SQL in applications; NoSQL

Rasmus Pagh

é IT University of Copenhagen Introduction to Database Design 1

Today’s lecture

e Based on sections 8.1-8.5

e SQL in applications
— Focus on ODBC/JDBC

e NoSQL technologies, by example
— MapReduce (Hadoop)
— BigTable (and descendants)
— Graph databases (Neo4J)
— Overview article: www.infoworld.com/print/167400

S 1T University of Copenhagen Introduction to Database Design

2

SQL in applications

e Most SQL databases are at the back
end of applications
— important to know how this works.

e On the surface, a very boring subject

- How to move data from A to B doing
suitable translation, etc.

e Also a very interesting topic!
— Focus of a lot of research and development.

e In this course we will stay pretty much
at the surface...

@ [T University of Copenhagen Introduction to Database Design 3

SQL in applications

Several flavors:
e Dynamic or static SQL?
e Library or "native” support?

Things that need to be addressed

S T University of Copenhagen Introduction to Database Design

How to deal with DBMS errors?
How to specify transactions?
How to access query results?

DBMS independence?

4

JDBC connection

String url = "jdbc:mysql://localhost/";
String dbName = "imdb";

String driver = "com.mysql.jdbc.Driver";
String userName = "root";

String password = "";

try {
Class.forName(driver);

Connection conn = DriverManager.getConnection(url+dbName,userName,password);
System.out.println("Connected to MySQL");

Database operations

conn,close();

System.out.println("Disconnected from MySQL");
} catch (Exception e) {

e.printStackTrace();

}

:é IT University of Copenhagen Introduction to Database Design 5

JDBC dynamic SQL

try {
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery("SELECT gender, count(*) FROM person GROUP BY gender™);
while (rs.next()) {
System.out.println(rs.getString("gender”)+": "+rs.getInt(2));
}

st.executeUpdate("DROP TABLE IF EXISTS JDBCtest™);
st.executeUpdate("CREATE TABLE JDBCtest(id int, string varchar(10))");
st.executeUpdate("INSERT INTO JDBCtest VALUES (1,\"Tada!\")");

}

catch(SQLException s){|
System.out.println(s.toString());

}

‘é IT University of Copenhagen Introduction to Database Design 6

HI, THIS 1S OH, DEAR - DID HE
YOUR SON' SCHOOL. | BREAK SOMETHING?
WE'RE HAVING SOME

COMPUTER TROWBLE. | ™M A WAY - /

S|

DID YOU REALLY WELL, WE'VE LOST THIS
NAME YOUR SON YEARS STUDENT RECORDS.
Robert'); DROP T HOPE YOURE HAPPY.
TABLE Students; -~ 7 \‘1
{J AND I HOPE
~OH.YES UTTLE - YOUVE LEARNED
BOBBY TABLES, TO SANMIZE YOUR
WE CALL HIM. DATARASE INPUTS.
xkcd.com

h
o:c; IT University of Copenhagen Introduction to Database Design 7

JDBC static SQL

PreparedStatement insertPerson =

conn,prepareStatement("INSERT INTO person VALUES (7,7,7,7,7,7)"); // Create preparec
insertPerson.setInt(l, 123456);

insertPerson,setString(2, "John Doe");

insertPerson,.setString(3, "M");

insertPerson.setDate(4, new java.sql.Date(160617600000)); // Set date, given in mili
insertPerson.setNull(6, java.sql.Types.INTEGER); // Set to NULL
insertPerson,executeUpdate(); // Execute prepared statement with current parameters

é IT University of Copenhagen Introduction to Database Design 8

Efficiency issues

e Connection takes time to establish -
use 1 connection for many operations.

o It takes time to parse dynamic SQL -
prepared statements start executing
faster.

e ORDER BY may force creation of full
result within the DBMS before any

output reaches the application.
e Why is this not just usual? (Answer in next slide.)

& 1T University of Copenhagen Introduction to Database Design 9

Cursors

e Common to not generate full results of
queries, but provide a "cursor” that
allows the result to be traversed.

e JDBC examples:

— Statement s = con.createStatement
(ResultSet.TYPE FORWARD ONLY,
ResultSet.CONCUR_READ ONLY)

— Statement s = con.createStatement
(ResultSet.TYPE SCROLL INSENSITIVE,
ResultSet.CONCUR UPDATABLE)

> [T University of Copenhagen Introduction to Database Design 10

Four examples

. Movies by year — imperative way

. Movies by year — SQL centric way

. Iterating through a large result set

. Iterating through a filtered result set

D W DN R

S 1T University of Copenhagen Introduction to Database Design 11

Automatic code generation

e Instead of dealing directly with JDBC,
one can automatically generate code to
make objects “persistent” in a
database.

- E.g. Nhibernate

e Advantage: Tedious code made with
very little effort.

e Disadvantage: Little and indirect
control over efficiency issues.

S T University of Copenhagen Introduction to Database Design 12

Language integration

o "Little languages” with tight database
Integration.
- E.g. "Ruby on Rails”,
http://en.wikipedia.org/wiki/Ruby on Rails
e New query sublanguages for
mainstream languages such as C#.

— E.g. LINQ, http://en.wikipedia.org/wiki/
Language Integrated Query

— If used with conventional DBMS:
Automatically translated to SQL.

S T University of Copenhagen Introduction to Database Design 13

NO-SQL

e Silly to indentify technologies with what
It Is not.

e Better: Not Only SQL.

But what is it?

e Lemire: Programmer’s revolt against
database administrators.

e Common reason: Independence from
very expensive large DBMSs.

S T University of Copenhagen Introduction to Database Design 14

XML databases

e 8-10 years ago believed to be the up-
and-coming database technology.

e Status now:
- XML is mainly a textual data format.
- XML support built into relational
DBMSs.
- XML database systems eXist, but
have small market share.

e Much more info in 3, 4, and 5 weeks!

S T University of Copenhagen Introduction to Database Design 15

MapReduce

e Google system for distributed queries
on line-based data.

e Runs on a cluster of networked
machines (can be 1000s).

e Open source version: Hadoop

e Builds on distributed file system:
Does not deal with transactions.

S T University of Copenhagen Introduction to Database Design 16

(simplified)
MapReduce’in terms of SQL

e SELECT myFunctionl Reducer
GROUP BY key -

e Mapper transform the input into lines
with keys and values.

e Reducer transforms a group of values
with the same key into an output.

e Language for mapper and reducer not
specified (typical: Python, Java).

S 1T University of Copenhagen Introduction to Database Design 17

MapReduce examples

1. Word count

Mapper: Transform text lines into pairs (w,1).
Reducer: Add the occurrences of each word.

2. R, NATUAL JOIN R,

Mapper: Make the join attribute key of each
tuple.

Reducer: For each key value, output cartesian
product of tuples in R; and R..

More complex queries can often be
made using several MapReduce passes.

S T University of Copenhagen Introduction to Database Design 18

BigTable

e Google system for storing data
persistently in a distributed system.

e Many similar systems since then
(distributed hash tables, Cassandra,...).

e Data model generalizes the relational
model. System stores a function

(rowId:string,column:string,time:int) — string

e Only simple queries:
- E.g. lookup string using rowld and column.

e Only simple transactions:
Modify a single row.

> [T University of Copenhagen Introduction to Database Design 19

BigTable discussion

e Many DBMSs are mainly used to store
data persistently — only need simple
updates and queries.

o If data set is large and/or high
reliability is desired, a distributed
solution is desirable (all data replicated
for availability).

e Often distributed storage systems offer
relaxed consistency compared to a
DBMS (e.g. “eventual consistency”).

S T University of Copenhagen Introduction to Database Design 20

e Database especially oriented towards
storing graphs (in the sense of
computer science).

e Query language specifies way of
traversing graph to compute result -
inspired by Xpath query language.

e Common graph search algorithms built

- hard or inefficient to simulate using a
traditional DBMS implementation.

S T University of Copenhagen Introduction to Database Design

Graph example 1

Social data (customer: brand-name social network)) !!“EQ‘%EM?!?QY

name = “Marcy Runkle”

name = “Hank”
last_name = “Moody”

name = “Mike” S

age =29
disclosure = public

KNOWS M KNOWS

llllllllllll’ 7 EEEEEEN

. .
N
‘e o, < name = “Charlie”
*. 0
* Y, O last_name = “Runkle”
*. 8 =
., <

name = “Dani”

age = 27

N
o
L
e 4 last “California”
ast_name = alirornia
-— =
2

.
age = 3 days OA

S 1T University of Copenhagen Introduction to Database Design 22

Graph example 2

.’
Spatlal data (customer: large telecom company) '.';Egotechnolggy

m i

name = “The Tavern”
lat = 1295238237

name = “Omni Hotel” et I

lat = 3492848

long = 283823423 length = 7 miles

ROAD ROAD

IIIIII.IIII} ‘ EEEEEEN

* R
'...C.)OOAD

.... —_—
)

-
name =
lat, long = ...

name = “Swedland”
lat = 23410349
long = 2342348852

S 1T University of Copenhagen Introduction to Database Design 23

Graph example 3

Social AND spatial data (customer: LBS) S

eneotechnology

name = “The Tavern”
lat = 1295238237

name = “Omni Hotel” B

lat = 3492848
long = 283823423

- ROAD —-— LIKES

7 EEEEEEN

_

- G
~
N
’0.'90 &) name = “Emil”
o ’40 5’ beer_qual = expert
/. @

‘0 name = “Maria”
*

n
]
4
. age = 30
length = 3 miles QA -, beer_qual = non-existant
R

h EERERRNRRRY —

4
4

S 1T University of Copenhagen Introduction to Database Design 24

Graph database discussion

e Any graph can be modeled in a
relational DB, but not vice versa.

e A relational DBMS can store relations
with two attributes as a graph
adjacency list (using an index).

e But SQL is not made with typical “graph
queries” in mind.

- Example: Two-link references in IMDB.

e Open: Will relational DBMS providers
create special functionality for relations
that contain graph data?

S T University of Copenhagen Introduction to Database Design 25

Guest lecture

e On November 8, Claus Samuelsen from
IBM will give a guest lecture.

e He will talk about how IBM use

traditional database and NoSQL
technologies in projects.

S T University of Copenhagen Introduction to Database Design 26

