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Serialization 

• How to store information in serial form 
(e.g. in a file, or for transmission)? 
– Relations can be stored using comma-

separated values (CSV), or similar. 
– Ad-hoc formats (e.g. most older text 

processing and spreadsheet formats) 
– Grammar-based formats: E.g. programs, 

human-edited data files (IMDB), … 
• BSWU: More in ”Programmer som data”. 

– … 
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Formats are controversial 
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“You sent the attachment in Microsoft 
Word format, a secret proprietary 
format, so I cannot read it. If you send 
me the plain text, HTML, or PDF, then I 
could read it.” 

Richard L. Stallman 
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Formats are controversial 
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From Wikipedia: 

… 
… 
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The dream… 

•  http://www.youtube.com/watch?v=6ptQGX__rd0  
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One universal standard for communication 
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The format zoo 

• Not all data is in relational databases! 
– Files (.txt, .html, .doc, .xls, .cs, .jar, .ser,…) 
– Services (e.g. web servers, file transmission) 
– Software-to-software communication 
– Data streams (e.g. audio/video streams) 

• Useful with a framework: 
– Gives common language for describing data. 
– Allows common tools (akin to an RDBMS) 

• Widespread framework: XML. 
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Today’s lecture 

• What is an XML file? 
• What are namespaces? 
• XML tools, part 1: 

– Parsers (SAX, DOM) 
– Xpath query language 
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Compression 

• An important aspect of serialization is 
compression (want small files, fast 
transmission,…) 

• Traditionally, compression was often 
done in ad-hoc ways (e.g. encode 8 
yes/no values as 1 byte). 

• Modern approaches view compression 
as orthogonal to logical encoding 
– Can be applied as post-processing 
– Examples: jar files, docx format, … 
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An Introduction to XML and Web Technologies 

XML Documents 

the following slides are based on slides by  
Anders Møller & Michael I. Schwartzbach 

© 2006 Addison-Wesley 
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What is XML? 

•  XML: Extensible Markup Language 
•  A framework for defining “markup 

languages” (e.g. (X)HTML) 
•  Each language is targeted at its own  

application domain with its own markup 
tags 

•  There is a common set of generic tools 
for processing XML documents  

•  Inherently internationalized and 
platform independent (Unicode) 

• Developed by W3C, standardized in 1998 
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xkcd take on standards 
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Case study: Recipes in XML 

• Define our own “Recipe Markup 
Language” 

• Choose markup tags that correspond to 
concepts in this application domain 
– recipe, ingredient, amount, … 
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Example (1/2) 
<collection> 

  <description>Recipes suggested by Jane Dow</description> 

  <recipe id="r117"> 

    <title>Rhubarb Cobbler</title> 

    <date>Wed, 14 Jun 95</date> 

    <ingredient name="diced rhubarb" amount="2.5" unit="cup"/> 

    <ingredient name="sugar" amount="2" unit="tablespoon"/> 

    <ingredient name="fairly ripe banana" amount="2"/> 

    <ingredient name="cinnamon" amount="0.25" unit="teaspoon"/> 

    <ingredient name="nutmeg" amount="1" unit="dash"/> 

    <preparation> 

      <step> 

        Combine all and use as cobbler, pie, or crisp. 

      </step> 

    </preparation> 
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Example (2/2) 

    <comment> 

      Rhubarb Cobbler made with bananas as the main sweetener. 

      It was delicious. 

    </comment> 

    <nutrition calories="170" fat="28%" 

               carbohydrates="58%" protein="14%"/> 

    <related ref="42">Garden Quiche is also yummy</related> 

  </recipe> 

</collection> 

Many web browsers are good XML viewers 
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XML Trees 

• Conceptually, an XML document is a  
tree structure 
– node, edge 
– root, leaf 
– child, parent 
– sibling (ordered),  

ancestor, 
descendant 

• Terminology: 
element = node 
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An Analogy: File Systems 
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Tree View of the XML Recipes 
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XML parsers 

• A basic tool for processing XML is a 
parser that reads well-formed XML and 
presents it in a way that makes it easy to 
work with. 

• Two main types: 
– Event-driven (SAX API): simply reports the 

tags it sees (may call user-defined methods). 
– Parse tree (DOM API): construct a ”parse 

tree” of the XML document. 
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Node types in XML trees 

• Text nodes: written as the text they 
carry 

• Element nodes: start-end tags 
–  <bla ...> ... </bla> 
–  short-hand notation for empty elements:  
<bla/> 

• Attribute nodes: name=“value” in 
start tags 

• Comment nodes: <!-- bla --> 
• Processing instructions:  
<?target value?> 
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Well-formedness 

• Every XML document must be well-
formed 
– start and end tags must match and nest 

properly 
•  <x><y></y></x>   
•  </z><x><y></x></y>    

– exactly one root element 
– ... 

•  in other words, it defines a proper tree 
structure 
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Example: XHTML 

<?xml version="1.0" encoding="UTF-8"?> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
  <head><title>Hello world!</title></head> 
  <body> 
    <h1>This is a heading</h1> 
    This is some text. 
  </body> 
</html> 



Introduction to Database Design 

Problem session 

• Think about how one would represent a 
general XML document in a relational 
database. 

• Come up with at least one natural 
query on XML data that would be 
difficult to write using standard SQL. 
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XML Namespaces 

•  When combining languages, element names may 
become ambiguous! 

<widget type="gadget"> 
  <head size="medium"/> 
  <big><subwidget ref="gizmo"/></big> 
  <info> 
    <head> 
      <title>Description of gadget</title> 
    </head> 
    <body> 
      <h1>Gadget</h1> 
      A gadget contains a big gizmo 
    </body> 
  </info> 
</widget> 
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The Idea 

• Assign a URI to every (sub-)language 
e.g. http://www.w3.org/1999/xhtml 
for XHTML 1.0 

• Qualify element names with URIs: 

{http://www.w3.org/1999/xhtml}head!
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The Actual Solution 

• Namespace declarations bind URIs to 
prefixes 

<... xmlns:foo="http://www.w3.org/TR/xhtml1"> 
   ... 
   <foo:head>...</foo:head> 
   ... 
</...> 

• Lexical scope (like java and C#) 
• Default namespace (no prefix) declared 

with xmlns="...“ 
• Attribute names can also be prefixed 
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Widgets with Namespaces 

<widget type="gadget" xmlns="http://www.widget.inc"> 
  <head size="medium"/> 
  <big><subwidget ref="gizmo"/></big> 
  <info xmlns:xhtml="http://www.w3.org/TR/xhtml1"> 
    <xhtml:head> 
      <xhtml:title>Description of gadget</xhtml:title> 
    </xhtml:head> 
    <xhtml:body> 
    <xhtml:h1>Gadget</xhtml:h1> 
      A gadget contains a big gizmo 
    </xhtml:body> 
  </info> 
</widget> 
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An Introduction to XML and Web Technologies 

The XPath Language 

the following slides are based on slides by  
Anders Møller & Michael I. Schwartzbach 

© 2006 Addison-Wesley 
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XPath Expressions 

• Flexible notation (a simple query language) 
for navigating around trees 

• A basic technology that is widely used in 
other XML languages (e.g. XSLT and 
XQuery). 

• Simple Xpath expression similar to ways of 
listing files: 
– /teaching/*/*/recipes!
– /teaching/*/xml/../pensum!
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Xpath Location Paths 

• A location path evaluates to a sequence of 
nodes 
– Intuitively, the set of nodes that can be reached 

by following the path(s) described. 

• The sequence is sorted in ”document 
order” (start tag position). 

• The sequence will never contain 
duplicates 
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An Example 
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An Example 
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An Example 
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Axes 

• XPath expressions work by specifying a 
sequence of movements along ”axes”.  

• XPath supports 12 different axes 
• Attribute: /@ 
• following 
• preceding 
• self 
• descendant-or-self 
• ancestor-or-self 

• child: / 
• descendant: // 
• parent: ..  
• ancestor 
• following-sibling 
• preceding-sibling 
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The parent Axis 
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The child Axis 
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The descendant Axis 
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The ancestor Axis 
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The following Axis 



Introduction to Database Design 43 

The preceding Axis 
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Location Steps 

• XPath expressions are made of a sequence 
of location steps 

• A location step consists of 
– an axis 
– a nodetest (node name or *) 
– optionally, some predicates (in square brackets) 

   axis :: nodetest [Exp1] [Exp2] … 

• Semantics: 
– Apply the steps one at a time, starting with the 

root element. 
– A step produces the union of steps applied to 

results of the previous step. 
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eXist demo 

•  Install eXist XML database, or go to  
http://exist.itu.dk:8080/exist/sandbox/sandbox.xql  

• Upload an XML document, and start writing 
Xpath / XQuery! 
– Well, almost that simple… 

• Example: //preparation/step[1] 
(matches all first step elements inside preparation elements). 

• With namespace wrapper: 
declare default element namespace  
   ”http://www.brics.dk/ixwt/recipes”;  
doc("recipes.xml")//preparation/step[1]!
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eXist tips 

• For queries that return attributes, must 
“wrap” the result in an XML element 
(otherwise there is a silent error). 

• Example:  
<a>{  
doc("recipes.xml")/(//ingredient)[4]/@name  
}</a>!

•  If the text of an attribute is desired, 
use the string() function, e.g.: 
doc("recipes.xml”)//ingredient/@name/string() 
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Predicates, examples 

• Name of ingredients measured in cups: 

//ingredient[@unit='cup']/@name!

• All first ingredients: 

//ingredient[1]/@name!

•  Ingredients containing ingredients: 
  
//ingredient[//ingredient]/@name!
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Predicates 

• Can be general XPath expressions – result 
converted into a boolean. 

• Evaluated with the current node as context 
• Result is coerced into a boolean 

– a number yields true if it equals the context 
position 

– a string yields true if it is not empty 
– a sequence yields true if it is not empty 
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Problem session 

• Consider the recipe collection. Write 
Xpath for: 
– Finding the name 

of all ingredients. 
– Finding the ingred. 

names for 
Rhubarb Cobbler. 

– Finding the titles 
of recipes that  
contain sugar. 
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<collection> 

  <description>Recipes suggested by Jane Dow</description> 

  <recipe id="r117"> 

    <title>Rhubarb Cobbler</title> 

    <date>Wed, 14 Jun 95</date> 

    <ingredient name="diced rhubarb" amount="2.5" unit="cup"/> 

    <ingredient name="sugar" amount="2" unit="tablespoon"/> 

    <ingredient name="fairly ripe banana" amount="2"/> 

    <ingredient name="cinnamon" amount="0.25" unit="teaspoon"/> 

    <ingredient name="nutmeg" amount="1" unit="dash"/> 

    <preparation> 

      <step> 

        Combine all and use as cobbler, pie, or crisp. 

      </step> 

    </preparation> 
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Value Comparison 

• Operators: eq, ne, lt, le, gt, ge 
• Natural semantics when used on atomic 

values 

8 eq 4+4 

(//rcp:ingredient)[1]/@name eq ”beef cube steak” 

• Two XML elements can be compared for 
equality using the is operator.  
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General Comparison 

• Operators: =, !=, <, <=, >, >= 
• When used on a sequence of atomic values: 

– if there exists two values, one from each 
argument, where the comparison holds, the 
result is true 

– otherwise, the result is false 

8 = 4+4 

(1,2) = (2,4) 

//rcp:ingredient/@name = ”salt” 
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Be Careful About Comparisons 

((//rcp:ingredient)[4]/@name,(//rcp:ingredient)[4]/@amount) eq 

(//rcp:ingredient)[5]/@name, (//rcp:ingredient)[5]/@amount)) 

Yields false, since the arguments are not singletons 

((//rcp:ingredient)[40]/@name, (//rcp:ingredient)[41]/@amount) = 

((//rcp:ingredient)[53]/@name, (//rcp:ingredient)[54]/@amount 

Yields true, since two names are found to be equal 

((//rcp:ingredient)[4]/@name, (//rcp:ingredient)[4]/@amount) is 

((//rcp:ingredient)[5]/@name, (//rcp:ingredient)[5]/@amount) 

Yields a runtime error, since the arguments are not singletons 
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XPath violates usual math rules 

• Reflexivity?  
 ()=() yields false 

• Transitivity?  
 (1,2)=(2,3), (2,3)=(3,4), not (1,2)=(3,4) 

• Anti-symmetry? 
 (1,4)<=(2,3), (2,3)<=(1,4), not (1,2)=(3,4) 

• Negation? 
 (1)!=() yields false, (1)=() yields false 
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Functions 

• XPath has an extensive function library, 
Examples: fn:count and fn:not. 

• Default namespace for functions: 
 http://www.w3.org/2006/xpath-functions 

• 106 functions are required. 

• Overview of functions: 
http://www.w3schools.com/Xpath/xpath_functions.asp!
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for expressions 

• Collects results using iteration. E.g.: 
 for $r in //rcp:recipe 

   return fn:count($r//rcp:ingredient[fn:not(rcp:ingredient)]) 

 returns the value 
 11, 12, 15, 8, 30 

• The expression 
for $i in (1 to 5) 

  for $j in (1 to $i) 

    return $j 

 returns the value 
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5  
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XML/relational integration 

• The easy part: Import/export relations 
in XML format. 
– Most DBMSs do this, MySQL from ver. 5.1. 

• Harder: Support XML as a data type. 
– Easier way: XML is a string (MySQL) 
– Harder way: ”Native” support 

• Hardest: Integrate SQL and (e.g.) Xpath 
– Proposed mechanism: SQL/XML 
– Rival (?): Xquery (SQL-like XML queries, 

next week) 
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XML in MySQL 

• Support for a limited subset of XPath. 
• XML is treated as text values, queried 

through the function ExtractValue 
(which returns a string). 

• Example: 
select id,ExtractValue(descr,'//rcp:title') 
from recipelist;!

• XML as an export format: Will be used 
in last hand-in (due in 2 weeks). 

57 



Introduction to Database Design 

Summary 

• XML is a framework for representing 
data in a ”markup language”. 

• Namespaces is a mechanism for 
making element names globally unique. 

• XML comes with a number of tools: 
– Parsers (SAX, DOM) 
– XPath interpreters (used as sublanguage) 
– More next week… 
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More XPath 

•  The following slides give more information and 
examples on XPath. 

•  They are part of the course curriculum and can be 
considered supplements to the literature in XPath.  
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General Expressions 

• Every Xpath expression evaluates to a 
sequence of 
– atomic values, or 
– nodes 

• Atomic values may be 
– numbers 
– booleans 
– Unicode strings 

• Nodes have identity 
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Atomization 

• A sequence may be atomized 
• This results in a sequence of atomic values 
• For element nodes this is the concatenation 

of all descendant text nodes 
• For other nodes this is the obvious string 
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Sequence Expressions 

• The ’,’ operator concatenates sequences 
•  Integer ranges are constructed with ’to’ 
• Operators: union, intersect, except 
• Sequences are always flattened 
• These expressions give the same result:  
 (1,(2,3,4),((5)),(),(((6,7),8,9))) 

 1 to 9 

 1,2,3,4,5,6,7,8,9 
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Filter Expressions 

• Predicates generalized to arbitrary 
sequences 

• The expression ’.’ is the context item 
• The expression: 
 (10 to 40)[. mod 5 = 0 and position()>19] 

 has the result: 
 30, 35, 40 
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Value Comparison 

• Operators: eq, ne, lt, le, gt, ge 
• Used on atomic values 
• When applied to arbitrary values: 

–  atomize 
–  if either argument is empty, the result is empty 
–  if either has length >1, the result is false 
–  if incomparable, a runtime error 
–  otherwise, compare the two atomic values 

8 eq 4+4 

(//rcp:ingredient)[1]/@name eq ”beef cube steak” 
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General Comparison 

• Operators: =, !=, <, <=, >, >= 
• Used on general values: 

–  atomize 
–  if there exists two values, one from each argument, 

whose comparison holds, the result is true 
–  otherwise, the result is false 

8 = 4+4 

(1,2) = (2,4) 

//rcp:ingredient/@name = ”salt” 
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Example Functions 

fn:abs(-23.4) = 23.4 

fn:ceiling(23.4) = 24 

fn:floor(23.4) = 23 

fn:round(23.4) = 23 

fn:round(23.5) = 24 

fn:not(0) = fn:true() 

fn:not(fn:true()) = fn:false() 

fn:not("") = fn:true() 

fn:not((1)) = fn:false() 

fn:exists(()) = fn:false() 

fn:exists((1,2,3,4)) = fn:true() 

fn:empty(()) = fn:true() 

fn:empty((1,2,3,4)) = fn:false() 

fn:count((1,2,3,4)) = 4 

fn:count(//rcp:recipe) = 5 
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More Example Functions 

fn:concat("X","ML") = "XML" 

fn:concat("X","ML"," ","book") = "XML book" 

fn:string-join(("XML","book")," ") = "XML book" 

fn:string-join(("1","2","3"),"+") = "1+2+3" 

fn:substring("XML book",5) = "book" 

fn:substring("XML book",2,4) = "ML b" 

fn:string-length("XML book") = 8 

fn:upper-case("XML book") = "XML BOOK" 

fn:lower-case("XML book") = "xml book" 

fn:avg((2, 3, 4, 5, 6, 7)) = 4.5 

fn:max((2, 3, 4, 5, 6, 7)) = 7 

fn:min((2, 3, 4, 5, 6, 7)) = 2 

fn:sum((2, 3, 4, 5, 6, 7)) = 27 
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Conditional Expressions 

fn:avg( 

  for $r in //rcp:ingredient return 

    if ( $r/@unit = "cup" )  

      then xs:double($r/@amount) * 237 

    else if ( $r/@unit = "teaspoon" )  

      then xs:double($r/@amount) * 5 

    else if ( $r/@unit = "tablespoon" )  

      then xs:double($r/@amount) * 15 

    else () 

) 
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