
Introduction to Database Design

SQL in applications; NoSQL

Rasmus Pagh

1

Introduction to Database Design

Today’s lecture

• Based on sections 8.1-8.5

• SQL in applications
– Focus on ODBC/JDBC

• NoSQL technologies, by example
– MapReduce (Hadoop)
– BigTable (and descendants)
– Graph databases (Neo4J)
– Overview article: www.infoworld.com/print/167400

2

Introduction to Database Design

SQL in applications

• Most SQL databases are at the back
end of applications
– important to know how this works.

• On the surface, a very boring subject
– How to move data from A to B doing

suitable translation, etc.
• Also a very interesting topic!

– Focus of a lot of research and development.

•  In this course we will stay pretty much
at the surface…

3

Introduction to Database Design

SQL in applications

Several flavors:
• Dynamic or static SQL?
• Library or ”native” support?

Things that need to be addressed
• How to deal with DBMS errors?
• How to specify transactions?
• How to access query results?
• DBMS independence?

4

Introduction to Database Design

JDBC connection

5

Database operations

Introduction to Database Design

JDBC dynamic SQL

6

Use caution when creating
SQL based on user input!

Introduction to Database Design 7

xkcd.com

Introduction to Database Design

JDBC static SQL

8

Introduction to Database Design

Efficiency issues

• Connection takes time to establish –
use 1 connection for many operations.

•  It takes time to parse dynamic SQL –
prepared statements start executing
faster.

• ORDER BY may force creation of full
result within the DBMS before any
output reaches the application.
•  Why is this not just usual? (Answer in next slide.)

9

Introduction to Database Design

Cursors

• Common to not generate full results of
queries, but provide a ”cursor” that
allows the result to be traversed.

•  JDBC examples:
– Statement s = con.createStatement  
 (ResultSet.TYPE_FORWARD_ONLY,  
 ResultSet.CONCUR_READ_ONLY)"

– Statement s = con.createStatement  
 (ResultSet.TYPE_SCROLL_INSENSITIVE,  
 ResultSet.CONCUR_UPDATABLE)"

10

Introduction to Database Design

Four examples

1. Movies by year – imperative way
2. Movies by year – SQL centric way
3.  Iterating through a large result set
4.  Iterating through a filtered result set

11

Introduction to Database Design

Automatic code generation

•  Instead of dealing directly with JDBC,
one can automatically generate code to
make objects “persistent” in a
database.
– E.g. Nhibernate

• Advantage: Tedious code made with
very little effort.

• Disadvantage: Little and indirect
control over efficiency issues.

12

Introduction to Database Design

Language integration

•  ”Little languages” with tight database
integration.
– E.g. ”Ruby on Rails”,  
http://en.wikipedia.org/wiki/Ruby_on_Rails

• New query sublanguages for
mainstream languages such as C#.
– E.g. LINQ, http://en.wikipedia.org/wiki/
Language_Integrated_Query "

– If used with conventional DBMS:
Automatically translated to SQL. "

13

Introduction to Database Design

NO-SQL

• Silly to indentify technologies with what
it is not.

• Better: Not Only SQL.

But what is it?
• Lemire: Programmer’s revolt against

database administrators.
• Common reason: Independence from

very expensive large DBMSs.

14

Introduction to Database Design

XML databases

• 8-10 years ago believed to be the up-
and-coming database technology.

• Status now:
- XML is mainly a textual data format.
- XML support built into relational
DBMSs.
- XML database systems eXist, but
have small market share.

• Much more info in 3, 4, and 5 weeks!

15

Introduction to Database Design

MapReduce

• Google system for distributed queries
on line-based data.

• Runs on a cluster of networked
machines (can be 1000s).

• Open source version: Hadoop
• Builds on distributed file system:

Does not deal with transactions.

16

Introduction to Database Design

MapReduce in terms of SQL

• SELECT myFunction1  
FROM myFunction2(R)  
GROUP BY key"

• Mapper transform the input into lines
with keys and values.

• Reducer transforms a group of values
with the same key into an output.

• Language for mapper and reducer not
specified (typical: Python, Java).

17

Mapper
Reducer

(simplified)

Introduction to Database Design

MapReduce examples

1. Word count
Mapper: Transform text lines into pairs (w,1).
Reducer: Add the occurrences of each word.

2. R1 NATUAL JOIN R2
Mapper: Make the join attribute key of each
tuple.
Reducer: For each key value, output cartesian
product of tuples in R1 and R2.

 More complex queries can often be
made using several MapReduce passes.

18

Introduction to Database Design

BigTable

• Google system for storing data
persistently in a distributed system.

• Many similar systems since then
(distributed hash tables, Cassandra,…).

• Data model generalizes the relational
model. System stores a function
(rowId:string,column:string,time:int) → string"

• Only simple queries:
– E.g. lookup string using rowId and column.

• Only simple transactions:
Modify a single row.

19

Introduction to Database Design

BigTable discussion

• Many DBMSs are mainly used to store
data persistently – only need simple
updates and queries.

•  If data set is large and/or high
reliability is desired, a distributed
solution is desirable (all data replicated
for availability).

• Often distributed storage systems offer
relaxed consistency compared to a
DBMS (e.g. “eventual consistency”).

20

Introduction to Database Design

Neo4J

• Database especially oriented towards
storing graphs (in the sense of
computer science).

• Query language specifies way of
traversing graph to compute result –
inspired by Xpath query language.

• Common graph search algorithms built
– hard or inefficient to simulate using a
traditional DBMS implementation.

21

Introduction to Database Design

Graph example 1

22

Introduction to Database Design

Graph example 2

23

Introduction to Database Design

Graph example 3

24

Introduction to Database Design

Graph database discussion

• Any graph can be modeled in a
relational DB, but not vice versa.

• A relational DBMS can store relations
with two attributes as a graph
adjacency list (using an index).

• But SQL is not made with typical “graph
queries” in mind.
– Example: Two-link references in IMDB.

• Open: Will relational DBMS providers
create special functionality for relations
that contain graph data?

25

Introduction to Database Design

Guest lecture

• On November 8, Claus Samuelsen from
IBM will give a guest lecture.

• He will talk about how IBM use
traditional database and NoSQL
technologies in projects.

26

