
Introduction to Database Design

Indexing

KBL 9.1-9.4, 9.5 until p. 354 (incl), 9.6.1

Rasmus Pagh

2

Introduction to Database Design

Database efficiency

3

One of the great dividends of investing in an
RDBMS is that you don't have to think too
much about the computer's inner life. You're
the programmer and say what kinds of data
you want. The computer's job is to fetch it
and you don't really care how.

Philip Greenspun in ”SQL for Web Nerds''

Next: Why you should care about
how the DBMS uses indexes.

Introduction to Database Design

Disk crash course

• Relations of large databases are usually
stored on hard drives (or SSDs).

• Hard drives can store large amounts of
data, but work rather slowly compared
to the memory of a modern computer:
•  The time to access a specific piece of data

is on the order of 106 (104) times slower.
•  The rate at which data can be read is on

the order of 100 (10) times slower.
• Time for accessing disk may be the

main performance bottleneck!

4

Introduction to Database Design

Multiple disks

• Many database systems use several
disks to
– Enable several pieces of data to be fetched

in parallel.
– Increase the total rate of data from disk.

• Systems of several disks are often
arranged in so-called RAID systems,
with various levels of error resilience.

• Even in systems with many disks, the
time used for accessing them is usually
the performance bottleneck.

5

Introduction to Database Design

Full table scans

6

When a DBMS sees a query of the form

! SELECT *!
! FROM R!
! WHERE <condition>!

the obvious thing to do is read through
the tuples of R and report those tuples
that satisfy the condition.

This is called a full table scan.

Introduction to Database Design

Selective queries

7

Consider the query from before
•  If we have to report 80% of the
tuples in R, it makes sense to do a
full table scan.
•  On the other hand, if the query is
very selective, and returns just a
small percentage of the tuples, we
might hope to do better.

Introduction to Database Design

Point queries

• Consider a selection query with a single
equality in the condition:
 SELECT *  
 FROM actorInfo  
 WHERE year=1975!

• This is a point query: We look for a
single value of ”year”.

• Point queries are easy if data is sorted
by the right attribute.

8

Introduction to Database Design

Range queries

• Consider a selection query of the form:
SELECT *  
FROM actorInfo  
WHERE year>1975 and year<1994!

• This is a range query: We look for a
range of values of ”year”.

• Range queries are also easy if data is
sorted by the right attribute.
– But often not be as selective as point

queries.

9

Introduction to Database Design

Indexes

• To speed up queries the DBMS may
build an index on the year attribute.

• A database index is similar to an index
in the back of a book:
– For every piece of data you might be

interested in (e.g., the attribute value
1975), the index says where to find it.

– The index itself is organized such that one
can quickly do the lookup.

• Looking for information in a relation
with the help of an index is called an
index scan.

10

Introduction to Database Design

Primary indexes

•  If the tuples of a relation are stored sorted
according to some attribute, an index on
this attribute is called primary.
– Primary indexes make point and range queries

on the key very efficient.

• Many DBMSs automatically build a primary
index on the primary key of each relation.
– In MySQL this depends on the storage engine:

InnoDB builds an index on the primary key,
MyISAM does not.

•  A primary index is sometimes referred to
as a clustering or sparse index.

11

Introduction to Database Design

Secondary indexes

•  It is possible to create further indexes
on a relation. Typical syntax:

CREATE INDEX myIndex ON involved(actorId);  

• The non-primary indexes are called
secondary indexes (sometimes non-
clustering or dense indexes)
– Secondary indexes make most point

queries on the key more efficient.
– Secondary indexes make some range

queries on the key more efficient.

12

Introduction to Database Design

Multi-attribute indexes

13

Defining an index on several attributes:
! CREATE INDEX myIndex  
! ON actorInfo (lastname,firstname,year);

Speeds up point queries such as:
! SELECT * 
! FROM actorInfo 
! WHERE firstname=’Tom’ and lastname=’Cruise’

An index on several attributes usually
gives index for any prefix of these
attributes, due to lexicographic sorting.

Introduction to Database Design

Problem session

• What kinds of point and range queries
are ”easy” when the relation is stored
as in the previous example:
1.  A range query on firstname?
2.  A range query on lastname?
3.  A point query on lastname?
4.  A point query on lastname combined with

a range query on firstname?
5.  A point query on firstname combined with

a range query on lastname?

14

Introduction to Database Design

Index scan vs full table scan

15

Point and range queries on the
attribute(s) of the primary index are
almost always best performed using an
index scan.

Secondary indexes should be used
with high selectivity queries:
As a rule of thumb, a secondary index
scan is faster than a full table scan for
queries returning less than 10% of a
relation.

Introduction to Database Design

Choosing to use an index

• The choice of whether to use an index
is made by the DBMS for every
instance of a query
– May depend on query parameters
– Don’t have to take indexes into account

when writing queries

• Estimating selectivity is done using
statistics
– In MySQL, statistics is gathered by

executing statements such as
ANALYZE TABLE involved!

16

Introduction to Database Design

What speaks against indexing?

• Space usage:
– Small for primary index
– Similar to data size for secondary index

• Time usage for keeping indexes
updated under data insertion/change:
– Small to medium for primary index
– High for secondary index (but has been

going down…)

17

Introduction to Database Design

Other impact of indexes

The DBMS may use indexes in other
situations than a simple point or range
query.

• Some joins can be executed using a
modest number of index lookups
– May be faster than looking at all data

• Some queries may be executed by only
looking at the information in the index
– Index only query execution plan

(”covering index”).
– May need to read much less data.

18

Introduction to Database Design

Index types

Common:
• B-trees (point queries, range queries)
• Hash tables (only point queries, but

somewhat faster)
• Bitmap indexes

More exotic:
• Full text indexes (substring searches)
• Spatial indexes (proximity search, 2D

range search,…)
• … and thousands more

19

Introduction to Database Design

Conclusion

• Large databases need to be equipped
with suitable indexes.
– Need understanding of what indexes might

help a given set of queries.
– Important distinction: Primary vs secondary.
– A detailed understanding of various index

types is beyond the scope of this course.

20

Introduction to Database Design

Related course goal

Students should be able to:
• decide if a given index is likely to

improve performance for a given query.

21

