
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming

Riko Jacob
IT University of Copenhagen

Friday 2018-08-31

IT University of Copenhagen 2

Plan for today

• Why this course?
• Course contents, learning goals
• Practical information
• Mandatory exercises, examination

• Java threads
• Java locking, the synchronized keyword

– Use synchronized on blocks, not on methods

• Visibility of memory writes

Based on slides by
Peter Sestoft

IT University of Copenhagen

The teachers
• Course responsible: Riko Jacob

– MSc 1998, PhD 2002 BRICS Aarhus University
– Algorithms Engineering and other topics
– Joined ITU in 2015

• Co-teachers:
– Matteo Ceccarello
– Claus Brabrand

• Material: Peter Sestoft, ’14, ’15, ’16, RJ ’17
• Exercises

– Matteo Dusefante, ITU PhD student
– Amund Lome, ITU MSc graduate

IT University of Copenhagen

Why this course?

• Parallel programming is necessary
– For responsiveness in user interfaces etc.
– The real world is parallel

• Think of the atrium lifts: lifts move, buttons are pressed
• Think of handling a million online banking customers

– For performance: The free lunch is over

• It is easy, and disastrous, to get it wrong
– Testing is even harder than for sequential code
– You should learn how to make correct parallel code

• in a real language, used in practice

– You should learn how to make fast parallel code
• and measure whether one solution is faster than another
• and understand why

4

IT University of Copenhagen

Example: 2 lifts, 7 floors, 26 buttons

5

Lots of concurrency:
-lifts move
-buttons are pressed
-doors open & close

b_1

−1

0

1

4

5

2

3

f_0

f_1

f_2

f_4

f_3

Lift A

f_5

Lift B

The free lunch is over:
No more growth in single-core speed

6

H
er

b
 S

u
tt

er
:

T
h
e
 f
re

e
lu

n
ch

 i
s

o
ve

r,
 D

r
D

o
b
b
s,

 2
0
0
5
.

Fi
g
u
re

 u
p
d
at

ed
 A

u
g
u
st

 2
0
0
9
.

h
tt

p
:/

/w
w

w
.g

o
tw

.c
a/

p
u
b
lic

at
io

n
s/

co
n
cu

rr
en

cy
-d

d
j.

h
tm

Moore’s
law

Clock
speed

IT University of Copenhagen

Course contents

• Threads, locks, mutual exclusion, scalability
• Java 8 streams, functional programming
• Performance measurements
• Tasks, the Java executor framework
• Safety, liveness, deadlocks
• Testing concurrent programs
• Transactional memory, Multiverse
• Lock-free data structures, Java mem. model
• Message passing, Akka

7

IT University of Copenhagen

(a) lock

JVM
java

thread

task future

lock-
free

trans
action message

passing

streams

measure

correctness

model of computation

ab
st

ra
c t

io
n

IT University of Copenhagen

Learning objectives
After the course, the successful student can:
•ANALYSE the correctness of concurrent Java software,
and RELATE it to the Java memory model
•ANALYSE the performance of concurrent Java
software
•APPLY Java threads and related language features
(locks, final and volatile fields) and libraries
(concurrent collections) to CONSTRUCT correct and
well-performing concurrent Java software
•USE software tools for accelerated testing and
analysis of concurrency problems in Java software
•CONTRAST different communication mechanisms
(shared mutable memory, transactional memory,
message passing)

9

IT University of Copenhagen

Expected prerequisites

• From the ITU course base:
“Students must know the Java programming
language very well, including inner classes
and a first exposure to threads and locks,
and event-based GUIs as in Swing or AWT.”

• Today we will briefly review the basics of
– Java threads
– Java synchronized methods and statements
– Java’s final keyword
– Java inner classes and lambdas

10

IT University of Copenhagen 11

Standard weekly plan

• Lectures Fridays in Auditorium 1
Corresponding exercise assignment is ready

• Exercise Lab: Wednesdays, 2A12-14
– Two slots: 14-16 and 16-18
– First 15 minutes: Announcements wrt exercises

• Exercise hand-in: 6.5 days after lecture
– That is, the following Thursday at 23:55
– Feedback by 14 days after lecture
– Retry-hand-in: 20.5 days after lecture

• Until December 7, Exam hand-in Dec 19
(except fall break, Week 42, 15-19 Oct)

IT University of Copenhagen 12

Course information online

• Course LearnIT page, restricted access:
https://learnit.itu.dk/

– Mandatory exercises and hand-ins, deadlines, feedback
– Discussion forum
– Non-public reading materials

• Course homepage, public access:
http://www.itu.dk/people/rikj/PCPP2018/
– Overview of lectures and exercises
– Lecture slides and exercise sheets
– Example code
– List of all mandatory reading materials

https://learnit.itu.dk/

IT University of Copenhagen

Exercises

• There are 13 sets of weekly exercises
• At least 11 can be handed in towards the exam
• Hand in the solutions through LearnIT
• You can work in teams of 1,2 or 3 students
• The teaching assistants provide joint feedback
• Hand-ins: ≥6 must be submitted, ≥5 approved

– otherwise you cannot take the course examination
– failing to get 5 approved costs an exam attempt (!!)

• Exercise may be approved even if not fully solved
– It is possible to resubmit
– Make your best effort: two serious attempts=one solved
– What is important is that you learn

13

IT University of Copenhagen

The exam

• A 30 hour take-home written exam/project
– Start at 0900 Tuesday 18 December 2017
– End at 1500 Wednesday 19 December
– Electronic submission in LearnIT
– Followed by random sample “cheat check”

• Expected exam workload is 16 hours
– Individual exam, no collaboration
– All materials, including Internet, allowed
– Always credit the sources you use
– Plagiarism is forbidden – as always

• The old (2014 - 2017) exams are on the
public homepage

14

IT University of Copenhagen

Expected Time Usage

This course is 7.5 ECTS = 210 hours of work
For average student to get an average grade

15

Total hours Weekly hours

96 8 Solving / submitting exercise (12x)

42 Exam prep (2 old exams)

28 2 Reading

28 2 Lecture

16 Exam

Total: 210

5 handins = preparation for barely pass

IT University of Copenhagen

Stuff you need

• Buy Goetz et al: Java Concurrency in Practice
– From 2006, still the best on Java concurrency
– Most contents is relevant for C#/.NET too

• Free lecture notes and papers, see homepage
• A few other book chapters, see LearnIT

• Java 8 SDK installed on your computer
– Java 7 or earlier will not work
– Java 9 or later should work, we will find out

• Various optional materials, see homepage:
– Bloch: Effective Java, 2008, highly recommended
– Sestoft: Java Precisely, 3rd edition 2016
– more ...

16

IT University of Copenhagen

What about other languages?

• .NET and C# are very similar to Java
– We will point out differences on the way

• Clojure, Scala, F#, ... build on JVM or .NET
– So thread concepts are very similar too

• C and C++ have some differences (ignore)
• Haskell has transactional memory

– We will see this in Java too (Multiverse)

• Erlang, Scala, F# have message passing
– We will see this in Java too (Akka)

• Dataflow, CSP, CCS, Pi-calculus, Join, Cω, ...
– Zillions of other concurrency mechanisms

17

IT University of Copenhagen

Other concurrency models
• Java threads interact via shared mutable fields

– Shared: Visible to multiple threads
– Mutable: The fields can be updated, assigned to

• This is a source of many problems
• Alternatives exist:
• No sharing: interact via message passing

– Erlang, Scala, MPI, F#, Go ... and Java Akka library

• No mutability: use functional programming
– Haskell, F#, ML, Google MapReduce, ...

• Allow shared mutable mem., but avoid locks
– Transactional memory, optimistic concurrency
– In Haskell, Clojure, ... and Java Multiverse library

18

IT University of Copenhagen

Other parallel hardware

• We focus on multicore (standard) hardware
– Typically 2-32 general cores on a CPU chip
– (Instruction-level parallelism, invisible to software)

• Other types of parallel hardware exist
• Vector instructions (SIMD, SSE, AVX) on core

– Typically 2-8 floating-point operations/CPU cycle
– Claimed available through .NET JIT and hence C#

• General purpose graphics processors GPGPU
– Such as Nvidia CUDA, up to 2500 cores on a chip
– We’re using those in a research project

• Clusters, cloud: servers connected by network

19

IT University of Copenhagen

Threads and concurrency in Java

• A thread is
– a sequential activity executing Java code
– running at the same time as other activities

• Concurrent = at the same time = in parallel
• Threads communicate via fields

– That is, by updating shared mutable state

20

IT University of Copenhagen

A thread-safe class for counting

• A thread-safe long counter:

• The state (field count) is private
• Only synchronized methods read and write it

21

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 }
}

Te
st

Lo
n
g
C
o
u
n
te

r.
ja

va

A thread that increments the counter
• A Thread t is created from a Runnable
• The thread’s behavior is in the run method

• This only creates the thread, does not start it

22

final LongCounter lc = new LongCounter();
Thread t =
 new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 }
);

An anonymous
inner class, and an

instance of it

Te
st

Lo
n
g
C
o
u
n
te

r7
.j

av
a

When started, the
thread will do this:
increment forever

Starting the thread in parallel
with the main thread

23

public static void main(String[] args) ... {
 final LongCounter lc = new LongCounter();
 Thread t = new Thread(new Runnable() { ... });
 t.start();
 System.out.println("Press Enter ... ");
 while (true) {
 System.in.read();
 System.out.println(lc.get());
 }
}

Press Enter to get the current value:
60853639
103606384
263682708
...

Creating and starting a thread
(and communicating via object)

24

Thread
“main”
(active)

Object lc
(passive)

Thread t
(active)

increment()

increment()

get()

increment()

t = new Thread(...)

lc = new LongCounter()

t.start()

• Instead of old anonymous inner classes:

• ... we use neat Java 8 lambda expressions:

Thread t = new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 });

Java 8 lambda expressions

25

Thread t = new Thread(() -> {
 while (true)

 lc.increment();
}); Te

st
Lo

n
g
C
o
u
n
te

r.
ja

va
Te

st
Lo

n
g
C
o
u
n
te

r7
.j

av
a

IT University of Copenhagen

Locks and the synchronized statement

• Any Java object can be used for locking
• The synchronized statement

– Blocks until the lock on obj is available
– Takes (acquires) the lock on obj
– Executes the body block
– Releases the lock, also on return or exception

• By consistently locking on the same object
– one can obtain mutual exclusion, so
– at most one thread can execute the code at a time

26

synchronized (obj) {
 ... body ...
}

IT University of Copenhagen

A synchronized method simply
locks the “this” reference around body
• A synchronized instance method

really uses a synchronized statement:

• Q: What is being locked? (The entire class,
the method, the instance, the Java system)?

27

class C {
 public synchronized void method() { ... }
}

class C {
 public void method() {
 synchronized (this) { ... }
 }
}

IT University of Copenhagen

What about
synchronized static methods?

• A synchronized static method

locks on the class runtime object C.class:

28

class C {
 public synchronized static void method()
 { ... }
}

class C {
 public static void method() {
 synchronized (C.class) { ... }
 }
}

Use synchronized statements,
not synchronized methods

• So it is clear what object is being locked on
• So only your methods lock on the object

29

class LongCounter {
 public synchronized void increment() { ... }
 public synchronized long get() { ... }
}

class LongCounterBetter {
 private final Object myLock = new Object();
 public void increment() {
 synchronized (myLock) { ... }
 }
 public long get() {
 synchronized (myLock) { ... }
 }
}

Good

Better
Clear what
is locked

on

Only these
methods

can lock on
myLock

Te
st

Lo
n
g
C
o
u
n
te

rB
et

te
r.

ja
va

IT University of Copenhagen

Multiple threads, locking

• Two threads incrementing counter in parallel:

• Q: How many threads are running now?

30

final int counts = 10_000_000;
Thread t1 = new Thread(() –> {
 for (int i=0; i<counts; i++)
 lc.increment();
});
Thread t2 = new Thread(() -> {
 for (int i=0; i<counts; i++)
 lc.increment();
}); Te

st
Lo

n
g
C
o
u
n
te

rE
xp

er
im

en
ts

.j
av

a

IT University of Copenhagen

Starting the threads,
and waiting for their completion

• A thread completes when the lambda returns
• To wait for thread t completing, call t.join()
• May throw InterruptedException

• What is lc.get() after threads complete?
– Each thread calls lc.increment() ten million times
– So it gets called 20 million times

31

t1.start(); t2.start();

try { t1.join(); t2.join(); }
catch (InterruptedException exn) { ... }

System.out.println("Count is " + lc.get());

IT University of Copenhagen

Removing the locking

• Non-thread-safe counter class:

• Produces very wrong results, not 20 million:

• Q: Why?

32

class LongCounter2 {
 private long count = 0;
 public void increment() {
 count = count + 1;
 }
 public long get() { return count; }
}

Count is 10041965
Count is 19861602
Count is 18939813

IT University of Copenhagen

The operation
count = count + 1 is not atomic

• What means:
– read count
– add 1
– write result to count

• Hence not atomic
• So risk that two increment() calls will

increase count by only 1

• NB: Same for and

33

count = count + 1

count += 1 count++

No locking: lost update

34

Thread t1
(active)

Object lc
(passive)

Thread t2
(active)

increment()

increment()

0

1

2

increment()

read 0
compute 0+1
write 1

read 2
compute 2+1

write 3

3

increment()

read 2

BAD:
lost

update

compute 2+1
write 33

Without
locking

How does locking help?

35

Thread t1
(active)

Object lc
(passive)

Thread t2
(active)

2

increment()
try to lock

acquires lock

4

increment()

try to lock, cannot
blocks

3

With
locking

acquires lock
read 3
compute 3+1
write 4
release lock

read 2
compute 2+1

write 3
release lock

• Locking can achieve mutual exclusion
– Lock on the same object before all state accesses
– Unfortunately, quite easy to get it wrong

G
o
al

M
ec

h
an

is
m

IT University of Copenhagen

Why synchronize just to read data?

• The synchronized keyword has two effects:
– Mutual exclusion: only one thread can hold a lock

(execute a synchronized method or block) at a time
– Visibility of memory writes: All writes by thread A

before releasing a lock (exit synchr) are visible to
thread B after acquiring the lock (enter synchr)

36

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 } } Why needed?

Te
st

Lo
n
g
C
o
u
n
te

r.
ja

va

Visibility is really important

• Looks OK, no need for synchronization?
• But thread t may loop forever in this scenario:

• Two possible fixes:
– Add synchronized to methods get and set, OR
– Add volatile to field value

37

class MutableInteger {
 private int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

WARNING: Useless

final MutableInteger mi = new MutableInteger();
Thread t = new Thread(() -> {
 while (mi.get() == 0) { }
});
t.start();
mi.set(42);

Loop while zero

This write by thread ”main”
may be forever invisible to

thread t

Te
st

M
u
ta

b
le

In
te

g
er

.j
av

a

IT University of Copenhagen

Visibility by synchronization

38

G
o
et

z
p
.

3
7

lock =
acquire

exit
synchronized

unlock =
release

enter
synchronized

IT University of Copenhagen

Communication through mutable
shared state fails if no visibility

39

Thread
“main”
(active)

Object mi
(passive)

Thread t
(active)

get()

get()

get()

set(42)

get()

get()

0

0

0

0

0

BAD:
does not
see the
write

IT University of Copenhagen

The volatile field modifier
• The volatile field modifier can be used to

ensure visibility (but not mutual exclusion)

• All writes by thread A before writing a
volatile field are visible to thread B when,
and after, reading the volatile field

• Note: A single volatile write+read makes
writes to all other fields visible also!
• A bit mysterious, but a consequence of the implementation
• This is Java semantics; C#, C, C++ volatile are different

40

class MutableInteger {
 private volatile int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

OK

IT University of Copenhagen

Goetz advice on volatile

• Rule 1: Use locks (synchronized)
• Rule 2: If circumstances are right, and you

are an expert, maybe use volatile instead
• Rule 3: There are few experts

41

Use volatile variables only when they simplify your
synchronization policy; avoid it when verifying
correctness would require subtle reasoning about
visibility.

Locking can guarantee both visibility and atomicity;
volatile variables can only guarantee visibility. G

o
et

z
p
.

3
8
,

3
9

IT University of Copenhagen

That was Java.
What about C# and .NET?

• C# Language Spec. §17.3.4 Volatile Fields
• CLI Ecma-335 standard section §I.12.6.7:
– "A volatile write has release semantics ... the write is

guaranteed to happen after any memory references
prior to the write instruction in the CIL instruction
sequence"

– "volatile read has acquire semantics ... the read is
guaranteed to occur prior to any references to
memory that occur after the read instruction in the
CIL instruction sequence"

• C#’s volatile is weaker than Java’s
– And very unclearly described
– Maybe use C# lock or MemoryBarrier() instead

42

IT University of Copenhagen

Ways to ensure visibility
• Unlocking followed by locking the same lock
• Writing a volatile field and then reading it
• Calling one method on a concurrent collection

and another method on same collection
– java.util.concurrent.*

• Calling one method on an atomic variable and
then another method on same variable
– java.util.concurrent.atomic.*

• Finishing a constructor that initializes final or
volatile fields

• Calling t.start() before anything in thread t
• Anything in thread t before t.join() returns

(Java Language Specification 8 §17.4, and the Javadoc for concurrent collection
classes etc, give the full and rather complicated details)

43

IT University of Copenhagen

Why “concurrent” and “parallel”?

• Informally both mean “at the same time”
• But some people distinguish

– Concurrent: related to correctness
– Parallel: related to performance

• Soccer (fodbold) analogy, by P. Panangaden
– The referee (dommer) is concerned with

concurrency: the soccer rules must be followed
– The coach (træner) is concerned with parallelism:

the best possible use of the team’s 11 players

• This course is concerned with correctness as
well as performance: concurrent and parallel

44

IT University of Copenhagen

Processes, threads, and tasks

• An operating system process running Java is
– a Java Virtual Machine that executes code
– an object heap, managed by a garbage collector
– one or more running Java threads

• A Java thread
– has its own method call stack, takes much memory
– shares the object heap with other threads

• A task (or future) (or actor)
– does not have a call stack, so takes little memory
– is run by an executor, using a thread pool, Week 5

45

IT University of Copenhagen

This week

• Reading
– Goetz chapters 1, 2 and 3
– Sutter paper
– Bloch item 66

• Exercises week 1, on homepage and LearnIT
– Make sure you are familiar with Java threads and

locks and inner classes
– Make sure that you can compile, run and explain

programs that use these features

• Read before next week’s lecture
– Goetz chapters 4 and 5
– Bloch item 15

46

IT University of Copenhagen 47

