
Introduction to Database Design

XML and Xpath

Literature: KBL 17.1-17.2.3, 17.4

Rasmus Pagh

2

Introduction to Database Design

Serialization

• How to store information in serial form
(e.g. in a file, or for transmission)?
– Relations can be stored using comma-

separated values (CSV), or similar.
– Ad-hoc formats (e.g. most older text

processing and spreadsheet formats)
– Grammar-based formats: E.g. programs,

human-edited data files (IMDB), …
• BSWU: More in ”Programmer som data”.

– …

3

Introduction to Database Design

Formats are controversial

4

“You sent the attachment in Microsoft
Word format, a secret proprietary
format, so I cannot read it. If you send
me the plain text, HTML, or PDF, then I
could read it.”

Richard L. Stallman

Introduction to Database Design

Formats are controversial

5

From Wikipedia:

…
…

Introduction to Database Design

The dream…

•  http://www.youtube.com/watch?v=6ptQGX__rd0

6

One universal standard for communication

Introduction to Database Design

The format zoo

• Not all data is in relational databases!
– Files (.txt, .html, .doc, .xls, .cs, .jar, .ser,…)
– Services (e.g. web servers, file transmission)
– Software-to-software communication
– Data streams (e.g. audio/video streams)

• Useful with a framework:
– Gives common language for describing data.
– Allows common tools (akin to an RDBMS)

• Widespread framework: XML.

7

Introduction to Database Design

Today’s lecture

• What is an XML file?
• What are namespaces?
• XML tools, part 1:

– Parsers (SAX, DOM)
– Xpath query language

8

Introduction to Database Design

Compression

• An important aspect of serialization is
compression (want small files, fast
transmission,…)

• Traditionally, compression was often
done in ad-hoc ways (e.g. encode 8
yes/no values as 1 byte).

• Modern approaches view compression
as orthogonal to logical encoding
– Can be applied as post-processing
– Examples: jar files, docx format, …

9

Introduction to Database Design

An Introduction to XML and Web Technologies

XML Documents

the following slides are based on slides by
Anders Møller & Michael I. Schwartzbach

© 2006 Addison-Wesley

Introduction to Database Design 11

What is XML?

•  XML: Extensible Markup Language
•  A framework for defining “markup

languages” (e.g. (X)HTML)
•  Each language is targeted at its own

application domain with its own markup
tags

•  There is a common set of generic tools
for processing XML documents

•  Inherently internationalized and
platform independent (Unicode)

• Developed by W3C, standardized in 1998

Introduction to Database Design

xkcd take on standards

12

Introduction to Database Design 13

Case study: Recipes in XML

• Define our own “Recipe Markup
Language”

• Choose markup tags that correspond to
concepts in this application domain
– recipe, ingredient, amount, …

Introduction to Database Design 14

Example (1/2)
<collection>

 <description>Recipes suggested by Jane Dow</description>

 <recipe id="r117">

 <title>Rhubarb Cobbler</title>

 <date>Wed, 14 Jun 95</date>

 <ingredient name="diced rhubarb" amount="2.5" unit="cup"/>

 <ingredient name="sugar" amount="2" unit="tablespoon"/>

 <ingredient name="fairly ripe banana" amount="2"/>

 <ingredient name="cinnamon" amount="0.25" unit="teaspoon"/>

 <ingredient name="nutmeg" amount="1" unit="dash"/>

 <preparation>

 <step>

 Combine all and use as cobbler, pie, or crisp.

 </step>

 </preparation>

Introduction to Database Design 15

Example (2/2)

 <comment>

 Rhubarb Cobbler made with bananas as the main sweetener.

 It was delicious.

 </comment>

 <nutrition calories="170" fat="28%"

 carbohydrates="58%" protein="14%"/>

 <related ref="42">Garden Quiche is also yummy</related>

 </recipe>

</collection>

Many web browsers are good XML viewers

Introduction to Database Design 16

XML Trees

• Conceptually, an XML document is a
tree structure
– node, edge
– root, leaf
– child, parent
– sibling (ordered),

ancestor,
descendant

• Terminology:
element = node

Introduction to Database Design 17

An Analogy: File Systems

Introduction to Database Design 18

Tree View of the XML Recipes

Introduction to Database Design

XML parsers

• A basic tool for processing XML is a
parser that reads well-formed XML and
presents it in a way that makes it easy to
work with.

• Two main types:
– Event-driven (SAX API): simply reports the

tags it sees (may call user-defined methods).
– Parse tree (DOM API): construct a ”parse

tree” of the XML document.

19

Introduction to Database Design 20

Node types in XML trees

• Text nodes: written as the text they
carry

• Element nodes: start-end tags
–  <bla ...> ... </bla>
–  short-hand notation for empty elements:
<bla/>

• Attribute nodes: name=“value” in
start tags

• Comment nodes: <!-- bla -->
• Processing instructions:
<?target value?>

Introduction to Database Design 21

Well-formedness

• Every XML document must be well-
formed
– start and end tags must match and nest

properly
•  <x><y></y></x>
•  </z><x><y></x></y>

– exactly one root element
– ...

•  in other words, it defines a proper tree
structure

Introduction to Database Design 22

Example: XHTML

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>Hello world!</title></head>
 <body>
 <h1>This is a heading</h1>
 This is some text.
 </body>
</html>

Introduction to Database Design

Problem session

• Think about how one would represent a
general XML document in a relational
database.

• Come up with at least one natural
query on XML data that would be
difficult to write using standard SQL.

23

Introduction to Database Design 24

XML Namespaces

•  When combining languages, element names may
become ambiguous!

<widget type="gadget">
 <head size="medium"/>
 <big><subwidget ref="gizmo"/></big>
 <info>
 <head>
 <title>Description of gadget</title>
 </head>
 <body>
 <h1>Gadget</h1>
 A gadget contains a big gizmo
 </body>
 </info>
</widget>

Introduction to Database Design 25

The Idea

• Assign a URI to every (sub-)language
e.g. http://www.w3.org/1999/xhtml
for XHTML 1.0

• Qualify element names with URIs:

{http://www.w3.org/1999/xhtml}head!

Introduction to Database Design 26

The Actual Solution

• Namespace declarations bind URIs to
prefixes

<... xmlns:foo="http://www.w3.org/TR/xhtml1">
 ...
 <foo:head>...</foo:head>
 ...
</...>

• Lexical scope (like java and C#)
• Default namespace (no prefix) declared

with xmlns="...“
• Attribute names can also be prefixed

Introduction to Database Design 27

Widgets with Namespaces

<widget type="gadget" xmlns="http://www.widget.inc">
 <head size="medium"/>
 <big><subwidget ref="gizmo"/></big>
 <info xmlns:xhtml="http://www.w3.org/TR/xhtml1">
 <xhtml:head>
 <xhtml:title>Description of gadget</xhtml:title>
 </xhtml:head>
 <xhtml:body>
 <xhtml:h1>Gadget</xhtml:h1>
 A gadget contains a big gizmo
 </xhtml:body>
 </info>
</widget>

Introduction to Database Design

An Introduction to XML and Web Technologies

The XPath Language

the following slides are based on slides by
Anders Møller & Michael I. Schwartzbach

© 2006 Addison-Wesley

Introduction to Database Design 29

XPath Expressions

• Flexible notation (a simple query language)
for navigating around trees

• A basic technology that is widely used in
other XML languages (e.g. XSLT and
XQuery).

• Simple Xpath expression similar to ways of
listing files:
– /teaching/*/*/recipes!
– /teaching/*/xml/../pensum!

Introduction to Database Design 30

Xpath Location Paths

• A location path evaluates to a sequence of
nodes
– Intuitively, the set of nodes that can be reached

by following the path(s) described.

• The sequence is sorted in ”document
order” (start tag position).

• The sequence will never contain
duplicates

Introduction to Database Design 31

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

Context node

Introduction to Database Design 32

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

//C

Introduction to Database Design 33

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

//C/E

Introduction to Database Design 34

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

//C/E/*

Introduction to Database Design 35

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

//C/E/*/..

E

Introduction to Database Design 36

An Example

A
B B

C

F

C

E

F F

D

E

F E

F

E F

C

//C/E/*/..[2]

E

E

Introduction to Database Design 37

Axes

• XPath expressions work by specifying a
sequence of movements along ”axes”.

• XPath supports 12 different axes
• Attribute: /@
• following
• preceding
• self
• descendant-or-self
• ancestor-or-self

• child: /
• descendant: //
• parent: ..
• ancestor
• following-sibling
• preceding-sibling

Introduction to Database Design 38

The parent Axis

Introduction to Database Design 39

The child Axis

Introduction to Database Design 40

The descendant Axis

Introduction to Database Design 41

The ancestor Axis

Introduction to Database Design 42

The following Axis

Introduction to Database Design 43

The preceding Axis

Introduction to Database Design 44

Location Steps

• XPath expressions are made of a sequence
of location steps

• A location step consists of
– an axis
– a nodetest (node name or *)
– optionally, some predicates (in square brackets)

 axis :: nodetest [Exp1] [Exp2] …

• Semantics:
– Apply the steps one at a time, starting with the

root element.
– A step produces the union of steps applied to

results of the previous step.

Introduction to Database Design 45

eXist demo

•  Install eXist XML database, or go to
http://exist.itu.dk:8080/exist/sandbox/sandbox.xql

• Upload an XML document, and start writing
Xpath / XQuery!
– Well, almost that simple…

• Example: //preparation/step[1]
(matches all first step elements inside preparation elements).

• With namespace wrapper:
declare default element namespace  
 ”http://www.brics.dk/ixwt/recipes”;  
doc("recipes.xml")//preparation/step[1]!

Introduction to Database Design

eXist tips

• For queries that return attributes, must
“wrap” the result in an XML element
(otherwise there is a silent error).

• Example:  
<a>{  
doc("recipes.xml")/(//ingredient)[4]/@name  
}!

•  If the text of an attribute is desired,
use the string() function, e.g.:
doc("recipes.xml”)//ingredient/@name/string()

46

Introduction to Database Design

Predicates, examples

• Name of ingredients measured in cups:

//ingredient[@unit='cup']/@name!

• All first ingredients:

//ingredient[1]/@name!

•  Ingredients containing ingredients:

//ingredient[//ingredient]/@name!

47

Introduction to Database Design 48

Predicates

• Can be general XPath expressions – result
converted into a boolean.

• Evaluated with the current node as context
• Result is coerced into a boolean

– a number yields true if it equals the context
position

– a string yields true if it is not empty
– a sequence yields true if it is not empty

Introduction to Database Design

Problem session

• Consider the recipe collection. Write
Xpath for:
– Finding the name

of all ingredients.
– Finding the ingred.

names for
Rhubarb Cobbler.

– Finding the titles
of recipes that
contain sugar.

49

<collection>

 <description>Recipes suggested by Jane Dow</description>

 <recipe id="r117">

 <title>Rhubarb Cobbler</title>

 <date>Wed, 14 Jun 95</date>

 <ingredient name="diced rhubarb" amount="2.5" unit="cup"/>

 <ingredient name="sugar" amount="2" unit="tablespoon"/>

 <ingredient name="fairly ripe banana" amount="2"/>

 <ingredient name="cinnamon" amount="0.25" unit="teaspoon"/>

 <ingredient name="nutmeg" amount="1" unit="dash"/>

 <preparation>

 <step>

 Combine all and use as cobbler, pie, or crisp.

 </step>

 </preparation>

Introduction to Database Design 50

Value Comparison

• Operators: eq, ne, lt, le, gt, ge
• Natural semantics when used on atomic

values

8 eq 4+4

(//rcp:ingredient)[1]/@name eq ”beef cube steak”

• Two XML elements can be compared for
equality using the is operator.

Introduction to Database Design 51

General Comparison

• Operators: =, !=, <, <=, >, >=
• When used on a sequence of atomic values:

– if there exists two values, one from each
argument, where the comparison holds, the
result is true

– otherwise, the result is false

8 = 4+4

(1,2) = (2,4)

//rcp:ingredient/@name = ”salt”

Introduction to Database Design 52

Be Careful About Comparisons

((//rcp:ingredient)[4]/@name,(//rcp:ingredient)[4]/@amount) eq

(//rcp:ingredient)[5]/@name, (//rcp:ingredient)[5]/@amount))

Yields false, since the arguments are not singletons

((//rcp:ingredient)[40]/@name, (//rcp:ingredient)[41]/@amount) =

((//rcp:ingredient)[53]/@name, (//rcp:ingredient)[54]/@amount

Yields true, since two names are found to be equal

((//rcp:ingredient)[4]/@name, (//rcp:ingredient)[4]/@amount) is

((//rcp:ingredient)[5]/@name, (//rcp:ingredient)[5]/@amount)

Yields a runtime error, since the arguments are not singletons

Introduction to Database Design 53

XPath violates usual math rules

• Reflexivity?
 ()=() yields false

• Transitivity?
 (1,2)=(2,3), (2,3)=(3,4), not (1,2)=(3,4)

• Anti-symmetry?
 (1,4)<=(2,3), (2,3)<=(1,4), not (1,2)=(3,4)

• Negation?
 (1)!=() yields false, (1)=() yields false

Introduction to Database Design 54

Functions

• XPath has an extensive function library,
Examples: fn:count and fn:not.

• Default namespace for functions:
 http://www.w3.org/2006/xpath-functions

• 106 functions are required.

• Overview of functions:
http://www.w3schools.com/Xpath/xpath_functions.asp!

Introduction to Database Design
55

for expressions

• Collects results using iteration. E.g.:
 for $r in //rcp:recipe

 return fn:count($r//rcp:ingredient[fn:not(rcp:ingredient)])

 returns the value
 11, 12, 15, 8, 30

• The expression
for $i in (1 to 5)

 for $j in (1 to $i)

 return $j

 returns the value
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5

Introduction to Database Design

XML/relational integration

• The easy part: Import/export relations
in XML format.
– Most DBMSs do this, MySQL from ver. 5.1.

• Harder: Support XML as a data type.
– Easier way: XML is a string (MySQL)
– Harder way: ”Native” support

• Hardest: Integrate SQL and (e.g.) Xpath
– Proposed mechanism: SQL/XML
– Rival (?): Xquery (SQL-like XML queries,

next week)

56

Introduction to Database Design

XML in MySQL

• Support for a limited subset of XPath.
• XML is treated as text values, queried

through the function ExtractValue
(which returns a string).

• Example:
select id,ExtractValue(descr,'//rcp:title')
from recipelist;!

• XML as an export format: Will be used
in last hand-in (due in 2 weeks).

57

Introduction to Database Design

Summary

• XML is a framework for representing
data in a ”markup language”.

• Namespaces is a mechanism for
making element names globally unique.

• XML comes with a number of tools:
– Parsers (SAX, DOM)
– XPath interpreters (used as sublanguage)
– More next week…

58

Introduction to Database Design

More XPath

•  The following slides give more information and
examples on XPath.

•  They are part of the course curriculum and can be
considered supplements to the literature in XPath.

59

Introduction to Database Design 60

General Expressions

• Every Xpath expression evaluates to a
sequence of
– atomic values, or
– nodes

• Atomic values may be
– numbers
– booleans
– Unicode strings

• Nodes have identity

Introduction to Database Design 61

Atomization

• A sequence may be atomized
• This results in a sequence of atomic values
• For element nodes this is the concatenation

of all descendant text nodes
• For other nodes this is the obvious string

Introduction to Database Design 62

Sequence Expressions

• The ’,’ operator concatenates sequences
•  Integer ranges are constructed with ’to’
• Operators: union, intersect, except
• Sequences are always flattened
• These expressions give the same result:
 (1,(2,3,4),((5)),(),(((6,7),8,9)))

 1 to 9

 1,2,3,4,5,6,7,8,9

Introduction to Database Design 63

Filter Expressions

• Predicates generalized to arbitrary
sequences

• The expression ’.’ is the context item
• The expression:
 (10 to 40)[. mod 5 = 0 and position()>19]

 has the result:
 30, 35, 40

Introduction to Database Design 64

Value Comparison

• Operators: eq, ne, lt, le, gt, ge
• Used on atomic values
• When applied to arbitrary values:

–  atomize
–  if either argument is empty, the result is empty
–  if either has length >1, the result is false
–  if incomparable, a runtime error
–  otherwise, compare the two atomic values

8 eq 4+4

(//rcp:ingredient)[1]/@name eq ”beef cube steak”

Introduction to Database Design 65

General Comparison

• Operators: =, !=, <, <=, >, >=
• Used on general values:

–  atomize
–  if there exists two values, one from each argument,

whose comparison holds, the result is true
–  otherwise, the result is false

8 = 4+4

(1,2) = (2,4)

//rcp:ingredient/@name = ”salt”

Introduction to Database Design 66

Example Functions

fn:abs(-23.4) = 23.4

fn:ceiling(23.4) = 24

fn:floor(23.4) = 23

fn:round(23.4) = 23

fn:round(23.5) = 24

fn:not(0) = fn:true()

fn:not(fn:true()) = fn:false()

fn:not("") = fn:true()

fn:not((1)) = fn:false()

fn:exists(()) = fn:false()

fn:exists((1,2,3,4)) = fn:true()

fn:empty(()) = fn:true()

fn:empty((1,2,3,4)) = fn:false()

fn:count((1,2,3,4)) = 4

fn:count(//rcp:recipe) = 5

Introduction to Database Design 67

More Example Functions

fn:concat("X","ML") = "XML"

fn:concat("X","ML"," ","book") = "XML book"

fn:string-join(("XML","book")," ") = "XML book"

fn:string-join(("1","2","3"),"+") = "1+2+3"

fn:substring("XML book",5) = "book"

fn:substring("XML book",2,4) = "ML b"

fn:string-length("XML book") = 8

fn:upper-case("XML book") = "XML BOOK"

fn:lower-case("XML book") = "xml book"

fn:avg((2, 3, 4, 5, 6, 7)) = 4.5

fn:max((2, 3, 4, 5, 6, 7)) = 7

fn:min((2, 3, 4, 5, 6, 7)) = 2

fn:sum((2, 3, 4, 5, 6, 7)) = 27

Introduction to Database Design 68

Conditional Expressions

fn:avg(

 for $r in //rcp:ingredient return

 if ($r/@unit = "cup")

 then xs:double($r/@amount) * 237

 else if ($r/@unit = "teaspoon")

 then xs:double($r/@amount) * 5

 else if ($r/@unit = "tablespoon")

 then xs:double($r/@amount) * 15

 else ()

)

Introduction to Database Design

Acknowledgement

• Thanks to Anders Møller, co-author of
An Introduction to XML and Web
Technologies for allowing me to use his
slides without forcing students to buy
his book!

• But if you want an in-depth XML book,
the book is recommended.
– Now also in Italian!

69

