
– index: index-only (covering index) evaluation
– index_merge: RowID intersection
– ALL: full table scan …

6

Introduction to Database Design

Example 1

SELECT title !
FROM (SELECT *!
 FROM Movie!
 WHERE studioName = 'Disney')!
WHERE year = 1990;!

Possible strategies:
1.  Make a scan of the whole relation.
2.  If possible: Find Disney movies using index,

then filter.
3.  If possible: Find movies from 1990 using

index, then filter.
4.  If possible: Find movies from 1990 and their

titles by an index lookup.

7

Introduction to Database Design

Example 2

SELECT *!
FROM Movie M, Producer P!
WHERE M.year=2011 AND!
 P.birthdate<’1940-01-01’ AND  
M.producer = P.id;  

Possible strategies:
1.  Use index to find 2011 tuple, use index to

find matching tuples in Producer.
2.  Use index to find producers born before

1940, use index to find matching movies.
3.  Compute join of Movie and producer, then

filter.

8

Introduction to Database Design

Problem session

SELECT * FROM Movie!
WHERE studioName LIKE 'D%' AND  
 year>1980 AND year<1990;!

• Suppose there are indexes on both
studioName and year.

• What are possible evaluation
strategies?

9

Introduction to Database Design 10

Relational algebra operations

• Relational DBMSs compute query
results by performing a sequence of
relational algebra operations:
– Selections (σ)
– Projections (π)
– Joins ()
– Groupings and aggregations (γ)
– Set operations (∪,∩,-)
– Duplicate elimination (δ)

• We review how to perform each single
operation.

Introduction to Database Design 11

Selection

•  We consider the conjunction (”and”) of
a number of equality and range
conditions.

•  Two main cases:
–  No relevant index. (What is that?)

In this case, a full table scan is required.
–  One or more relevant indexes.

a) There is a highly selective condition with a
matching index.

b) No single condition matching an index is highly
selective.

Introduction to Database Design 12

Using a highly selective index

•  Basic idea:
–  Retrieve all matching tuples (few)
–  Filter according to remaining conditions

•  If index is clustered or covering:
Retrieving tuples is particularly efficient,
and the index does not need to be
highly selective.

Introduction to Database Design 13

Using several less selective indexes

• For several conditions C1, C2,...
matched by indexes:
– Retrieve the RIDs Ri of tuples matching Ci.
– Compute the intersection R=R1∩R2∩...
– Retrieve the tuples in R (in sorted order).

• Remaining problem:
– How can we estimate the selectivity of a

condition? Of a combination of conditions?
– More on this in ”Database Tuning”.

Introduction to Database Design 14

Operations that require grouping

• Many operations are easy to perform
once the involved tuples (in one or
more relations) are grouped according
to the values of some attribute(s):
– Projections (group by output attributes)
– Join with equality condition (group by join

attributes)
– Groupings and aggregations (obvious)
– Set operations (group by all attributes)
– Duplicate elimination (group by all

attributes)

Introduction to Database Design 15

Sort-based grouping

Usual sorting algorithms are not
optimized for large data sets.

Need to limit the number of times data is
read/written to address I/O bottleneck.

Two-pass merge sort:
•  Read chunks of data into memory, and

output each in sorted order.
•  Merge all chunks, keeping one block

from each in RAM.

Introduction to Database Design

Hash-based grouping

• Split data into many chunks based on
hash value of grouping attribute(s).

• Read one chunk into memory at a time
(assuming it fits), and perform
grouping.

16

Introduction to Database Design 17

Pros and cons

• Sorting-based grouping is
deterministic, i.e., no chance of bad
behaviour.

• Sorting-based grouping outputs the
result in sorted order
– For union, intersection, and projection we

may freely choose the order.

• Hashing-based grouping uses less
memory for joins if one relation is
smaller than the other.

Introduction to Database Design 18

Index nested loop join

•  If there is an index that matches the
join condition, the following algorithm
can be considered:
– For each tuple in R1, use the index to locate

matching tuples in R2.

• Better than grouping if |R1| is small
compared to #disk blocks of R2.
– MySQL currently implements only this join

algorithm and a naive alternative.
•  If many tuples match each tuple, a

clustered or covering index is preferable.

Introduction to Database Design

Indexes affect join order

• Flights from South America today:
select region, count(*)  
from flights,country,city  
where dep=city and city.country=country.country
and region='SA’ and  
start_op<='2011-10-11' and end_op>='2011-10-11';!

• With only primary key indexes:
– Must start with flights (date condition), then

join city, then join country (use region=‘SA’).

• With indexes on city(country) and
flights(dep) the “reverse” order can
be used.
– May mean less data is considered.

19

Introduction to Database Design

Next: tuning

Two main techniques:
• Adding indexes (already discussed)

– Distinction between primary and secondary
indexes.

– Used for selection, and for index nested
loop join.

– Some queries can be evaluated using an
index only.

• Changing the schema/physical storage:
– Denormalization
– Partitioning

20

Introduction to Database Design

Denormalization

• Normalization reduces redundancy and
avoids anomalies

• Normalization can improve performance
– Less redundancy => more rows/page =>

less I/O
– Decomposition => more tables =>

more clustered indexes => smaller indexes

• The price of normalization:
– Need to do more joins.
– Fewer indexing possibilities.

21

Introduction to Database Design

Denormalization and indexing

• Customer(cno,name,country,type)!
• Invoice(ino,cno,amount,country)!

• Can make a covering index on
Invoice(country,amount,cno,ino).

22

redundant
attribute

Introduction to Database Design

 Partitioning of Tables

• A table might be a performance
bottleneck
– If it is heavily used, causing locking

contention (next week)
– If it’s index is deep (table has many rows or

search key is wide), increasing I/O
– If rows are wide, increasing I/O

• Table partitioning might be a solution to
this problem

23

Introduction to Database Design

Horizontal Partitioning

•  If accesses are confined to disjoint subsets
of rows, partition table into smaller tables
containing the subsets
–  Geographically (e.g., by state), organizationally

(e.g., by department), active/inactive (e.g.,
current students vs. grads)

• Advantages:
– Spreads users out and reduces contention
– Rows in a typical result set are concentrated in

fewer pages
• Disadvantages:

– Added complexity
– Difficult to handle queries over all tables

24

Introduction to Database Design

Vertical Partitioning

• Split columns into two subsets, replicate
key

• Useful when table has many columns and
– it is possible to distinguish between frequently

and infrequently accessed columns
– different queries use different subsets of

columns
• Example: Employee table

– Columns related to compensation (tax,
benefits, salary) split from columns related to
job (department, projects, skills).

• DBMS trend (analytics): Column stores,
where full vertical partitioning is done.

25

Introduction to Database Design

Conclusion

This lecture was related to 1 course goal:

 After the course the student should be
able to decide if a given index is likely
to improve performance for a given
query.

Also appetizer for database specialization:
- Database tuning (spring semesters)
- Building database systems (fall semesters)

26

4 x 7.5 ECTS

