
Introduction to Database Design

Introduction to database design

2

Some figures are borrowed from the ppt slides from the book
used in the course, Database systems by Kiefer, Bernstein, Lewis
Copyright © 2006 Pearson, Addison-Wesley, all rights reserved.

KBL chapter 5
(pages 127-187)

Rasmus Pagh

Introduction to Database Design

Today’s lecture

This week and next week we cover KBL
Chapter 5: SQL and relational algebra.

• SQL and relational algebra are
relational query languages.
– SQL is declarative: Describe what you

want.
– Relational algebra is procedural: Describe

how to get what you want.

3

Introduction to Database Design

Relational algebra expression

4

(formatted as a tree)

Introduction to Database Design

Greek letters, runes?

5

Introduction to Database Design

Query tree

6

SELECT P.Name!
FROM PROFESSOR P, TEACHING T!
WHERE P.Id=T.ProfId AND T.Semester=‘F1994’ !
! AND P.DeptId=‘CS’!

Introduction to Database Design

Relational algebra

• Relations are considered a set of tuples,
whose components have names.

• Operators operate on 1 or 2 relations
and produce a relation as a result

• An algebra with 5 basic operators:
– Select
– Project
– Union
– Set difference
– Cartesian product

7

E. F. Codd, 1970

Introduction to Database Design

Select

• Selection of a subset of the tuples in a
relation fulfilling a condition

• Denoted
• Operates on one relation

8

SELECT *!
FROM PROFESSOR!
WHERE DeptId=‘CS’ !

Introduction to Database Design

Project

•  Projection chooses a subset of attributes.
•  The result of a projection is a relation with

the attributes given in attribute list.
By default the result is a set, i.e., contains
no duplicates.

9

SELECT DISTINCT Color
FROM Cars

Introduction to Database Design

Set operations

Set operations are union (R∪S), set
difference (R-S), and intersection (R∩S).

10

Note that two relations have to be
union-compatible for set operations to
make sense, meaning that they have the
same set of attributes.

R-S

R∪S

R∩S
S R

Introduction to Database Design

Set operations - examples

11

All pink and all green cars

All IDs of professors for which there
is a student with the same id.

Introduction to Database Design

Problem session

Assume that we have the relations

TRANSCRIPT(StudId,CrsCode,Semester,Grade) !
TEACHING(ProfId,CrsCode,Semester)!

What do these relational algebra expressions mean?

12

Introduction to Database Design

Cartesian product
(aka. cross product)

13

R×S for relations R and S is
the relation containing all
tuples that can be formed
by concatenation of a
tuple from R and a tuple
from S.

Introduction to Database Design

Cartesian product

•  In SQL: SELECT * FROM R,S;
•  If R has n tuples and S has m tuples,

then R×S contain n·m tuples.
• Can be computationally expensive!

• Renaming necessary when R and S
have attributes with the same name.

• Renaming is denoted by [name1,…]
after an expression.

14

Introduction to Database Design

Join

is equivalent to

15

Introduction to Database Design

Join example

16

SELECT *!
FROM Cars C, Owners O!
WHERE C.Ownerid=O.Id!

(equi-join)

Introduction to Database Design

Natural join

• A join where all attributes with the
same name in the two relations are
included in the join condition as
equalities is called natural join.

• The resulting relation only includes one
copy of each attribute.

• Natural join is denoted:

17

Introduction to Database Design

Semantics of SELECT statement

18

Algorithm for evaluating:
1.  FROM clause is evaluated. Cartesian

product of relations is computed.
2.  WHERE clause is evaluated. Rows not

fulfilling condition are deleted.
3.  SELECT clause is evaluated. All columns

not mentioned are removed.
A way to think about evaluation, but in practice
more efficient evaluation algorithms are used.

SELECT A1,A2,…!
FROM R1,R2,…!
WHERE <condition>!

Introduction to Database Design

String operations

• Expressions can involve string ops:
– Comparisons of strings using =, <,…

Strings are compared according to
lexicographical order, e.g., ‘green’>’blue’.

– MySQL: Not case sensitive! ‘Green’=‘green’
– Concatenation: ‘Data’ || ‘base’ = ‘Database’
– LIKE, ‘Dat_b%’ LIKE ‘Database’

• _ matches any single character
• % matches any string of 0 or more characters
• Car.Color=‘%green%’ is true for all colors with

‘green’ as a substring, e.g. ‘lightgreen’ ‘greenish’

– Details needed for project: See MySQL
documentation. (http://dev.mysql.com/doc/refman/5.5/en/string-functions.html)

19

Introduction to Database Design

Date operations

• You will probably need them in the
second hand-in.

• See MySQL documentation for details.
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html

20

Introduction to Database Design

Expressions in SELECT

You can define new attributes using
expressions:

SELECT C.Ownerid, T.Amount/12 !
FROM Car C, Cartax T!
WHERE C.Color=‘Green’ AND C.Regnr=T.Regnr!

You can give attributes new names:

SELECT C.Ownerid AS Id, !
! T.Amount/12 AS MonthlyTax!

21

Introduction to Database Design

Set operations

• UNION (∪), INTERSECT(∩), and
EXCEPT(-).

22

(SELECT *!
FROM Car C!
WHERE C.Color=‘green’)!
UNION!
(SELECT *!
FROM Car C!
WHERE C.Color=‘blue’)!

(SELECT C.Regnr, C.Color!
FROM Car C!
WHERE C.Color=‘green’)!
EXCEPT!
(SELECT *!
FROM Car C!
WHERE C.Regnr=1234)!

MySQL supports UNION, but requires
relations to be ”encapsulated” in SELECT.

Introduction to Database Design

Aggregation by example

23

SELECT SUM(T.Amount)!
FROM Cartax T, Car C!
WHERE T.Regnr=C.Regnr AND C.Ownerid=1234 !

SELECT COUNT(DISTINCT T.Amount)!
FROM Cartax T, Car C!
WHERE T.Regnr=C.Regnr AND C.Ownerid=1234 !

Introduction to Database Design

Aggregation functions

24

Functions:
•  COUNT ([DISTINCT] attr): Number of rows
•  SUM ([DISTINCT] attr): Sum of attr values
•  AVG ([DISTINCT] attr): Average over attr
•  MAX (attr): Maximum value of attr
•  MIN (attr): Minumum value of attr

•  DISTINCT: only one unique value for attr is used

More functions: See MySQL manual
http://dev.mysql.com/doc/refman/5.5/en/group-by-functions.html

Introduction to Database Design

Grouping

25

When more than one value should be
computed, e.g. the total amount of tax
each owner has to pay, use grouping
together with aggregation:

SELECT C.Ownerid AS Id, SUM(T.Amount) AS TotalTax!
FROM Cartax T, Car C!
WHERE T.Regnr=C.Regnr!
GROUP BY C.Ownerid!

Introduction to Database Design

Grouping

26

SELECT C.Ownerid AS Id, SUM(T.Amount) AS TotalTax!
FROM Cartax T, Car C!
WHERE T.Regnr=C.Regnr!
GROUP BY C.Ownerid!

Id TotalTax

1234 750
4321 210
8888 30

Ownerid Regnr
1234 1
1234 2
4321 3
8888 4
8888 5

Regnr Amount
1 300
2 450
3 210
4 11
5 19

The resulting columns can only be the
aggregate or columns mentioned in the
GROUP BY clause.

Introduction to Database Design

HAVING

27

SELECT C.OwnerId, SUM(T.Amount)!
FROM Car C, Cartax T!
WHERE C.Regnr=T.Regnr!
GROUP BY C.OwnerId!
HAVING SUM(T.Amount)<=1000!

HAVING is a condition on the group.
Use any condition that makes sense:
•  Aggregates over tuples in group
•  Conditions on tuple attributes

Introduction to Database Design

Evaluation algorithm

28

Algorithm for evaluating a SELECT-FROM-WHERE:
1.  FROM: Cartesian product of tables is computed.

Subqueries are computed recursively.
2.  WHERE: Rows not fulfilling condition are deleted.

Note that aggregation is evaluated after WHERE, i.e.
aggregate values can’t be in the condition.

3.  GROUP BY: Table is split into groups.
4.  HAVING: Eliminates groups that don’t fulfill the

condition.
5.  SELECT: Aggregate function is computed and all

columns not mentioned are removed. One row for
each group is produced.

6.  ORDER BY: Rows are ordered.

Introduction to Database Design

In a figure…

29

Introduction to Database Design

Subqueries 1: In FROM clause

30

A relation in the FROM clause can be
defined by a subquery. Example:

SELECT O.FirstName, O.LastName, TPO.TotalTax!
FROM! Owner O,!
! (SELECT Sum(T.Amount) AS TotalTax, !
 T.OwnerId AS Id !
! FROM Cartax T, Car C!
! WHERE T.Regnr=C.Regnr!
! GROUP BY C.Ownerid) AS TPO!
WHERE TPO.Id=O.Id!

Introduction to Database Design

Alternative syntax

• Some DBMSs (e.g. Oracle) give this
alternative to subqueries in FROM:

31

WITH (SELECT Sum(T.Amount) AS TotalTax, !
 T.OwnerId AS Id !
! FROM Cartax T, Car C!
! WHERE T.Regnr=C.Regnr!
! GROUP BY C.Ownerid) AS TPO!
SELECT O.FirstName, O.LastName, TPO.TotalTax!
FROM! Owner O, TPO!
WHERE TPO.Id=O.Id!

Introduction to Database Design

Views are used to define queries that are used
several times as part of other queries:

CREATE VIEW OwnerColor AS!
SELECT O.Id, C.Color!
FROM Owner O, Car C!
WHERE O.Id=C.Ownerid!

The view can be used in different queries:

SELECT COUNT(*)! SELECT O.Color,COUNT(*)!
FROM OwnerColor O! FROM OwnerColor O!
WHERE O.Color=‘pink’! GROUP BY O.Color!
! ! ! ! HAVING COUNT(*)<200!

Subroutines in SQL

32

Introduction to Database Design

Views

33

•  A view defines a subquery.
•  Defining a view does not execute any query.
•  When a view is used, the query definition is
copied into the query (as a subquery).

CREATE VIEW OwnerColor AS! SELECT COUNT(*)!
SELECT O.Id, C.Color! ! FROM OwnerColor OC!
FROM Owner O, Car C! ! WHERE OC.Color=‘pink’!
WHERE O.Id=C.Ownerid!
---!
SELECT COUNT(*)!
FROM (SELECT O.Id, C.Color FROM Owner O, Car C
WHERE O.Id=C.Ownerid) AS OC!
WHERE OC.Color=‘pink’!

Introduction to Database Design

Usage of views

34

Views can be used for:

1. Defining queries used as subqueries,
making code more modular.

2.  Logical data independence.

3. Customizing views for different users.

4. Access control.

Introduction to Database Design

Views and access control

35

Views can be used to limit the access to data, the
right to update data, etc. Example:

GRANT SELECT ON OwnerColor TO ALL!

Meaning: All users can see the table OwnerColor,
but not the underlying relations Car and Owner.

Other options:
•  GRANT INSERT, GRANT ALL, and more
•  TO ALL, TO user, TO group!

Introduction to Database Design 36

SELECT C.Regnr !
FROM Car C!
WHERE C.Ownerid IN!
! (SELECT O.Id!
! FROM Owner O!
! WHERE O.Lastname = ‘Sørensen’)!

All registration numbers for cars owned
by a person named Sørensen.
SELECT C.Regnr !
FROM Car C, Owner O!
WHERE C.Ownerid=O.Id AND O.Lastname=‘Sørensen’ !

Subqueries 2: In WHERE

Introduction to Database Design 37

Reverse example

SELECT C.Regnr !
FROM Car C!
WHERE C.Ownerid NOT IN!
! (SELECT O.Id!
! FROM Owner O!
! WHERE O.Lastname = ‘Sørensen’)!

Not expressible as a standard join!
(Assume Owner.id is a candidate key.)

Introduction to Database Design

(Full) outer join, by example

38

Introduction to Database Design

Outer join in SQL

• Syntax:
R FULL OUTER JOIN S ON <condition>.

• Semantics:
Output the normal (inner) join result
SELECT * FROM R,S WHERE <condition>,
plus tuples from R and S that were not
output (padded with NULLs).

• Variants: Left and right outer joins
(supported in MySQL).

39

Introduction to Database Design

Problem session

• Suppose you have a DBMS that does
not support:
– INTERSECT
– EXCEPT
– FULL OUTER JOIN

• How can you simulate the above using
the following joins?
– LEFT JOIN
– RIGHT JOIN
– SELECT-FROM-WHERE

40

Introduction to Database Design

Subquery to define a value

41

A subquery producing a single value can be
used as any other value (constant or
attribute):

SELECT T.Regnr!
FROM Cartax T!
WHERE T.Amount =!
! (SELECT T2.Amount!
! FROM Cartax T2!
! WHERE T2.Regnr=‘AB12345’)!

If the subquery returns more than one tuple,
a runtime error results.

Note that the
same table is used
twice with two
different tuple
variables

Introduction to Database Design

Correlated subqueries

42

A subquery is said to be correlated when a
variable in the outer query is used in the
subquery:

SELECT R.Studid, P.Id, R.CrsCode!
FROM TRANSCRIPT T, PROFESSOR P!
WHERE R.CrsCode IN!
! (SELECT T1.CrsCode!
! FROM TEACHIN T1!
! WHERE T1.ProfId=P.Id AND T1.Semester=‘S2009’)!

The inner query is evaluated for each P.Id.

Often expensive to evaluate correlated subqueries.

Introduction to Database Design

NOT EXISTS

43

SELECT O.Id !
FROM Owner O!
WHERE NOT EXISTS!
! (SELECT C.Regnr!
! FROM Car C!
! WHERE C.Color LIKE ‘%green%’ AND!
! ! C.Ownerid=O.Id)!

O is a global variable for the entire query, C is a
local variable for the subquery.

Subquery “is” evaluated for each value of O.Id.

True when subquery
returns an empty relation

Introduction to Database Design

Problem session

44

What does the following query compute?

SELECT C1.Color, AVG(T.Amount)!
FROM (SELECT O.Id AS Id!
 FROM Owner O, Car C2!
 WHERE O.Id=C2.Ownerid!
 GROUP BY O.Id!
 HAVING COUNT(*)>8) AS Bigshots,!
 Cartax T,!
 Car C1!
WHERE T.Regnr=C1.Regnr AND  
 C1.Ownerid=Bigshots.Id!
GROUP BY C1.Color!

Introduction to Database Design

Beware of NULLs!

• Things are not always what they appear.
– Aggregates treat nulls differently
– Logic is different.
– Different DBMSs handle NULLs differently…

• Demo:
SELECT * FROM BestMovies  
WHERE ((country="Canada") or  
 (country!="Canada" and imdbRank>9.5));!

Different behavior for NULL /empty string…

45

Introduction to Database Design

Beware of NULLs, cont.

46

Introduction to Database Design

NULLs and boolean logic

47

Introduction to Database Design

Updating the database

48

INSERT INTO TableName(a1,…,an)!
VALUES (v1,…,vn)!

INSERT INTO TableName(a1,…,an)!
SelectStatement!

DELETE FROM TableName!
WHERE Condition!

UPDATE TableName!
SET a1=v1,…ai=vi!
WHERE Condition!

Introduction to Database Design

Updating a view!?

49

CREATE VIEW ProfNameDept(Name,DeptId) AS!
SELECT P.Name, P.DeptId!
FROM Professor P!

What are the results of the following 2 updates?

INSERT INTO ProfNameDept!
VALUES (Hansen, ‘CS’)!

DELETE FROM ProfNameDept!
WHERE Name=Hansen and DeptId=‘CS’!

Introduction to Database Design

Updating using a view

50

Insertion: For unspecified attributes, use
NULL or default values if possible.

Deletion: May be unclear what to delete.
Several restrictions, e.g. exactly one table
can be mentioned in the FROM clause.

NOT ALL VIEWS ARE UPDATABLE!

Introduction to Database Design

Materialized views

51

Views are computed each time they are
accessed – possibly inefficient

Materialized views are computed and stored
physically for faster access.

When the base tables are updated the view
changes and must be recomputed:
-  May be inefficient when many updates
-  Main issue – when and how to update the
stored view

(not available in MySQL)

Introduction to Database Design

Updating materialized views

52

When is the view updated
•  ON COMMIT – when the base table(s)
are updated
•  ON DEMAND – when the user decides,
typically when the view is accessed

How is the view updated
•  COMPLETE – the whole view is
recomputed
•  FAST – some method to update only the
changed parts.
•  For some views the incremental way is
not possible with the available
algorithms.)

Introduction to Database Design

Related course goal

Students should be able to:
• express simple relational expressions

using the relational algebra operators
select, project, join, intersection, union,
set difference, and cartesian product.

• write SQL queries, involving multiple
relations, compound conditions,
grouping, aggregation, and subqueries.

53

