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Mid-term evaluation 

• Thanks to those who participated! 

• Points (within my control): 
– Increase speech volume in lectures 
– Oral feedback on hand-ins 
– Discussion/feedback on old exercises 
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Today’s lecture 

• Transactions: Motivation 
• Conflicts and serializability 
• Locking 
•  Isolation levels in SQL 
• A surprise! 
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Transaction 

A transaction is a sequence of operations on a 
database that belong together. 

Examples: 
•  Two persons with a shared bank account try to 
withdraw 100 kr at the same time.  

1.  read balance and store in variable B  
2.  if B>=100 then B:=B-100 
3.  write B to balance 

•  Table A refer to table B, and vice versa. 
–  Consistency (referential integrity) can only be 
assured if two insertions happen “simultaneously”.   
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Transactions in JDBC 

• conn.setAutoCommit(false);  
// Disable automatic commit after 
each statement"

• conn.commit();  
// Commit all pending updates"

• conn.rollback();  
// Abort all pending updates"
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Another example, in SQL 
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Course goals 

 After the course the students should 
be able to: 
– identify possible problems in transaction 

handling, related to consistency,  
atomicity, and isolation. 

– apply a simple technique for avoiding 
deadlocks 
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ACID Properties 

Atomicity: Each transaction runs to 
completion or has no effect at all 

Consistency: After a transaction 
completes, the integrity constraints are 
satisfied 

Isolation: Transactions executed in 
parallel have the same effect as if they 
were executed sequentially 

Durability: The effect of a committed 
transaction remains in the database 
even if the computer crashes. 
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Durability in a nutshell 

• There exist disk systems that are highly 
reliable (e.g. still functions if one or two 
disks fail). 
– Trade-off: Redundancy vs reliability 

• A database transaction is only really 
committed when the actions made by 
the transaction have all been written to 
the log on disk. 
– In case of crash, the log is used to reverse 

the state to the one implied by committed 
transactions. 

• More info in KBL section 13.2. 
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Today: Atomicity and isolation 

• This lecture is mainly concerned with 
atomicity and isolation. 

• Consistency is a consequence of 
atomicity and isolation + maintaining 
any declared DB constraint (not 
discussed in this course). 
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Isolation and serializability 

• Want transactions to satisfy serializability: 
– The state of the database should always look 

as if the committed transactions ran in a serial 
schedule. 

• The scheduler of the DBMS is allowed to 
choose the order of transactions: 
– It is not necessarily the transaction that is 

started first, which is first in the serial 
schedule. 

– The order may even look different from the 
viewpoint of different users. 

– Demo in MySQL… 
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A simple scheduler  

• A simple scheduler would maintain a 
queue of transactions, and carry them 
out in order. 

• Problems: 
– Transactions have to wait for each other, 

even if unrelated (e.g. requesting data on 
different disks). 

– Possibly smaller throughput. (Why?) 
– Some transactions may take very long, e.g. 

when external input or remote data is 
needed during the transaction. 
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A simple scheduler  

• A simple scheduler would maintain a 
queue of transactions, and carry them 
out in order. 

• Some believe this is fine for transaction 
processing: 
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Interleaving schedulers 

• Most DBMSs have schedulers that allow 
the actions of transactions to 
interleave. 

• However, the result should be as if 
some serial schedule was used. 

• Such schedules are called serializable. 
•  In practice schedulers do not recognize 

all serializable schedules, but allow just 
some.  
Next: Conflict serializable schedules. 
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Simple view on transactions 

• We regard a transaction as a sequence 
of reads and writes of DB elements, 
that may interleave with sequences of 
other transactions.  

• DB elements could be e.g. a value in a 
tuple, an entire tuple, or a disk block. 

•  rT(X), shorthand for ”transaction T 
reads database element X”. 

• wT(X), shorthand for ”transaction T 
writes database element X”. 
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Conflicts 

• The order of some operations is of no 
importance for the final result of 
executing the transactions. 

• Example: We may interchange the 
order of any two read operations 
without changing the behaviour of the 
transactions doing the reads. 

•  In other cases, changing the order may 
give a different result - there is a 
conflict. 
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What operations conflict? 

•  It can easily be seen that two 
operations can conflict only if: 
– They involve the same DB element, and 
– At least one of them is a write operation. 

• Note that this is a conservative, but 
safe, rule. 

   rT1(A) wT1(A) 

rT2(A) rT2(A) 

time 
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Conflict serializability 

• Suppose we have a schedule for the 
operations of several transactions. 

• We obtain conflict-equivalent schedules 
by swapping adjacent operations that 
do not conflict (any number of times). 

•  If a schedule is conflict-equivalent to a 
serial schedule, it is serializable. 
– The converse is not true. 

•  (Aside: Testing conflict serializability 
amounts to checking for cycles in the 
”conflict graph”.)  
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Enforcing serializability 

• Knowing how to recognize conflict-
serializability is not enough. 

• We will now study a mechanism that 
enforces serializability: Locking. 

• Other methods exist: Time stamping / 
optimistic concurrency control. 
– Out of scope for this course. 
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Locks 

•  In its simplest form, a lock is a right to 
perform operations on a database 
element. 

• Only one transaction may hold a lock 
on an element at any time. 

• Locks must be requested by 
transactions and granted by the locking 
scheduler. 
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Two-phase locking 

• Commercial DBMSs widely use two-
phase locking, satisfying the condition: 
– In a transaction, all requests for locks 

precede all unlock requests. 

•  If two-phase locking (2PL) is used, the 
schedule is conflict-equivalent to a 
serial schedule in which transactions 
are ordered according to the time of 
their first unlock request. (Why?) 
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Strict two-phase locking 

•  In strict 2PL all locks are released 
when the transaction completes. 

• This is commonly implemented in 
commercial systems, since: 
– it makes transaction rollback easier to 

implement, and 
– avoids so-called cascading aborts (this 

happens if another transaction reads a 
value by a transaction that is later rolled 
back) 
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Lock modes 

• The simple locking scheme we saw is 
too restrictive, e.g., it does not allow 
different transactions to read the same 
DB element concurrently. 

• Idea: Have several kinds of locks, 
depending on what you want to do. 
Several locks on the same DB element 
may be ok (e.g. two read locks). 
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Lock requested 

Lock held 

S X 

S Yes No 

X No No 

Shared and exclusive locks 

• Locks for reading can be shared (S). 
• Locks needed for writing must be 

exclusive (X). 
• Compatibility matrix says which locks 

are granted: 
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Locks via B-trees 

•  If it is known that tuples in a relation 
are only accessed through a B-tree 
structure, an efficient way of locking 
many tuples (e.g. in a range) is to lock 
the corresponding B-tree nodes. 

• This is known as index locking. 
– MySQL manual: ”A locking read, an 

UPDATE, or a DELETE generally set record 
locks on every index record that is scanned 
in the processing of the SQL statement.” 
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Phantom tuples 

• Suppose we lock tuples where A=42 in 
a relation, and subsequently another 
tuple with A=42 is inserted. 

• For some transactions this may result 
in unserializable behaviour, i.e., it will 
be clear that the tuple was inserted 
during the course of a transaction. 

• Such tuples are called phantoms. 
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Avoiding phantoms 

• Phantoms can be avoided by putting an 
exclusive lock on a relation before 
adding tuples. 
– However, this gives poor concurrency. 

•  Index locking can be used to prevent 
other transactions from inserting 
phantom tuples, but allow most non-
phantom insertions. 

•  In SQL, the programmer may choose to 
either allow phantoms in a transaction 
or insist they should not occur. 
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SQL isolation levels 

• A transaction in SQL may be chosen to 
have one of four isolation levels: 
– READ UNCOMMITTED: Dirty reads are possible. 
– READ COMMITTED: Dirty reads are not 

permitted (but nonrepeatable reads and 
phantoms are possible). 

– REPEATABLE READ: Nonrepeatable and dirty 
reads are not permitted (but phantoms are 
possible). 

– SERIALIZABLE: Transaction execution must be 
serializable (above anomalies not allowed). 



Introduction to Database Design 30 

SQL isolation levels 

• Possible implementations: 
– READ UNCOMMITTED:  

”No locks are obtained.” 
– READ COMMITTED:  

”Read locks are immediately released - 
read values may change during the 
transaction.” 

– REPEATABLE READ: 
”2PL but no lock when adding new tuples.” 

– SERIALIZABLE: 
”2PL with lock when adding new tuples.” 
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Problem session 
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Isolation level syntax 

• Begin transaction with: 

SET TRANSACTION ISOLATION LEVEL  
{ READ UNCOMMITTED |  
  READ COMMITTED |  
  REPEATABLE READ |  
  SERIALIZABLE } "
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ACID testing MySQL 

• Most storage engines are made with 
only very simple concurrency control in 
mind. 

•  InnoDB (default engine) supports the 
standard SQL isolation concurrency 
control features, and more. 

• Beware: Using SQL isolation levels with 
another storage engine may have no 
effect (except perhaps a warning). 
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Be careful with SERIALIZABLE 

• Some common implementations of 
”SERIALIZABLE” allows, e.g., the 
following: 
– Suppose we have a relation R with a tuple 

for each reserved seat in a plane. 
– Transactions A and B simultaneously read R 

and find that seat 13A is free. 
– Transaction A and B both insert a tuple 

indicating that seat 13A has been booked. 
• Such conflicts can be stopped by a lock 

or by a database constraint. 
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Explicit row locking 

• Many DBMSs allow transactions to 
explicitly lock a set of tuples. 

• Example: 
SELECT * FROM seats  
WHERE seat = ’13A’  
FOR UPDATE;"

• Can be used to control a resource, e.g. 
the right to insert a reservation tuple 
for seat 13A in another table. 
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Snapshot isolation 

• Some DBMSs implement snapshot 
isolation, an isolation level that gives 
a stronger guarantee than READ 
COMMITTED. 

• MySQL/InnoDB:  
START TRANSACTION WITH CONSISTENT SNAPSHOT;"

• Each transaction T executes against 
the version of the data items that was 
committed “when the T started”. 

• Possible implementation: 
– No locks for read, locks for writes. 
– Store old versions of data (costs 

space). 
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Granularity of locks 

• So far we did not discuss what DB 
elements to lock: Atomic values, 
tuples, blocks, relations? 

• What are the advantages and 
disadvantages of fine-grained locks 
(such as locks on tuples) and coarse-
grained locks (such as locks on 
relations)? 

• The following advice can be found in 
the book by Shasha and Bonnet: 
”Long transactions should use table locks, 
short transactions should use record locks”. 
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Granularity of locks 

• Fine-grained locks allow a lot of 
concurrency, but may cause problems 
with deadlocks. 

• Coarse-grained locks require fewer 
resources by the locking scheduler. 

• We want to allow fine-grained locks, 
but use (or switch to) coarser locks 
when needed. 

• Some DBMSs switch automatically - 
this is called lock escalation. The 
downside is that this easily leads to 
deadlocks. 
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Granularity in MySQL 

•  InnoDB uses row-level locking by 
default. 
– No lock escalation. 

• Table locking can be done manually: 
– LOCK TABLES T1 READ, T2 WRITE,…  
– UNLOCK TABLES 
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Locks and deadlocks 

• The DBMS sometimes must make a 
transaction wait for another transaction 
to release a lock. 

• This can lead to deadlock if e.g. A waits 
for B, and B waits for A. 

•  In general, we have a deadlock exactly 
when there is a cycle in the waits-for 
graph. 

• Deadlocks are resolved by aborting 
some transaction involved in the cycle. 
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Simple deadlock prevention 
• 2001 MySQL manual: 

• 2008 MySQL manual: 

– Explanation? Why use InnoDB and BDB? 

• Problem session: Why does ”always 
locking tables in the same order” never 
lead to deadlock? 
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Summary 

• Concurrency control mechanisms give 
various trade-offs between isolation 
and performance. 
– Safe choice is SERIALIZABLE (well…) 
– Sometimes lower SQL isolation levels 

suffice – difficult to analyze in general 
– Manual efforts may sometimes be better: 

Table locking, explicit row locking,… 
– Deadlocks happen. A simple (but brutal) 

cure is lock acquisition in fixed order. 
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Next 

• At 10.00 Michael will share some 
insights on simpler SQL for hand-in 2. 

Next week: 
• Claus Samuelsen, IBM is guest lecturer. 
• Topic: BigInsights, and more! 
• No regular exercises. But a TA will be 

available 10-12 for questions about 
hand-in 3 (remember: individual). 
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Aside: How to represent time? 

From Wikipedia: 
The standard Unix time_t is a signed integer 

data type, traditionally of 32 bits, directly 
encoding the Unix [...] The minimum 
representable time is 1901-12-13… At 
03:14:07 UTC 2038-01-19 this representation 
overflows […] year 2038 problem. 

In some newer operating systems, time_t has 
been widened to 64 bits. In the negative 
direction, this goes back more than twenty 
times the age of the universe […] whether the 
approximately 293 billion representable years 
is truly sufficient depends on the ultimate fate 
of the universe, but it is certainly adequate for 
most practical purposes. 
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