
Introduction to Database Design 2

Transactions

Rasmus Pagh

Literature: KBL 13.1
Cursory: KBL 13.2-13.3

(complete version: Digital appendix A.1)

Introduction to Database Design

Mid-term evaluation

• Thanks to those who participated!

• Points (within my control):
– Increase speech volume in lectures
– Oral feedback on hand-ins
– Discussion/feedback on old exercises

3

Introduction to Database Design 4

Today’s lecture

• Transactions: Motivation
• Conflicts and serializability
• Locking
•  Isolation levels in SQL
• A surprise!

Introduction to Database Design

Transaction

A transaction is a sequence of operations on a
database that belong together.

Examples:
•  Two persons with a shared bank account try to
withdraw 100 kr at the same time.

1.  read balance and store in variable B
2.  if B>=100 then B:=B-100
3.  write B to balance

•  Table A refer to table B, and vice versa.
–  Consistency (referential integrity) can only be
assured if two insertions happen “simultaneously”.

5

Introduction to Database Design

Transactions in JDBC

• conn.setAutoCommit(false);  
// Disable automatic commit after
each statement"

• conn.commit();  
// Commit all pending updates"

• conn.rollback();  
// Abort all pending updates"

6

Introduction to Database Design

Another example, in SQL

7

Introduction to Database Design

Course goals

 After the course the students should
be able to:
– identify possible problems in transaction

handling, related to consistency,
atomicity, and isolation.

– apply a simple technique for avoiding
deadlocks

8

Introduction to Database Design

ACID Properties

Atomicity: Each transaction runs to
completion or has no effect at all

Consistency: After a transaction
completes, the integrity constraints are
satisfied

Isolation: Transactions executed in
parallel have the same effect as if they
were executed sequentially

Durability: The effect of a committed
transaction remains in the database
even if the computer crashes.

9

Introduction to Database Design 10

Durability in a nutshell

• There exist disk systems that are highly
reliable (e.g. still functions if one or two
disks fail).
– Trade-off: Redundancy vs reliability

• A database transaction is only really
committed when the actions made by
the transaction have all been written to
the log on disk.
– In case of crash, the log is used to reverse

the state to the one implied by committed
transactions.

• More info in KBL section 13.2.

Introduction to Database Design 11

Today: Atomicity and isolation

• This lecture is mainly concerned with
atomicity and isolation.

• Consistency is a consequence of
atomicity and isolation + maintaining
any declared DB constraint (not
discussed in this course).

Introduction to Database Design 12

Isolation and serializability

• Want transactions to satisfy serializability:
– The state of the database should always look

as if the committed transactions ran in a serial
schedule.

• The scheduler of the DBMS is allowed to
choose the order of transactions:
– It is not necessarily the transaction that is

started first, which is first in the serial
schedule.

– The order may even look different from the
viewpoint of different users.

– Demo in MySQL…

Introduction to Database Design 13

A simple scheduler

• A simple scheduler would maintain a
queue of transactions, and carry them
out in order.

• Problems:
– Transactions have to wait for each other,

even if unrelated (e.g. requesting data on
different disks).

– Possibly smaller throughput. (Why?)
– Some transactions may take very long, e.g.

when external input or remote data is
needed during the transaction.

Introduction to Database Design 14

A simple scheduler

• A simple scheduler would maintain a
queue of transactions, and carry them
out in order.

• Some believe this is fine for transaction
processing:

Introduction to Database Design 15

Interleaving schedulers

• Most DBMSs have schedulers that allow
the actions of transactions to
interleave.

• However, the result should be as if
some serial schedule was used.

• Such schedules are called serializable.
•  In practice schedulers do not recognize

all serializable schedules, but allow just
some.
Next: Conflict serializable schedules.

Introduction to Database Design 16

Simple view on transactions

• We regard a transaction as a sequence
of reads and writes of DB elements,
that may interleave with sequences of
other transactions.

• DB elements could be e.g. a value in a
tuple, an entire tuple, or a disk block.

•  rT(X), shorthand for ”transaction T
reads database element X”.

• wT(X), shorthand for ”transaction T
writes database element X”.

Introduction to Database Design 17

Conflicts

• The order of some operations is of no
importance for the final result of
executing the transactions.

• Example: We may interchange the
order of any two read operations
without changing the behaviour of the
transactions doing the reads.

•  In other cases, changing the order may
give a different result - there is a
conflict.

Introduction to Database Design 18

What operations conflict?

•  It can easily be seen that two
operations can conflict only if:
– They involve the same DB element, and
– At least one of them is a write operation.

• Note that this is a conservative, but
safe, rule.

 rT1(A) wT1(A)

rT2(A) rT2(A)

time

Introduction to Database Design 19

Conflict serializability

• Suppose we have a schedule for the
operations of several transactions.

• We obtain conflict-equivalent schedules
by swapping adjacent operations that
do not conflict (any number of times).

•  If a schedule is conflict-equivalent to a
serial schedule, it is serializable.
– The converse is not true.

•  (Aside: Testing conflict serializability
amounts to checking for cycles in the
”conflict graph”.)

Introduction to Database Design 20

Enforcing serializability

• Knowing how to recognize conflict-
serializability is not enough.

• We will now study a mechanism that
enforces serializability: Locking.

• Other methods exist: Time stamping /
optimistic concurrency control.
– Out of scope for this course.

Introduction to Database Design 21

Locks

•  In its simplest form, a lock is a right to
perform operations on a database
element.

• Only one transaction may hold a lock
on an element at any time.

• Locks must be requested by
transactions and granted by the locking
scheduler.

Introduction to Database Design 22

Two-phase locking

• Commercial DBMSs widely use two-
phase locking, satisfying the condition:
– In a transaction, all requests for locks

precede all unlock requests.

•  If two-phase locking (2PL) is used, the
schedule is conflict-equivalent to a
serial schedule in which transactions
are ordered according to the time of
their first unlock request. (Why?)

Introduction to Database Design 23

Strict two-phase locking

•  In strict 2PL all locks are released
when the transaction completes.

• This is commonly implemented in
commercial systems, since:
– it makes transaction rollback easier to

implement, and
– avoids so-called cascading aborts (this

happens if another transaction reads a
value by a transaction that is later rolled
back)

Introduction to Database Design 24

Lock modes

• The simple locking scheme we saw is
too restrictive, e.g., it does not allow
different transactions to read the same
DB element concurrently.

• Idea: Have several kinds of locks,
depending on what you want to do.
Several locks on the same DB element
may be ok (e.g. two read locks).

Introduction to Database Design 25

Lock requested

Lock held

S X

S Yes No

X No No

Shared and exclusive locks

• Locks for reading can be shared (S).
• Locks needed for writing must be

exclusive (X).
• Compatibility matrix says which locks

are granted:

Introduction to Database Design 26

Locks via B-trees

•  If it is known that tuples in a relation
are only accessed through a B-tree
structure, an efficient way of locking
many tuples (e.g. in a range) is to lock
the corresponding B-tree nodes.

• This is known as index locking.
– MySQL manual: ”A locking read, an

UPDATE, or a DELETE generally set record
locks on every index record that is scanned
in the processing of the SQL statement.”

Introduction to Database Design 27

Phantom tuples

• Suppose we lock tuples where A=42 in
a relation, and subsequently another
tuple with A=42 is inserted.

• For some transactions this may result
in unserializable behaviour, i.e., it will
be clear that the tuple was inserted
during the course of a transaction.

• Such tuples are called phantoms.

Introduction to Database Design 28

Avoiding phantoms

• Phantoms can be avoided by putting an
exclusive lock on a relation before
adding tuples.
– However, this gives poor concurrency.

•  Index locking can be used to prevent
other transactions from inserting
phantom tuples, but allow most non-
phantom insertions.

•  In SQL, the programmer may choose to
either allow phantoms in a transaction
or insist they should not occur.

Introduction to Database Design 29

SQL isolation levels

• A transaction in SQL may be chosen to
have one of four isolation levels:
– READ UNCOMMITTED: Dirty reads are possible.
– READ COMMITTED: Dirty reads are not

permitted (but nonrepeatable reads and
phantoms are possible).

– REPEATABLE READ: Nonrepeatable and dirty
reads are not permitted (but phantoms are
possible).

– SERIALIZABLE: Transaction execution must be
serializable (above anomalies not allowed).

Introduction to Database Design 30

SQL isolation levels

• Possible implementations:
– READ UNCOMMITTED:

”No locks are obtained.”
– READ COMMITTED:

”Read locks are immediately released -
read values may change during the
transaction.”

– REPEATABLE READ:
”2PL but no lock when adding new tuples.”

– SERIALIZABLE:
”2PL with lock when adding new tuples.”

Introduction to Database Design

Problem session

31

Introduction to Database Design

Isolation level syntax

• Begin transaction with:

SET TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED |  
 READ COMMITTED |  
 REPEATABLE READ |  
 SERIALIZABLE } "

32

Introduction to Database Design

ACID testing MySQL

• Most storage engines are made with
only very simple concurrency control in
mind.

•  InnoDB (default engine) supports the
standard SQL isolation concurrency
control features, and more.

• Beware: Using SQL isolation levels with
another storage engine may have no
effect (except perhaps a warning).

33

Introduction to Database Design 34

Be careful with SERIALIZABLE

• Some common implementations of
”SERIALIZABLE” allows, e.g., the
following:
– Suppose we have a relation R with a tuple

for each reserved seat in a plane.
– Transactions A and B simultaneously read R

and find that seat 13A is free.
– Transaction A and B both insert a tuple

indicating that seat 13A has been booked.
• Such conflicts can be stopped by a lock

or by a database constraint.

Introduction to Database Design

Explicit row locking

• Many DBMSs allow transactions to
explicitly lock a set of tuples.

• Example:
SELECT * FROM seats  
WHERE seat = ’13A’  
FOR UPDATE;"

• Can be used to control a resource, e.g.
the right to insert a reservation tuple
for seat 13A in another table.

35

Introduction to Database Design 36

Snapshot isolation

• Some DBMSs implement snapshot
isolation, an isolation level that gives
a stronger guarantee than READ
COMMITTED.

• MySQL/InnoDB:
START TRANSACTION WITH CONSISTENT SNAPSHOT;"

• Each transaction T executes against
the version of the data items that was
committed “when the T started”.

• Possible implementation:
– No locks for read, locks for writes.
– Store old versions of data (costs

space).

Introduction to Database Design 37

Granularity of locks

• So far we did not discuss what DB
elements to lock: Atomic values,
tuples, blocks, relations?

• What are the advantages and
disadvantages of fine-grained locks
(such as locks on tuples) and coarse-
grained locks (such as locks on
relations)?

• The following advice can be found in
the book by Shasha and Bonnet:
”Long transactions should use table locks,
short transactions should use record locks”.

Introduction to Database Design 38

Granularity of locks

• Fine-grained locks allow a lot of
concurrency, but may cause problems
with deadlocks.

• Coarse-grained locks require fewer
resources by the locking scheduler.

• We want to allow fine-grained locks,
but use (or switch to) coarser locks
when needed.

• Some DBMSs switch automatically -
this is called lock escalation. The
downside is that this easily leads to
deadlocks.

Introduction to Database Design

Granularity in MySQL

•  InnoDB uses row-level locking by
default.
– No lock escalation.

• Table locking can be done manually:
– LOCK TABLES T1 READ, T2 WRITE,…
– UNLOCK TABLES

39

Introduction to Database Design 40

Locks and deadlocks

• The DBMS sometimes must make a
transaction wait for another transaction
to release a lock.

• This can lead to deadlock if e.g. A waits
for B, and B waits for A.

•  In general, we have a deadlock exactly
when there is a cycle in the waits-for
graph.

• Deadlocks are resolved by aborting
some transaction involved in the cycle.

Introduction to Database Design

Simple deadlock prevention
• 2001 MySQL manual:

• 2008 MySQL manual:

– Explanation? Why use InnoDB and BDB?

• Problem session: Why does ”always
locking tables in the same order” never
lead to deadlock?

41

Introduction to Database Design

Summary

• Concurrency control mechanisms give
various trade-offs between isolation
and performance.
– Safe choice is SERIALIZABLE (well…)
– Sometimes lower SQL isolation levels

suffice – difficult to analyze in general
– Manual efforts may sometimes be better:

Table locking, explicit row locking,…
– Deadlocks happen. A simple (but brutal)

cure is lock acquisition in fixed order.

42

Introduction to Database Design

Next

• At 10.00 Michael will share some
insights on simpler SQL for hand-in 2.

Next week:
• Claus Samuelsen, IBM is guest lecturer.
• Topic: BigInsights, and more!
• No regular exercises. But a TA will be

available 10-12 for questions about
hand-in 3 (remember: individual).

43

Introduction to Database Design

Aside: How to represent time?

From Wikipedia:
The standard Unix time_t is a signed integer

data type, traditionally of 32 bits, directly
encoding the Unix [...] The minimum
representable time is 1901-12-13… At
03:14:07 UTC 2038-01-19 this representation
overflows […] year 2038 problem.

In some newer operating systems, time_t has
been widened to 64 bits. In the negative
direction, this goes back more than twenty
times the age of the universe […] whether the
approximately 293 billion representable years
is truly sufficient depends on the ultimate fate
of the universe, but it is certainly adequate for
most practical purposes.

44

