
Introduction to Database Design, fall 2011

IT University of Copenhagen

Normalization

Rasmus Pagh

Based on KBL sections 6.1-6.8 (except p. 203–207m), 6.9 (until

“Multivalued dependencies”), 6.11, and 6.12.



• Anomalies in relations.

• Functional dependencies.

• Normal forms: Boyce-Codd normal form, 3rd normal form, and a little

bit on higher normal forms.

Today’s lecture

1



In this lecture I will assume that you remember:

• Key concepts of the relational data model:

– Relation

– Attributes

– Relation schema

– Relation instance

What you should remember from previously.

2



Selection by example:

SELECT DISTINCT title, year

FROM Movie

Join by example:

SELECT *

FROM Movie, Director

WHERE Movie.director = Director.id

Key concepts in SQL

3



Redundant (i.e., “unnecessary”) information occurs in a relation if the same

fact is repeated in several different tuples.

One obvious problem with redundant information is that we use more

memory than is necessary. Redundancy is an example of an anomaly of the

relation schema.

Example: Instance of

Movies(title, year, length, filmType, studioName, starName)

where the length of a movie is repeated several times.

Redundancy in a relation

4



The other principal kinds of unwanted anomalies are:

• Update anomalies. Occur when it is possible to change a fact in one

tuple but leave the same fact unchanged in another. (E.g., the length

of Star Wars in the Movies relation.)

• Deletion anomalies. Occur when deleting a tuple (recording some

fact) may delete another fact from the database. (E.g., information on

a movie in the Movies relation.)

• Insertion anomalies. The “dual” of deletion anomalies.

Ideally, we would like relation schemas that do not allow anomalies.

Normalization is a process that can often be used to arrive at such

schemas.

Other kinds of anomalies

5



As we will see, anomalies are a sign that we tried to encode several,

unrelated types of facts into a single relation.

Thus, normalization can help improving the design such that the

unrelatedness of these facts are captured by the database schema (and E-R

diagram).

Anomalies and good design

6



The anomalies in the example we saw can be eliminated by splitting (or

decomposing) the relation schema

Movies(title, year, length, filmType, studioName, starName)

into two relation schemas

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

Decomposing relations

7



The relation instances for Movies1 and Movies2 were found by projection

of Movies onto their attributes. In SQL, Movies2 could be computed as

follows:

SELECT DISTINCT title, year, starName

FROM Movies

This is a general rule when decomposing: The decomposed relation

instances are found by projection of the original relation instance.

Decomposition and projection

8



We need the decomposed relations to contain the same information as the

original relation. In particular, we must be able to recombine them to

recover the original relation. (The lossless join property.)

If decomposition is done properly, recombining can be done by joining the

relations on attributes of the same name (this is called a natural join).

Example: In SQL we can compute Movies as follows:

SELECT *

FROM Movies1, Movies2

WHERE Movies1.title = Movies2.title AND

Movies1.year = Movies2.year

Recombining relations

9



A candidate key for a relation is a set of its attributes that satisfy:

• Uniqueness. The values of the attributes uniquely identify a

tuple.

• Minimality. No proper subset of the attributes has the unique-

ness property.

If uniqueness is satisfied (but not necessarily minimality) the attributes

are said to form a superkey.

Examples:

• {Title, year, starName} is a candidate key for the Movies relation.

• {Title, year, starName, length} is a superkey, but not a

candidate key, for the Movies relation.

• {Title, year} does not satisfy uniqueness for Movies.

Candidate keys of a relation

10



Note that the concept of a candidate key is defined with respect to the

relation (schema), and not with respect to any particular instance of the

relation.

The primary key of a relation in a DBMS should be a candidate key, but

there could be several candidate keys to choose from. When talking about

normalization, it is irrelevant which key is chosen as primary key.

Candidate keys vs primary keys

11



Next: Functional dependencies and normal forms



When values of attribute B can be derived (by an all-knowing en-

tity) from the attributes A1, . . . , An we say that B is functionally

dependent on A1, . . . , An. This is written as follows:

A1A2 . . . An → B

Example: Movies has the functional dependency (FD)

title year → length

but not the FD

title year → starName

This is in fact the very reason for the anomalies we saw!

Functional dependencies cause anomalies

13



Functional dependency on a candidate key

If the attributes of some candidate key is included in {A1, . . . , An}, these
attributes uniquely identify the tuple from which the values come.

In particular, we can determine the value of any other attribute B in the

relation, so we unavoidably have the FD

A1A2 . . . An → B

Trivial functional dependency

Also, we can always determine the value of attribute Ai from the value of

attribute Ai. So we unavoidably have the FD

A1A2 . . . An → Ai

Unavoidable functional dependency

14



A normal form is a criterion on a relation schema.

A relation schema is in first normal form (1NF) if it specifies

that all tuples contain the same number of atomic attribute

values.

In pure relational DBMSs it is only possible to have 1NF relations schemas.

A relation schema is in second normal form (2NF) if it is in

1NF and there are no functional dependencies with a proper

subset of a candidate key on the left hand side.

Example: Movies has the functional dependency

title year → length

where {title, year} is a subset of the candidate key {title, year,starname}.
Thus, Movies is not in 2NF.

First and second normal form

15



A relation schema is in Boyce-Codd normal form (BCNF)

if there are only unavoidable functional dependencies among

its attributes.

Example: Movies has the functional dependency

title year → length

which is not unavoidable because it is nontrivial and {title, year} is not a

superkey. Thus, Movies is not in BCNF.

Boyce-Codd normal form (BCNF)

16



The relations of our decomposition:

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

are in BCNF. The only nontrivial nonreducible FDs are (all in Movies1):

title year → length

title year → filmType

title year → studioName

and they are unavoidable since {title, year} is a candidate key for Movies1.

Examples of relations in BCNF

17



Reducing FDs: Whenever we can reduce the number of attributes when

writing an FD we do so. For example, Movies1 has the FDs

title year filmType → length

title year studioName → length

which can both be reduced to

title year → length

Combining FDs: Whenever several FDs have the same left hand side we

combine them. For example, the three FDs we saw for Movies can be

written succinctly as:

title year → length filmType studioName

Writing functional dependencies

18



Suppose we have a relation R which is not in BCNF. Then there is an FD

A1A2 . . . An → B1B2 . . . Bm

which is not unavoidable.

To eliminate the FD we split R into two relations:

• One with all attributes of R except B1, B2, . . . , Bm.

• One with attributes A1, A2, . . . , An, B1, B2, . . . , Bm.

If any of the resulting relations is not in BCNF, the process is repeated.

Note: A1, A2, . . . , An is a superkey for the second relation – therefore we

can recover R as the natural join of the two relations.

Decomposing a relation into BCNF

19



Recall the relation Movies with schema

Movies(title, year, length, filmType, studioName, starName)

It has the following FD, which is not unavoidable:

title year → length filmType studioName

Thus the decomposition yields the following relations (both in BCNF):

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

BCNF decomposition example

20



Movies(title, year, length, filmType, studioName, starName)

could also have been decomposed by using the following FDs, one by one:

title year → length

title year → filmType

title year → studioName

Then the decomposition yields the following relations (all in BCNF):

Movies1(title, year, length), Movies2(title, year, filmType),

Movies3(title, year, studioName), Movies4(title, year, starName)

To avoid too many relations, as in this example, you should generally use

maximal FDs where it is not possible to add attributes on the right side.

BCNF decomposition example 2

21



Consider a relation containing an inventory record:

Inventory(part, warehouse, quantity, warehouse-address)

• What are the candidate keys of the relation?

• What are the avoidable functional dependencies?

• Perform a decomposition into BCNF.

Problem session

22



Next: 3rd normal form and dependency preservation



Consider the relation Bookings(title,theater,city) with FDs:

theater → city (and theater is not a candidate key).

title city → theater.

BCNF dec.: Bookings1(theater,city) Bookings2(theater,title).

These schemas and their FDs allow, e.g., the relation instances:

theater city

Guild Menlo Park

Park Menlo Park

theater title

Guild The net

Park The net

which violate the presumed FD title city → theater.

Thus, there are implicit dependencies between values in different relations.

We cannot check FDs separately in each relation to see such a dependency.

Interrelation dependencies

24



As we just saw, decomposition can result in a relational database schema

where a functional dependency “disappeared”. (The decomposition is not

dependency preserving.)

The problem in the previous example arose because we decomposed

according to the FD theater → city, where city is part of a candidate key

for the Bookings relation. Thus we ended up splitting the candidate key

{city, theater}.

This problem of FDs that are not preserved never arises if we do not

decompose in this case.

Splitting candidate keys

25



We have motivated the following normal form that never splits a candidate

keys of the original relation:

A relation schema is in 3rd normal form (3NF) if any func-

tional dependency among its attributes is either unavoidable,

or has a member of some candidate key on the right hand

side.

In words: A relation is in 3NF if there are no unavoidable functional

dependencies among non-candidate key attributes.

Third normal form

26



HasAccount(Account-number,ClientId,OfficeId)

Functional dependencies:

ClientId OfficeId → AccountNumber

AccountNumber → OfficeId

Is in 3rd normal form, but not BCNF (why?). Can be decomposed losslessly:

AcctOffice(Account-number,OfficeId)

AcctClient(Account-number,ClientId)

Third normal form, another example

27



A 3NF schema can also be found “directly” by schema synthesis.

Given a relation R and a set F of FDs.

• Find a minimal set of FDs that cover (imply) all FDs in F .

• Create a relation Ri for each FD (with the attributes of the FD).

• If needed, add a relation R0 containing a key of R.

We will not go into why this procedure produces a 3NF schema.

3NF by schema synthesis

28



Whether it is a good idea to stop decomposition when third normal form is

reached depends on the specific scenario.

• Mostly, 3NF and BCNF coincide, so there is nothing to consider.

• If not, the redundancy in tuples in 3NF should be weighed against the

fact that some FD is difficult to check/maintain in BCNF.

Example:

In the Bookings example, we might want to make the DBMS check that to

every title and city, there is at most one theater. For the BCNF

decomposed relations, this would involve a query on Bookings1 for every

change of Bookings2, and vice versa.

When to stop decomposition at 3NF?

29



Next: Higher normal forms.



Boyce-Codd normal form eliminates redundancy in each tuple, but may

leave redundancy among tuples in a relation.

This typically happens if two many-many relationships (or in general: a

combination of two types of facts) are represented in one relation.

Example:

name street city title year

C. Fisher 123 Maple St. Hollywood Star Wars 1977

C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980

C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983

C. Fisher 5 Locust Ln. Malibu Star Wars 1977

C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980

C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

Redundancy in BCNF relations

31



Then what about something like one of these:

name street city title year

C. Fisher 123 Maple St. Hollywood NULL NULL

C. Fisher 5 Locust Ln. Malibu NULL NULL

C. Fisher NULL NULL Star Wars 1977

C. Fisher NULL NULL Empire Strikes Back 1980

C. Fisher NULL NULL Return of the Jedi 1983

name street city title year

C. Fisher 123 Maple St. Hollywood Star Wars 1977

C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980

C. Fisher NULL NULL Return of the Jedi 1983

Curing it with NULL values?

32



A better idea is to eliminate redundancy by decomposing StarsIn as

follows:

name street city

C. Fisher 123 Maple St. Hollywood

C. Fisher 5 Locust Ln. Malibu

name title year

C. Fisher Star Wars 1977

C. Fisher Empire Strikes Back 1980

C. Fisher Return of the Jedi 1983

Decomposition

33



Roughly speaking, a relation is in 4th normal form if it cannot be

meaningfully decomposed into two relations.

Example: StarsIn is not in 4th normal form, since it can be decomposed,

as we have just shown.

Roughly speaking, a relation is in 5th normal form if it cannot be

meaningfully decomposed into some number of relations.

4th and 5th normal form

34



Inclusion among normal forms:

Any relation in 5NF is also in 4NF.

Any relation in 4NF is also in BCNF.

Any relation in BCNF is also in 3NF.

Properties of normal forms:

A “higher” normal form has less redundancy, but may not preserve

functional and multivalued dependencies.

Relationship among normal forms

35



The various normal forms may be seen as guidelines for designing a good

relation schema. Some complexities that arise are:

• Should we split candidate keys, introducing dependencies between

relations (in 3NF we do not)?

• What is the effect of decomposition on performance? (More on this

later.)

If one chooses a relation schema with avoidable functional dependencies,

one should be aware of the extra effort that is needed to avoid anomalies.

How should normal forms be used?

36



Your goals related to today’s lecture should be to:

• Understand the significance of normalization.

• Be able to determine whether a relation is in Boyce Codd normal form

or 3rd normal form.

• Be able to split a relation in several relations to achieve any of the

normal forms.

• Know how to recombine normalized relations in SQL.

Most important points in this lecture

37


