
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 2

Riko Jacob
IT University of Copenhagen

Friday 2018-09-07

IT University of Copenhagen

Exercises

• There are 13 sets of weekly exercises
• At least 11 can be handed in towards the exam
• Hand in the solutions through LearnIT
• You can work in teams of 1,2 or 3 students
• The teaching assistants provide joint feedback
• Hand-ins: ≥6 must be submitted, ≥5 approved

– otherwise you cannot take the course examination
– failing to get 5 approved costs an exam attempt (!!)

• Exercise may be approved even if not fully solved
– It is possible to resubmit
– Make your best effort: two serious attempts=one solved
– What is important is that you learn

2

IT University of Copenhagen 3

Standard weekly plan

• Lectures Fridays in Auditorium 1
Corresponding exercise assignment is ready

• Exercise Lab: Wednesdays, 2A54
– Two slots: 12-14 and 14-16
– First 15 minutes: Announcements wrt exercises

• Exercise hand-in: 6.5 days after lecture
– That is, the following Thursday at 23:55
– Feedback by 14 days after lecture
– Retry-hand-in: 20.5 days after lecture

• Until December 8, Exam hand-in Dec 12
(except fall break, Week 41, 16-20 Oct)

IT University of Copenhagen

Exercises

• Last week’s exercises:
–Too easy?
–Too hard?
–Too time-consuming?
–Too confusing?
–Any particular problems?

4

IT University of Copenhagen 5

Plan for today

• Threads for performance
• Primitive atomic operations: AtomicLong, ...
• Immutability, final, and safe publication
• Java monitor pattern
• Standard collection classes not thread-safe
• FutureTask<T> and asynchronous execution
• Building a scalable result cache

Based on slides by
Peter Sestoft

IT University of Copenhagen

(a) lock

JVM
java

thread

task future

lock-
free

trans
action message

passing

streams

measure

correctness

model of computation

ab
st

ra
c t

io
n

IT University of Copenhagen

Using threads for performance
Example: Count primes 2 3 5 7 11 ...
• Count primes in 0...9999999

• Takes 6.4 sec to compute on 1 CPU core
• Why not use all my computer’s 4 (x 2) cores?

– Eg. use two threads t1 and t2 and divide the work:
t1: 0...4999999 and t2: 5000000...9999999

7

static long countSequential(int range) {
 long count = 0;
 final int from = 0, to = range;
 for (int i=from; i<to; i++)
 if (isPrime(i))

 count++;
 return count;
}

Te
st

C
o
u
n
tP

ri
m

es
.j

av
a

Result is 664579

IT University of Copenhagen

Using two threads to count primes

• Takes 4.2 sec real time, so already faster
• Q: Why not just use a long count variable?
• Q: What if we want to use 10 threads?

8

final LongCounter lc = new LongCounter();
final int from1 = 0, to1 = perThread;
Thread t1 = new Thread(() -> {
 for (int i=from1; i<to1; i++)
 if (isPrime(i))

lc.increment();
});
final int from2 = perThread, to2 = perThread * 2;
Thread t2 = new Thread(() -> {
 for (int i=from2; i<to2; i++)
 if (isPrime(i))

lc.increment();
});

Same code
twice, bad
practice

Te
st

C
o
u
n
tP

ri
m

es
.j

av
a

IT University of Copenhagen

Using N threads to count primes

• Takes 1.8 sec real time with threadCount 10
– Approx 3.3 times faster than sequential solution
– Q: Why not 4 times, or 10 times faster?
– Q: What if we just put to=perThread * (t+1)?

9

final LongCounter lc = new LongCounter();
Thread[] threads = new Thread[threadCount];
for (int t=0; t<threadCount; t++) {
 final int from = perThread * t,
 to = (t+1==threadCount) ? range : perThread * (t+1);
 threads[t] = new Thread(() -> {
 for (int i=from; i<to; i++)
 if (isPrime(i))
 lc.increment();
 });
}
for (int t=0; t<threadCount; t++)
 threads[t].start();

Thread processes
segment
[from,to)

Last thread
has to==range

IT University of Copenhagen

Reflections: threads for performance

• This code can be made better in many ways
– Eg better distribution of work on the 10 threads
– Eg less use of the synchronized LongCounter

• Proper performance measurements, week 3
• Use Java 8 parallel streams instead, week 4
• Very bad idea to use many (> 500) threads

– Each thread takes much memory for the stack
– Each thread slows down the garbage collector

• Use tasks and Java “executors”, week 5
• More advice on scalability, week 7
• How to avoid locking, week 10 and 11

10

IT University of Copenhagen

Why “concurrent” and “parallel”?

• Informally both mean “at the same time”
• But some people distinguish

– Concurrent: related to correctness
– Parallel: related to performance

• Soccer (fodbold) analogy, by P. Panangaden
– The referee (dommer) is concerned with

concurrency: the soccer rules must be followed
– The coach (træner) is concerned with parallelism:

the best possible use of the team’s 11 players

• This course is concerned with correctness as
well as performance: concurrent and parallel

11

IT University of Copenhagen

Processes, threads, and tasks

• An operating system process running Java is
– a Java Virtual Machine that executes code
– an object heap, managed by a garbage collector
– one or more running Java threads

• A Java thread
– has its own method call stack, takes much memory
– shares the object heap with other threads

• A task (or future) (or actor)
– does not have a call stack, so takes little memory
– is run by an executor, using a thread pool, Week 5

12

IT University of Copenhagen

Goetz examples use servlets

• Because a webserver is naturally concurrent
– So servlets should be thread-safe

• We use similar, simpler examples:

13

public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
} G

o
et

z
p
.

1
9

class StatelessFactorizer implements Factorizer {
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 return factors;
 }
} Te
st

Fa
ct

o
ri
ze

r.
ja

va

IT University of Copenhagen

A “server” for computing prime
factors 2 3 5 7 11 ... of a number

• Could replace the example by this

• Call the server from multiple threads:

14

interface Factorizer {
 public long[] getFactors(long p);
 public long getCount();
}

for (int t=0; t<threadCount; t++) {
 threads[t] =
 new Thread(() -> {
 for (int i=2; i<range; i++) {
 long[] result = factorizer.getFactors(i);
 }
 });
 threads[t].start();
}

IT University of Copenhagen

Stateless objects are thread-safe

• Local variables (p, factors) are never shared
between threads
– two getFactors calls can execute at the same time

15

class StatelessFactorizer implements Factorizer {
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 return factors;
 }
 public long getCount() { return 0; }
} Li

ke
 G

o
e
tz

 p
.

1
8

IT University of Copenhagen

Bad attempt to count calls

• Not thread-safe
• Q: Why?
• Q: How could we make it thread-safe?

16

class UnsafeCountingFactorizer implements Factorizer {
 private long count = 0;
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 count++;
 return factors;
 }
 public long getCount() { return count; }
} Li

ke
 G

o
et

z
p
.

1
9

IT University of Copenhagen

Thread-safe server counting calls

• java.util.concurrent.atomic.AtomicLong
supports atomic thread-safe arithmetics

• Similar to a thread-safe LongCounter class

17

class CountingFactorizer implements Factorizer {
 private final AtomicLong count = new AtomicLong(0);
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 count.incrementAndGet();
 return factors;
 }
 public long getCount() { return count.get(); }
} Li

ke
 G

o
et

z
p
.

2
3

IT University of Copenhagen

Caching computed results

• Fibonacci numbers:
 F(0) = F(1) = 1
 F(N) = F(N-1) + F(N-2) for N>1

• F(N) is exponential
• Naïve recursive implementation:

 F(N) operations
• Iterative / dynamic programming with

memoization: O(N) operations
• Serial java 8:

HashMap.computeIfAbsent(…)

18

IT University of Copenhagen

Bad attempt to
cache last factorization

• Bad performance: no parallelism at all
• Q: Why?

19

class TooSynchrCachingFactorizer implements Factorizer {
 private long lastNumber = 1;
 private long[] lastFactors = new long[] { 1 };
 // Invariant: product(lastFactors) == lastNumber

 public synchronized long[] getFactors(long p) {
 if (p == lastNumber)
 return lastFactors.clone();
 else {
 long[] factors = PrimeFactors.compute(p);
 lastNumber = p;
 lastFactors = factors;
 return factors;
} } }

Li
ke

 G
o
et

z
p
.

2
6

Without synchronized the
two fields could be written

by different threads

cache

IT University of Copenhagen

Atomic operations

• We want to atomically update both
lastNumber and lastFactors

20

Operations A and B are atomic with respect to
each other if, from the perspective of a thread
executing A, when another thread executes B,
either all of B has executed or none of it has.

An atomic operation is one that is atomic with
respect to all operations (including itself) that
operate on the same state.

G
o
et

z
p
.

2
2
,

2
5

Atomic update
without excess locking

22

class CachingFactorizer implements Factorizer {
 private long lastNumber = 6;
 private long[] lastFactors = new long[] { 2,3 };
 public long[] getFactors(long p) {
 long[] factors = null;
 synchronized (this) {
 if (p == lastNumber)

 factors = lastFactors.clone();
 }
 if (factors == null) {
 factors = PrimeFactors.compute(p);
 synchronized (this) {

 lastNumber = p;
 lastFactors = factors.clone();

 }
 }
 return factors;
} }

Li
ke

 G
o
et

z
p
.

3
1

Atomic
test-then-act

Atomic write
of both
fields

IT University of Copenhagen

Using locks for atomicity

23

For each mutable state variable that may be
accessed by more than one thread, all accesses
to that variable must be performed with the
same lock held. Then the variable is guarded by
that lock.

For every invariant that involves more than one
variable, all the variables involved in that
invariant must be guarded by the same lock.

G
o
et

z
p
.

2
8
,

2
9

• Common mis-reading and mis-reasoning:
– The purpose of synchronized is to get atomicity
– So synchronized roughly means “atomic”
– True only if all other accesses are synchronized!!!

Wrong

IT University of Copenhagen

Alternative: Wrap the state
in an immutable object

• Immutable, so automatically thread-safe

24

class OneValueCache {
 private final long lastNumber;
 private final long[] lastFactors;
 public OneValueCache(long p, long[] factors) {
 this.lastNumber = p;
 this.lastFactors = factors.clone();
 }
 public long[] getFactors(long p) {
 if (lastFactors == null || lastNumber != p)
 return null;
 else
 return lastFactors.clone();
 }
}

Li
ke

 G
o
et

z
p
.

4
9

The fields cannot
change between
test and return

Make the state a single field,
referring to an immutable object

• Only one mutable field, atomic update
• Easy to implement, easy to see it is correct
• Allocates many OneValueCache objects: Bad?

– Not a problem with modern garbage collectors
25

class VolatileCachingFactorizer implements Factorizer {
 private volatile OneValueCache cache
 = new OneValueCache(0, null);
 public long[] getFactors(long p) {
 long[] factors = cache.getFactors(p);
 if (factors == null) {
 factors = PrimeFactors.compute(p);
 cache = new OneValueCache(p, factors);
 }
 return factors;
 }
} Li

ke
 G

o
et

z
p
.

5
0

Single-field state,
atomic assignment

Atomic update

IT University of Copenhagen

Immutability
• OOP: An object has state, held by its fields

– Fields should be private for encapsulation
– It is common to define getters and setters

But mutable state causes lots of problems
• Immutable design:

– Each object has one state
– Each state an object

26

Immutable objects are always thread-safe.

An object is immutable if:
•Its state cannot be modified after construction
•All its fields are final
•It is properly constructed (this does not escape)

G
o
et

z
p
.

4
6
,

4
7

Bloch: Effective Java, item 15

27Bloch p. 73

A serious Java (or
C#) developer
should own and
use this book

Josh Bloch
designed the Java
collection classes

IT University of Copenhagen

Safe publication: visibility

• The final field modifier has two effects
– Non-updatability can be checked by the compiler
– Visibility from other threads of the fields’ values

after the constructor returns

• So final has visibility effect like volatile
• Without final or synchronization, another

thread may not see the given field values

• That was Java. What about C#/.NET?
– No visibility effect of readonly field modifier
– So must be ensured by locking or MemoryBarrier
– Seems a little dangerous?

28

IT University of Copenhagen

Why .clone() in the factorizers?

• Because Java array elements are mutable
• So unsafe to share an array with just anybody
• Must defensively clone the array when passing a

reference to other parts of the program
• This is a problem in sequential code too, but much

worse in concurrent code
– Minimize Mutability!

• PCPP is an advert for functional programming
29

public long[] getFactors(long p) {
 ...
 factors = lastFactors.clone();
 ...
 lastFactors = factors.clone();
 ...
}

IT University of Copenhagen

The classic collection classes
are not threadsafe

• May give wrong results or obscure exceptions:

• Wrap as synchronized coll. for thread safety

30

final Collection<Integer> coll = new HashSet<Integer>();
final int itemCount = 100_000;
Thread addEven = new Thread(new Runnable() { public void run() {
 for (int i=0; i<itemCount; i++)
 coll.add(2 * i);
}});
Thread addOdd = new Thread(new Runnable() { public void run() {
 for (int i=0; i<itemCount; i++)
 coll.add(2 * i + 1);
}});

final Collection<Integer> coll
 = Collections.synchronizedCollection(new HashSet<Integer>());

There are 169563 items, should be 200000

Te
st

C
o
lle

ct
io

n
.j

av
a

"Thread-0" ClassCastException: java.util.HashMap$Node cannot be
cast to java.util.HashMap$TreeNode

Collections in a concurrent context

• Preferably use a modern concurrent collection
class from java.util.concurrent.*
– Operations get, put, remove ... are thread-safe
– But iterators and for are only weakly consistent:

• Or else wrap collection as synchronized
• Or synchronize accesses yourself
• Or make a thread-local copy of the collection

and iterate over that
31

Ja
va

 8
 c

la
ss

 l
ib

ra
ry

 d
o
cu

m
en

ta
ti
o
n

Callable<T> versus Runnable

• A Runnable is one method that returns nothing

• A java.util.concurrent.Callable<T> returns a T:

32

public interface Runnable {
 public void run();
}

public interface Callable<T> {
 public T call() throws Exception;
}

Callable<String> getWiki = new Callable<String>() {
 public String call() throws Exception {
 return getContents("http://www.wikipedia.org/", 10);
}};
// Call the Callable, block till it returns:
try { String homepage = getWiki.call(); ... }
catch (Exception exn) { throw new RuntimeException(exn); }

Te
st

C
al

la
b
le

.j
av

a

unit -> T

unit -> unit

Synchronous FutureTask<T>

• A FutureTask<T>
– Produces a T
– Is created from a Callable<T>
– Above we run it synchronously on the main thread
– More useful to run asynchronously on other thread

33

Callable<String> getWiki = new Callable<String>() {
 public String call() throws Exception {
 return getContents("http://www.wikipedia.org/", 10);
}};
FutureTask<String> fut = new FutureTask<String>(getWiki);
fut.run();
try {
 String homepage = fut.get();
 System.out.println(homepage);
}
catch (Exception exn) { throw new RuntimeException(exn); }

Similar to .NET
System.Threading.Tasks.Task<T>

Run call() on “main”
thread

Get result of call()

IT University of Copenhagen

Asynchronous FutureTask<T>

34

Callable<String> getWiki = new Callable<String>() {
 public String call() throws Exception {
 return getContents("http://www.wikipedia.org/", 10);
}};
FutureTask<String> fut = new FutureTask<String>(getWiki);
Thread t = new Thread(fut);
t.start();
try {
 String homepage = fut.get();
 System.out.println(homepage);
}
catch (Exception exn) { throw new RuntimeException(exn); }

Create and start
thread running

call()

Block until call()
completes

• The “main” thread can do other work between
t.start() and fut.get()

• FutureTask can also be run as a task, week 5

IT University of Copenhagen

Synchronous FutureTask

35

Thread
“main”
(active)

FutureTask
(passive)

Callable
(passive)

fut.run()
getWiki.call()

fut.get()

ca
ll
()

 r
u
n
s

o
n

m
ai

n
 t

h
re

ad

“HTML...”

“HTML...”

void

Asynchronous FutureTask

36

Thread
“main”
(active)

FutureTask fut
(passive)

Callable
(passive)

fut.run()

fut.get()

Thread t
(active)

t.start()

getWiki.call()

ca
ll

()
 r

u
n
s

o
n
 t

h
re

ad
 t

b
lo

ck
e
d

d
o
 o

th
er

w

o
rk

void

“HTML...”
“HTML...”

Those @$%&!!! checked exceptions
• Our exception handling is simple but gross:

• Goetz has a better, more complex, approach:

37

try { String homepage = fut.get(); ... }
catch (Exception exn) { throw new RuntimeException(exn); }

If call() throws exn, then
get() throws

ExecutionException(exn)

... and then we further wrap a
RuntimeException(...) around

that

try { String homepage = fut.get(); ... }
catch (ExecutionException exn) {
 Throwable cause = exn.getCause();
 if (cause instanceof IOException)
 throw (IOException)cause;
 else
 throw launderThrowable(cause);
}

Li
ke

 G
o
et

z
p
.

9
7

Rethrow “expected”
call() exceptions

Turn others into
unchecked
exceptions

IT University of Copenhagen

Goetz’s launderThrowable method

• Make a checked exception into an unchecked
– without adding unreasonable layers of wrapping
– cannot just throw cause; in previous slide’s code

• Mostly an administrative mess
– caused by the Java’s “checked exceptions” design
– thus not a problem in C#/.NET

38

public static RuntimeException launderThrowable(Throwable t) {
 if (t instanceof RuntimeException)
 return (RuntimeException) t;
 else if (t instanceof Error)
 throw (Error) t;
 else
 throw new IllegalStateException("Not unchecked", t);
}

G
o
et

z
p
.

9
8

checkedunchecked

IT University of Copenhagen

Goetz’s scalable result cache

• Wrapping a computation so that it caches
results and reuses them
– Example: Given URL, computation fetches webpage
– If URL is requested again, cache returns webpage

• Versions of Goetz’s result cache (“Memoizer”)
– M1: lock-based, not scalable
– M2: ConcurrentMap, large risk of computing twice
– M3: use FutureTask, small risk of computing twice
– M4: use putIfAbsent, no risk of computing twice
– M5: use computeIfAbsent (Java 8), no risk of ...

• See also Exercise 2.4.7

39

IT University of Copenhagen

Goetz’s scalable result cache

• Interface representing functions from A to V

• Example 1: Our prime factorizer

• Example 2: Fetching a web page

40

interface Computable <A, V> {
 V compute(A arg) throws InterruptedException;
}

G
o
et

z
p
.

1
0
3

class Factorizer implements Computable<Long, long[]> {
 public long[] compute(Long wrappedP) {
 long p = wrappedP;
 ...
} }

A -> V

class FetchWebpage implements Computable<String, String> {
 public String compute(String url) {
 ... create Http connection, fetch webpage ...
} }

Te
st

C
ac

h
e.

ja
va

Thread-safe but non-scalable cache

• Q: Why not scalable?
• Q: Would it work to wrap as synchronizedMap? 41

class Memoizer1<A, V> implements Computable<A, V> {
 private final Map<A, V> cache = new HashMap<A, V>();
 private final Computable<A, V> c;

 public Memoizer1(Computable<A, V> c) { this.c = c; }

 public synchronized V compute(A arg) throws InterruptedEx... {
 V result = cache.get(arg);
 if (result == null) {
 result = c.compute(arg);
 cache.put(arg, result);
 }
 return result;
 }
}

Computable<Long, long[]> factorizer = new Factorizer(),
 cachingFactorizer = new Memoizer1<Long,long[]>(factorizer);
long[] factors = cachingFactorizer.compute(7182763656381322L);

G
o
et

z
p
.

1
0
3

If not in cache,
compute and

put

M1

IT University of Copenhagen

Thread-safe scalable cache,
using concurrent hashmap

• But large risk of computing same thing twice
– Argument put in cache only after computing result

• so cache may be updated long after compute(arg) call
42

class Memoizer2<A, V> implements Computable<A, V> {
 private final Map<A, V> cache = new ConcurrentHashMap<A, V>();
 private final Computable<A, V> c;

 public Memoizer2(Computable<A, V> c) { this.c = c; }

 public V compute(A arg) throws InterruptedException {
 V result = cache.get(arg);
 if (result == null) {
 result = c.compute(arg);
 cache.put(arg, result);
 }
 return result;
 }
} G

o
et

z
p
.

1
0
5

M2

IT University of Copenhagen

How Memoizer2 can duplicate work

• Better approach, Memoizer3:
– Create a FutureTask for arg
– Add the FutureTask to cache immediately at arg
– Run the future on the calling thread
– Return fut.get()

43

G
o
et

z
p
.

1
0
5

Thread-safe scalable cache
using FutureTask<V>, v. 3

44

class Memoizer3<A, V> implements Computable<A, V> {
 private final Map<A, Future<V>> cache
 = new ConcurrentHashMap<A, Future<V>>();
 private final Computable<A, V> c;

 public V compute(final A arg) throws InterruptedException {
 Future<V> f = cache.get(arg);
 if (f == null) {
 Callable<V> eval = new Callable<V>() {

 public V call() throws InterruptedException {
 return c.compute(arg);

 }};
 FutureTask<V> ft = new FutureTask<V>(eval);
 cache.put(arg, ft);
 f = ft;
 ft.run();
 }
 try { return f.get(); }
 catch (ExecutionException e) { throw launderThrowable(...); }

 }

If arg not in
cache ...

Block until
completed

... make
future, add
to cache ...

... run it on
calling
thread

G
o
et

z
p
.

1
0
6

M3

IT University of Copenhagen

Memoizer3 can still duplicate work

• Better approach, Memoizer4:
– Fast initial check for arg cache
– If not, create a future for the computation
– Atomic put-if-absent may add future to cache
– Run the future on the calling thread
– Return fut.get()

45

G
o
et

z
p
.

1
0
7

Thread-safe scalable cache
using FutureTask<V>, v. 4

46

class Memoizer4<A, V> implements Computable<A, V> {
 private final Map<A, Future<V>> cache
 = new ConcurrentHashMap<A, Future<V>>();
 private final Computable<A, V> c;
 public V compute(final A arg) throws InterruptedException {
 Future<V> f = cache.get(arg);
 if (f == null) {
 Callable<V> eval = new Callable<V>() {

 public V call() throws InterruptedException {
 return c.compute(arg);

 }};
 FutureTask<V> ft = new FutureTask<V>(eval);
 f = cache.putIfAbsent(arg, ft);
 if (f == null) {

 f = ft; ft.run();
 }
 }
 try { return f.get(); }
 catch (ExecutionException e) { throw launderThrowable(...); }

 }

Te
st

C
ac

h
e.

ja
va

Fast test: If arg not in
cache ...

...
make
future

... run on calling thread if
not added to cache

before

... atomic put-if-
absent

M4

IT University of Copenhagen

The technique used in Memoizer4

• Suggestion by Bloch item 69:
– Make a fast (non-atomic) test for arg in cache
– If not there, create a future object
– Then atomically put-if-absent (arg, future)

• If the arg was added in the meantime, do not add
• Otherwise, add (arg, future) and run the future

• May wastefully create a future, but only rarely
– The garbage collector will remove it

• Java 8 has computeIfAbsent, can avoid the
two-stage test (see next slide)

47

Thread-safe scalable cache
using FutureTask<V>, v. 5 (Java 8)

48

class Memoizer5<A, V> implements Computable<A, V> {
 private final Map<A, Future<V>> cache
 = new ConcurrentHashMap<A, Future<V>>();
 private final Computable<A, V> c;
 public V compute(final A arg) throws InterruptedException {
 final AtomicReference<FutureTask<V>> ftr = new ...();
 Future<V> f = cache.computeIfAbsent(arg, (A argv) -> {

 Callable<V> eval = new Callable<V>() {
 public V call() throws InterruptedException {

 return c.compute(argv);
 }};
 ftr.set(new FutureTask<V>(eval));
 return ftr.get();
});

 if (ftr.get() != null)
 ftr.get().run();
 try { return f.get(); }
 catch (ExecutionException e) { throw launderThrowable(...); }

 }

Te
st

C
ac

h
e.

ja
va

make
future

... run on calling thread
if not already in cache

M5

IT University of Copenhagen

This week

• Reading
– Goetz et al chapters 4 and 5
– Bloch item 15

• Exercises
– Hand-in Thursday at 23:55
– Goals: Build a threadsafe class, use built-in

collection classes, use the “future” concept

• Read before for next week’s lecture
– Sestoft: Microbenchmarks in Java and C#

http://www.itu.dk/people/sestoft/papers/benchmarking.pdf

– Optional: McKenney chapter 3

49

