
PCPP IT University, E2017

Exercises week 7
Friday 3 November 2017

Goal of the exercises
The goal of this week’s exercises is for you to show that you can write responsive user interfaces using threads
and make them work correctly.

Do this first
Get and unpack this week’s example code in zip file pcpp-week07.zip on the course homepage.

Exercise 7.1 File TestFetchWebGui.java contains a simple Java Swing user interface to initiate the fetching of
some web pages and then report their sizes.

As implemented, the program uses a single SwingWorker subclass instance to fetch all the web pages sequen-
tially, which is slow because each download has to complete before the next one starts. In this exercise you must
change it so that it initiates multiple downloads at the same time, and prints the results as they become available.

1. Implement concurrent download. You can ignore the cancellation button and progress bar for now. There
seems to be two ways to implement concurrent download of N webpages. Either (1) create N SwingWorker
subclass instances that each downloads a single webpage; or (2) create a single SwingWorker subclass
instance that itself uses Java’s executor framework to download the N web pages concurrently. Approach
(1) seems more elegant because it uses the SwingWorker executor framework only, instead of using two
executor frameworks. Also, approach (2) seems dubious unless it is clear that a SwingWorker’s publish
method can be safely called on multiple threads; what does the Java class library documentation say about
this? Implement and explain the correctness of your solution for concurrent download.

2. Make the cancellation button work also with concurrent download.

3. Make the progress bar work also with concurrent download. One way to do this is to create an AtomicInteger
that all the download operations update as they complete, and let them all call setProgress with a
suitable value.

Exercise 7.2 File TestLiftGui.java contains an implementation of a lift simulator, corresponding to the north end
of the IT University’s atrium: two lifts, both serving seven floors, from basement (floor number −1) to floor 5.

1. Explain why the whole simulation and its graphical user interface is thread-safe, in spite of the Swing GUI
toolkit components not being thread-safe.

2. Change the lift simulator and GUI to work for a hotel with four lifts, all of which serve floors −2 through
10, and still with a single lift controller.

3. In the current implementation, each lift has a thread whose run method uses the Thread.sleep method
to sleep most of the time. An alternative design is to use the Java executor framework, for instance, a
scheduled thread pool, to periodically update each lift’s state. The scheduleAtFixedRate method of
the ScheduledThreadPoolExecutor class in package java.util.concurrent seems relevant. In this design, each
lift is represented by a Runnable whose run method gets called, say, 16 times a second. The main work in
this rewriting probably is to introduce extra fields in the Lift object so that the lift “knows” which state it is
in: going nowhere (direction None), going up (direction Up), going down (direction Down), opening doors,
or closing doors, and so that the run method can act accordingly. There should be no calls to sleep left
in the Lift methods.

4. Modify the user interface so that a lift’s inside buttons show which floors the lift will eventually stop at. For
instance, you may set the foreground (text) color of the button for a given floor to Color.RED when the
lift will stop there, otherwise the (default) Color.BLACK.

1


