
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 9

Alexander Asp Bock
IT University of Copenhagen

Friday 2017-11-10

IT University of Copenhagen 2

Plan for today
• What’s wrong with lock-based atomicity
• Transactional memory STM, Multiverse library
• A transactional bank account
• Transactional blocking queue
• Composing atomic operations

– transfer from one queue to another
– choose first available item from two queues

• Philosophical transactions
• Other languages with transactional memory
• Hardware support for transactional memory
• NB: Course evaluation ongoing

IT University of Copenhagen

Transactional memory
• Based on transactions, as in databases
• Transactions are composable

– unlike lock-based concurrency control
• Easy to implement blocking

– no wait and notifyAll or semaphore trickery

• Easy to implement blocking choice
– eg. get first item from any of two blocking queues

• Typically optimistic
– automatically very scalable read-parallelism
– unlike pessimistic locks

• No deadlocks and usually no livelocks

3

IT University of Copenhagen

Transactions
• Know from databases since 1981 (Jim Gray)
• Proposed for programming languages 1986

– (In a functional programming conference)
• Became popular again around 2004

– due to Harris, Marlow, Peyton-Jones, Herlihy
– Haskell, Clojure, Scala, ... and Java Multiverse

• A transaction must be
– Atomic: if one part fails, the entire transaction fails
– Consistent: maps a valid state to a valid state
– Isolated: A transaction does not see the effect of

any other transaction while running
– (But not Durable, as in databases)

4

IT University of Copenhagen

Difficulties with lock-based
atomicity

• Transfer money from account ac1 to ac2
– No help that each account operation is atomic
– Can lock both, but then there is deadlock risk

• Transfer an item from queue bq1 to bq2
– No help that each queue operation is atomic
– Locking both, nobody can put and take; deadlock

• Get an item from either queue bq1 or bq2
– (when both queues are blocking)
– Should block if both empty
– But just calling b1.take() may block forever even

if there is an available item in bq2

5

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§

18
.2

atomic {
return bq1.take();

} orElse {
return bq2.take();

}

Transactions make this trivial
• Transfer amount from account ac1 to ac2:

• Transfer one item from queue bq1 to bq2:

• Take item from queue bq1 if any, else bq2:

6

atomic {
ac1.deposit(-amount);
ac2.deposit(+amount);

}

atomic {
T item = bq1.take();
bq2.put(item);

}

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§

18
.2

Pseudo-code

class Account {
private long balance = 0;
public void deposit(final long amount) {
atomic {
balance += amount;

}
}
public long get() {
atomic {
return balance;

}
}
public void transfer(Account that, final long amount) {
final Account thisAccount = this, thatAccount = that;
atomic {
thisAccount.deposit(-amount);
thatAccount.deposit(+amount);

}
} }

Transactional account

7

Acc

Composite transaction
without deadlock risk

Pseudo-code

Transactional memory in Java
• Multiverse Java library 0.7 from April 2012

– Seems comprehensive and well-implemented
– Little documentation apart from API docs
– ... and those API docs are quite cryptic

• A transaction must be wrapped in
– new Runnable() { ... } if returning nothing
– new Callable<T>() { ... } if returning a T value
– or just a lambda () -> { ... } in either case

• Runs on unmodified JVM
– Thus is often slower than locks/volatile/CAS/...

• To compile and run:

8

$ javac -cp ~/lib/multiverse-core-0.7.0.jar TestAccounts.java
$ java -cp ~/lib/multiverse-core-0.7.0.jar:. TestAccounts

Transactional account, Multiverse

9

Acc

class Account {
private final TxnLong balance = newTxnLong(0);
public void deposit(final long amount) {
atomic(() -> balance.set(balance.get() + amount));

}

public long get() {
return atomic(() -> balance.get());

}

public void transfer(Account that, final long amount) {
final Account thisAccount = this, thatAccount = that;
atomic(() -> {
thisAccount.deposit(-amount);
thatAccount.deposit(+amount);

});
}

}

Composite transaction
without deadlock risk

st
m

/T
es

tA
cc

ou
nt

s.
ja

va

IT University of Copenhagen

Consistent reads
• Auditor computes balance sum during transfer

• Must read both balances in same transaction
– Does not work to use a transaction for each reading

• Should print the sum only outside transaction
– After the transaction committed
– Otherwise risk of printing multiple times…

• Multiverse: Does not work if deposit(amount)
uses balance.increment(amount) ????

10

long sum = atomic(() -> account1.get() + account2.get());
System.out.println(sum);

st
m

/T
es

tA
cc

ou
nt

s.
ja

va

Acc

IT University of Copenhagen

How do transactions work?
• A transaction txn typically keeps

– Read Set: all variables read by the transaction
– Write Set: local copy of variables it has updated

• When trying to commit, check that
– no variable in Read Set or Write Set has been

updated by another transaction
– if OK, write Write Set to global memory, commit
– otherwise, discard Write Set and restart txn again

• So the Runnable may be called many times!
• How long to wait before trying again?

– Exponential backoff: wait rnd.nextInt(2),
rnd.nextInt(4), rnd.nextInt(8), ...

– Should prevent transactions from colliding forever
11

IT University of Copenhagen

Nested transactions
• By default, an atomic within an atomic

reuses the outer transaction: So if the inner
fails, the outer one fails too

• Several other possibilities, see
org.multiverse.api.PropagationLevel
– Default is PropagationLevel.Requires: if there is a

transaction already, use that; else create one

12

IT University of Copenhagen

Multiverse transactional references
• Only transactional variables are tracked

– TxnRef<T>, a transactional reference to a T value
– TxnInteger, a transactional int
– TxnLong, a transactional long
– TxnBoolean, a transactional boolean
– TxnDouble, a transactional double

• Methods, used in a transaction, inside atomic
– get(), to read the reference
– set(value), to write the reference

• Several other methods, eg
– getAndLock(lockMode), for more pessimism
– await(v), block until value is v

13

IT University of Copenhagen 14

Plan for today
• What’s wrong with lock-based atomicity
• Transactional memory STM, Multiverse library
• A transactional bank account
• Transactional blocking queue
• Composing atomic operations

– transfer from one queue to another
– choose first available item from two queues

• Philosophical transactions
• Other languages with transactional memory
• Hardware support for transactional memory

Lock-based bounded queue (wk 8)

15

class SemaphoreBoundedQueue <T> implements BoundedQueue<T> {
private final Semaphore availableItems, availableSpaces;
private final T[] items;
private int tail = 0, head = 0;

public void put(T item) throws InterruptedException {
availableSpaces.acquire();
doInsert(item);
availableItems.release();

}

private synchronized void doInsert(T item) {
items[tail] = item;
tail = (tail + 1) % items.length;

}

public T take() throws InterruptedException { ... }
...

}

Te
st

B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

BQ

Use semaphore to block
until room for new item

Use lock for
atomicity

IT University of Copenhagen

class StmBoundedQueue<T> implements BoundedQueue<T> {
private int availableItems, availableSpaces;
private final T[] items;
private int head = 0, tail = 0;

public void put(T item) { // at tail
atomic {
if (availableSpaces == 0)
retry();

else {
availableSpaces--;
items[tail] = item;
tail = (tail + 1) % items.length;
availableItems++;

}
}

}
public T take() {
... availableSpaces++; ...

}
}

Transactional blocking queue

16

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§

18
.2

BQ

Atomic
action

Use retry()
to block

Pseudo-code

IT University of Copenhagen

class StmBoundedQueue<T> implements BoundedQueue<T> {
private final TxnInteger availableItems, availableSpaces;
private final TxnRef<T>[] items;
private final TxnInteger head, tail;

public void put(T item) { // at tail
atomic(() -> {
if (availableSpaces.get() == 0)
retry();

else {
availableSpaces.decrement();
items[tail.get()].set(item);
tail.set((tail.get() + 1) % items.length);
availableItems.increment();

}
});

}
public T take() {
... availableSpaces.increment(); ...

}
}

Real code, using Multiverse library

17

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

BQ

Atomic
action

Use retry()
to block

IT University of Copenhagen

How does blocking work?
• When a transaction executes retry() ...

– The Read Set says what variables have been read
– No point in restarting the transaction until one of

these variables have been updated by other thread
• Hence NOT a busy-wait loop

– but automatic version of wait and notifyAll
– or automatic version of acquire on Semaphore

• Often works out of the box, idiot-proof
• Must distinguish:

– restart of transaction because could not commit
• exponential backoff, random sleep before restart

– an explicit retry() request for blocking
• waits passively in a queue for Read Set to change

18

BQ

IT University of Copenhagen

Atomic transfer between queues

• A direct translation from the pseudo-code
• Can hardly be wrong

19

static <T> void transferFromTo(BoundedQueue<T> from,
BoundedQueue<T> to)

{
atomic(() -> {
T item = from.take();
to.put(item);

});
}

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

IT University of Copenhagen

Blocking until some item available

• If bq1.take() fails, try instead bq2.take()
• Implemented using general myOrElse method

– taking as arguments two Callables

20

static <T> T takeOne(BoundedQueue<T> bq1,
BoundedQueue<T> bq2) throws Exception

{
return myOrElse(() -> bq1.take(),

() -> bq2.take());
}

Do this

or else
that st

m
/T

es
tS

tm
Q

ue
ue

s.
ja

va

IT University of Copenhagen

Implementing method myOrElse

• Exposes Multiverse’s internal machinery
– retry() is implemented by throwing an exception

• Hand-made implementation
– Because Multiverse’s OrElseBlock seems faulty...

21

static <T> T myOrElse(Callable<T> either, Callable<T> orelse)
throws Exception

{
return atomic(() -> {
try {
return either.call();

} catch (org.multiverse.api.exceptions.RetryError retry) {
return orelse.call();

}
});

}

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

IT University of Copenhagen 22

Plan for today
• What’s wrong with lock-based atomicity
• Transactional memory STM, Multiverse library
• A transactional bank account
• Transactional blocking queue
• Composing atomic operations

– transfer from one queue to another
– choose first available item from two queues

• Philosophical transactions
• Other languages with transactional memory
• Hardware support for transactional memory

IT University of Copenhagen

Philosophical Transactions

• Lock-based philosopher (wk 8)
– Likely to deadlock in this version

23

P Old

class Philosopher implements Runnable {
private final Fork[] forks;
private final int place;
public void run() {
while (true) {
int left = place, right = (place+1) % forks.length;
synchronized (forks[left]) {
synchronized (forks[right]) {
System.out.print(place + " "); // Eat

}
}
try { Thread.sleep(10); } // Think
catch (InterruptedException exn) { }

}
}

}

Te
st

Ph
ilo

so
ph

er
s.

ja
va

Exclusive
use of forks

IT University of Copenhagen

class Philosopher implements Runnable {
private final TxnBoolean[] forks;
private final int place;
public void run() {
while (true) {
final int left = place, right = (place+1) % forks.length;
atomic(() -> {
if (!forks[left].get() && !forks[right].get()) {
forks[left].set(true);
forks[right].set(true);

} else
retry();

});
System.out.printf("%d ", place); // Eat
atomic(() -> {
forks[left].set(false);
forks[right].set(false);

});
try { Thread.sleep(10); } // Think
catch (InterruptedException exn) { }

}
}}

TxnBooleans as Forks A

24

P A

st
m

/T
es

tS
tm

Ph
ilo

so
ph

er
sA

.j
av

a

Exclusive
use of forks

Release
forks

class Philosopher implements Runnable {
private final TxnBoolean[] forks;
private final int place;
public void run() {
while (true) {
final int left = place, right = (place+1) % forks.length;
atomic(() -> {
forks[left].await(false);
forks[left].set(true);
forks[right].await(false);
forks[right].set(true);

});
System.out.printf("%d ", place); // Eat
atomic(() -> {
forks[left].set(false);
forks[right].set(false);

});
try { Thread.sleep(10); } // Think
catch (InterruptedException exn) { }

}
}

}

TxnBooleans as Forks B

25

P B

st
m

/T
es

tS
tm

Ph
ilo

so
ph

er
sB

.j
av

a

Exclusive
use of forks

Release
forks

IT University of Copenhagen

Transaction subtleties
• What is wrong with this Philosopher?

– Variant of B that “eats” inside the transaction

26

public void run() {
while (true) {
final int left = place, right = (place+1) % forks.length;
atomic(() -> {
forks[left].await(false);
forks[left].set(true);
forks[right].await(false);
forks[right].set(true);
System.out.printf("%d ", place);// Eat
forks[left].set(false);
forks[right].set(false);

});
try { Thread.sleep(10); } // Think
catch (InterruptedException exn) { }

}
}

P C

Transaction has its
own view of the

world until commit

Other transactions
may have taken all

the forks!

BAD

IT University of Copenhagen

Optimism and multiple universes
• A transaction has its own copy of data (forks)
• At commit, it checks that data it used is valid

– if so, writes the updated data to common memory
– otherwise throws away the data, and restarts

• Each transaction works in its own “universe”
– until it succesfully commits

• This allows higher concurrency
– especially when write conflicts are rare
– but means that a Philosopher cannot know it has

exclusive use of a fork until transaction commit
• Transactions + optimism = multiple universes
• No I/O or other side effects in transactions!

27

IT University of Copenhagen

Lazy vs. Eager
• Lazy commit strategy:

– Keep everything in transaction’s universe until
commit

– Conflict resolution at commit time
– Keep redo log of what should be redone on retry

• Eager commit strategy:
– Commit changes upon making them
– Detect conflicts as transaction proceeds
– Conflict resolution happens at multiple places
– Keep an undo log of things that need to be

reverted on conflict

28

IT University of Copenhagen

Lazy vs. Eager
• Lazy:

– Rollback is faster (just drop local data)
– Slower commits (commits everything at once!)
– Memory not inconsistent on crashes

• Eager:
– Rollback is slower
– Conflicts detected earlier
– Memory may be inconsistent on crashes

29

IT University of Copenhagen

Optimistic Concurrency and Game
Theory

• View transactions as competing entities
• Transactions have knowledge of system
• E.g. long-running transactions get priority
• Why should we keep transactions short?
• Conversely, we also want fairness
• Paper by Eidenbenz and Wattenhofer
• Conclusion: Any deterministic policy can be

gamed/exploited
• Optimistic, cooperative concurrency (next

week)

30

IT University of Copenhagen

Pessimistic Concurrency and Game
Theory

• Same principle applies to pessimistic
concurrency

• Why should I let go of a lock?
• Keep holding on to object associated with

lock
• Security concern: Locking on this
• Any code with a reference to your object can

block everyone else
• Use a private lock object instead

31

IT University of Copenhagen

Hints and warnings
• Transactions should be short

– When a long transaction finally tries to commit,
it is likely to have been undermined by a short one

– ... and must abort, and a lot of work is wasted
– ... and it restarts, so this happens again and again

• For example, concurrent hash map
– short: put, putIfAbsent, remove
– long: reallocateBuckets – not clear it will ever

succeed when others put at the same time

• Some STM implementations avoid aborting
the transaction that has done most work
– Many design tradeoffs

32

IT University of Copenhagen

Some languages with transactions
• Haskell – in GHC implementation

– TVar T, similar to TxnRef<T>, TxnInteger, ...
• Scala – ScalaSTM, on Java platform

– Ref[T], similar to TxnRef<T>, TxnInteger, ...
• Clojure – on Java platform

– (ref x), similar to TxnRef<T>, TxnInteger, ...
• C, C++ – future standards proposals
• Java – via Multiverse library

– Creator Peter Ventjeer is on ScalaSTM team too
• Java – DeuceSTM, other research prototypes
• And probably many more ...

33

IT University of Copenhagen

Transactional memory in perspective
• Works best is a mostly immutable context

– eg functional programming: Haskell, Clojure, Scala
• Mixes badly with side effects, input-output
• Requires transactional (immutable) collection

classes and so on
• Some loss of performance in software-only TM
• Still unclear how to best implement it
• Some think it will remain a toy, Cascaval 2008

– ... but they use C/C++, too much mutable data
• Multicore hardware support would help

– can be added to cache coherence (MESI) protocols

34

IT University of Copenhagen

Hardware support for transactions
• Eg Intel TSX for Haswell CPUs, since 2013

– New XBEGIN, XEND, XABORT instructions
– https://software.intel.com/sites/default/files/m/9/2/3/41604

• Could be used by future JVMs, .NET/CLI, ...
• Uses core’s cache for transaction’s updates
• Extend cache coherence protocol (MESI, wk 7)

– Messages say when another core writes data
– On commit, write cached updates back to RAM
– On abort, invalidate cache, do not write to RAM

• Limitations:
– Limited cache size, ...

35

IT University of Copenhagen

This week
• Reading

– Herlihy and Shavit sections 18.1-18.2
– Harris et al: Composable memory transactions
– Cascaval et al: STM, Why is it only a research toy
– Eidenbenz and Wattenhofer: Good programming in

transactional memory Game theory meets
multicore architecture

• Exercises
– Show you can use transactional memory to

implement histogram and concurrent hashmap
• Read before next week

– Goetz et al chapter 15

36

