
PCPP IT University, E2018

Exercises week 8
Friday 26 November 2018

Goal of the exercises
The goal of this week’s exercises is to make sure that you understand the challenges of testing concurrent software,
that you can nevertheless write a reasonable test suite for such software using recommended techniques, and use
mutation to judge the quality of the test suite.

Do this first
There are no specific additional files for this week’s exercises. Instead they build on your own completion of the
TestStripedMap.java file from week 6 and its handin.

Exercise 8.1 In this exercise you must conduct a functional test of the StripedWriteMap<K,V> implementation
of a concurrent hash map presented in week 6’s lecture, and completed by you in the mandatory handin. Since it
was designed for this course, and the implementation was completed by you, nobody knows whether it is correct.
We need to test it.

1. First, consider a functional test of the hash map’s sequential correctness as attempted in method testMap
in the file. Does the implementation pass this simple test? Describe any inadequacies in the test, such as
lack of method coverage or statement coverage in the hash map implementation. Extend the test to address
the deficiencies. Does the implementation still pass the sequential test?

2. Now turn to testing of the hash map’s functional correctness in a concurrent context, where multiple threads
read and modify the hash map at the same time.

You may draw inspiration from Goetz at al. section 12.1 which shows how to test a blocking queue:

• Create a single StripedWriteMap<Integer,String> concurrent hash map instance to test, with Integers
as keys and Strings as values. To increase the chance that multiple threads will manipulate the same
bucket, and the same stripe, at the same time, you should create the map with few stripes, maybe 7,
and with few buckets, maybe 77 — remember that the number of buckets must be a multiple of the
number of stripes. Also, you should run with a rather small range of random keys to insert into the
table, maybe 0 . . . 99, to increase the chance of the same key being added or removed at the same time.

• Create multiple testing threads to manipulate the concurrent hash map. There should be more threads
than cores, but not unreasonably many, so 16 testing threads would be a good choice on most current
hardware.

• Each testing thread performs containsKey, put, putIfAbsent and remove on the concurrent
hash map, on randomly chosen keys.

• Each testing thread should have its own random number generator. Using a shared random number
generator might affect the thread scheduling and hence impair the thread interleaving coverage of the
test.

• Each testing thread maintains the sum of all new keys it puts into the hash map, minus the keys it
removes. Note that neither put(k,v) nor putIfAbsent(k,v) adds a new key if k is already
present.

• After all testing threads have completed, the sum of the keys in the hash map should equal the sum of
the sums from the testing threads.

• Use a CyclicBarrier from package java.util.concurrent to make sure that the testing threads run only
when all of them are ready; this minimizes the risk that they will run sequentially.

Implement such a functional test. Does it find defects in the hash map implementation? To what degree
does the test convince you that the StripedWriteMap implementation is correct? In particular, does it tell
you anything about the correctness of containsKey?

1



PCPP IT University, E2018

3. Run the functional test also on a WrapConcurrentHashMap<Integer,String> instance; here it hopefully finds
no defects. In general, if your test finds a defect in the StripedWriteMap implementation, run the test also
on WrapConcurrentHashMap to see whether the deficiency is in the StripedWriteMap or in your test (or
both).

4. The functional test as proposed above checks only that the hash map contains the expected keys. To check
also that the associated values are correct (or at least plausible) you may number the testing threads t =
0 . . . (N − 1) and let thread t insert a String value of form "t:k" for key k.

Then check, when all testing threads have completed, that every entry in the hash map has the form (k,
"t:k") for some thread number t.

5. You can further let each testing thread keep, in an array int[] counts = new int[N], a net count
of the number of entries “belonging” to thread t. That is, if thread t adds a new entry (k,"t:k")
then it increments counts[t]. Similarly, if it removes an entry (k,"u:k") made by thread u, then it
decrements counts[u]. Note that the latter may happen both as a consequence of remove(k) and as a
consequence of put(k,"t:k").

After all testing threads have completed, you should compute the sum of the N threads’ counts arrays
and traverse the hash map to check that each thread t has precisely as many values in the table as the sum
indicates. For instance, if the sum of the N threads’ count[7] fields is 426, then there should be 426
entries in the table of the form (k, "7:k").

6. Suggest further ways to improve the test of the concurrent hash map implementations.

Why don’t we just compare the results of operations on StripedWriteMap<K,V> with the results of doing the
same operations on WrapConcurrentHashMap<K,V>, which presumably is a good reference implementation?
The reason is two-fold: (1) While we may control the generation of pseudo-random numbers, we do not control
the thread scheduler and hence the interleaving of the threads’ method calls, so we can never expect to make
two identical test runs, one on StripedWriteMap<K,V> and another on WrapConcurrentHashMap<K,V>. (2)
Then we could manipulate both implementations in the same test run, thus exposing them to the exact same
sequence of operations. But that would cause any synchronization internally in the reference implementation to
interfere with the test thread scheduling, which would make the test much less effective. Probably this is not a big
concern in the case of WrapConcurrentHashMap<K,V> which does little internal locking, but often the “reference
implementation” will be a fully locking, basically sequential, implementation and that would completely invalidate
the test of a new more concurrency-friendly and scalable implementation.

Exercise 8.2 If your functional test in Exercise 8.1 finds no defects in the hash map implementation, you may
investigate how good the test is by mutation testing, by injecting faults in the hash map implementation and
running the functional test again. For instance, you may:

1. Remove synchronized around one or more blocks of code to see whether the functional test “discovers”
the lack of synchronization.

2. Change a single occurrence of synchronized (locks[stripe]) so that it locks on the wrong ob-
ject, for instance by replacing it with synchronized (locks[0]) or synchronized (this), to
see whether the functional test “discovers” the improper synchronization.

3. Change the representation of the sizes array from AtomicIntegerArray to plain int[] and the get and
getAndAdd method calls to plain array reads sized[stripe] and increments sized[stripe]++,
to see whether the functional test “discovers” that the sizes are not correctly updated.

4. Remove some of the reads from sizes[stripe] to see whether the absence of these atomic reads affects
visibility of writes to reads.

It is probably unlikely that the functional test will discover this particular fault, although it undermines the
visibility of writes to subsequent reads. Also, it is not obvious how to devise a test that would reliably reveal
this lack of visibility. Maybe it would help to run on an ARM (Raspberry Pi 2B or smartphone) processor,
which has a weaker memory model than Intel CPUs.

5. What other ways might there be of injecting faults so as to investigate how good the functional test is?
Discuss, and if possible, suggest and try out other faults that may be injected.

2


