§ such that the
- than s; (ii) for

very LP problem

[ow Fast Is the
mplex Method?

:subject of this chapter is the number of iterations in the simplex method. We
also comment on the distinction between theoretically satisfactory and practi-
atisfactory algorithms, with a particular regard to linear programming.

(CAL NUMBER OF ITERATIONS

ctical problems of the form

i=12...,m

x; =20 =12,...,n

50 and m + n < 200, Dantzig (1963, p. 160) reported the number of iter-
eing usually less than 3m/2 and only rarely going to 3m. This observation
 empirical findings obtained more recently for much larger problems: the

46 4 How Fast Is the Simplex Method?

typical number of iterations increases proportionally to m (with the proportionality
constant in the range suggested by Dantzig) and only very slowly with n. (It is some-
times said that, for a fixed m, the typical number of iterations is proportional to the
logarithm of n.) Theoretical explanations of this phenomenon were proposed by
G. B. Dantzig (1980), K.-H. Borgwardt (1982) and S. Smale (1982). It is this remark-
able efficiency of the simplex method that accounts for its staggering success. At the
current level of computer technology, typical problems with about 100 constraints
and variables are solved in a few seconds; even problems with several thousands of
constraints can be handled successfully. (To attain this level of efficiency, the simplex
method has to be implemented properly, so that the time per iteration is reduced as
much as possible. Consequently, the format of dictionaries has to be abandoned in
favor of less time-consuming ways of organizing the necessary computations. We
shall begin to study this matter in Chapter 7.) For problems with some particular
structure amenable to specialized versions of the simplex method (such as the networ
simplex method of Chapter 19 or generalized upper bounding of Chapter 25), this
limit can be pushed even further.

Monte Carlo simulation studies of the number of iterations were pioneered b
H. W. Kuhn and R. E. Quandt (1963), who solved a number of problems (4.1) wi
¢; = 1for all j, b; = 10,000 for all i, and each g;; selected at random from the set
positive integers between 1 and 1,000. A small part of these experiments has be
reproduced, on a slightly larger scale, with the results exhibited in Table 4.1. (Ea
entry in the table represents the average number of iterations over 100 problems.)
each simplex iteration, the entering variable was that nonbasic variable that h:
the largest coefficient in the z-row of the dictionary. We shall refer to this selecti
rule as the largest-coefficient rule.

TABLE 4.1 Average Number of Iterations
Required by the Largest-Coefficient Rule

20
30

40

50

Ll
Source: D. Avis and V. Chvatal (1978).

',Frqm a purist p

The product;
from such rand
zeros, the rema
random, and th
small. In spite o
agreement with
then the averag

PROBLEMS
AN UNUSUA

o

or every proble

at, there are ¢
Normous nu
. process of

portionality
. (It is some-
tional to the
broposed by
this remark-
ccess. At the
) constraints
thousands of

, the simplex
is reduced as
bandoned in_
utations. We
ne particular

s the networ
pter 25), thi

pioneered b
ms (4.1) wit
-om the set 0
ents has bee:
ble 4.1. (Eac
problems.) I
able that ha
this selectio

Problems Requiring an Unusually Large Number of Iterations 47

The production management problems solved in practice are very much different
from such randomly generated examples. Typically, most of their coefficients g; ;are
zeros, the remaining nonzero coefficients occur in clusters that are very far from
random, and the range of distinct numerical values of the coefficients is often very
small. In spite of these differences, the Monte Carlo simulation results are in striking
agreement with the empirical observations quoted above: for instance, if n = 50,
then the average number of iterations is about 2m.

PROBLEMS REQUIRING
AN UNUSUALLY LARGE NUMBER OF ITERATIONS

e

From a purist point of view, it would be even more reassuring to have a proof that,
for every problem (4.1), the simplex method would require no more than, say, 10mn
iterations to find an optimal solution. However, there is no such proof. Worse than
that, there are examples of LP problems that make the simplex method go through
an enormous number of iterations. V. Klee and G. J. Minty (1972) have shown that
in the process of solving the problem

n
. -y
maximize Y, 10Mix;
i=1
i—-1

bject to <2 > 10i‘ij> + x; <

Jj=1

Xj

contradict this result. They simply suggest that problems requiring large
of iterations must be rare. For this reason, the Klee-Minty examples (4.2)
er similar examples are sometimes referred to as “pathological.”)

100x; + 10x, + x5
Xy

20x, + x,

200x; + 20x, + x,

X5 X2, X3

48 4 How Fast Is the Simplex Method?

Using the largest-coefficient rule, we construct the following sequence of dictionaries.
The initial dictionary:

X4 = 1 - x1

x5 = 100 - 20x1 b x2
x6 = 10,000 - 200)61 - 20x2 - X3 ’ After the SCVCnth lte
z = 100x; + 10x, + x3.

1=

After the first iteration: | = 100 = 3

Xy = 11— x4
xs= 80+ 20x, — X
X6 = 9,800 + ZOOX4— - 20x2

z = 100 — 100x, + 10x, i had we made x; rath
. . _ final dictionary. In
After the second iteration: the largest-coefficien

X, = 1 - X4 nly a small number
80 + 20x,4 rgest-coefficient ru

Xy =
didates for enteri
x¢ = 8,200 — 200x, tionary: variable

z = 900 + 100x, . yearances are mis
After the third iteration: on which each

X4 = 1 - X4

x, = 100 — 20x; — Xs
x¢ = 8,000 + 200x; + 20xs
z = 1,000 — 100x, — 10x;5

After the fourth iteration:
X4 = 1 - X4
x, = 100 — 20x; — Xs
x5 = 8,000 + 200x; + 20xs
z = 9,000 + 100x; + 10xs

After the fifth iteration:
xl = 1 - X4_
xZ = 80 + 20x4 - X5
x; = 8,200 — 200x, + 20x;

After the sixth iteration:

Alternative Pivoting Rules 49

jonaries. = 1— X4
80 + 20x, — x,
9,800 + 200x, — 20x, — x4
= 9900 + 100x, — 10x, — x,.

After the seventh iteration:
1 - X4
100 — 20x; — x,
10,000 — 200x; — 20x, — x,
= 10,000 — 100x, — 10x, — x,.

In the first iteration, we were led to an unfortunate choice of the entering variable:
had we made x; rather than x, enter the basis, we would have pivoted directly to the
final dictionary. In view of this blunder, it is natural to question the expediency of
the largest-coefficient rule: perhaps the simplex method would always go through
only a small number of iterations if it were directed by some other rule. In fact, the
largest-coefficient rule is not quite natural. More specifically, it ranks the potential
candidates for entering the basis according to their coefficients in the last row of the
dictionary: variables with larger coefficients appear to be more promising. But

_ appearances are misleading and the ranking order is easily upset by changes in the
scale on which each candidate is measured. For instance, the substitution

X, = 0.01x,, X, = 0.0001x,

100x; + 1,000x, + 10,000x,
Xy
20x; + 100x,
200%; + 2,000%, + 10,000%,
Xy, Xg, X3
e first dictionary associated-with this new version of (4.3), the nonbasic variable

cars most attractive, and so the simplex method reaches the optimal solution
| One iteration.

IRNATIVE PIVOTING RULES

are led to ranking the candidates x; for entering the basis according to
hat are independent of changes of scale. One criterion of this kind is the in-
n the objective function obtained when x; actually enters the basis. The

50 4 How Fast Is the Simplex Method?

resulting rule (always choose that candidate whose entrance into the basis brings
about the largest increase in the objective function) is referred to as the largest-
increase rule. On the Klee-Minty examples (4.2), the largest-increase rule leads the
simplex method to the optimal solution in only one iteration, as opposed to the
o _ 1 iterations required by the previously used largest-coefficient rule. However,
the new rule does not always lead to a small number of iterations: R. G. Jeroslow
(1973) constructed LP problems that are to the largest-increase rule what the Klee-
}Vlinty problems are to the largest-coefficient rule. (More precisely, the number of
iterations required by the largest-increase rule grows exponentially with m and n.)
Again, these examples exploit the myopia inherent in the simplex method. It is

conceivable that every easily implemented rule for choosing the entering variable

can be tricked in a similar way into requiring very large numbers of iterations.

Which of the two rules.is better? On problems arising from applications, th
number of iterations required by the largest increase is usually smaller than th
aumber of iterations required by the largest coefficient. Simulation experiments lea
to a similar outcome (see Table 4.2).

Table 4.2 Average Numbers of Iterations
Required by the Largest-Increase Rule

n

” 10 | 20 30 | 40 | 50

10 . . . 12.1 12.6

20 16.2 A 242 27.3

30 28. 34.5 394

40 433 399

50 589
I

L
Source: D. Avis and V. Chvatal (1978).

Nevertheless, as the largest-coefficient rule takes less time to execute tha
largest increase, it is the former that usually wins in terms of total computin
More generally, the number of iterations is a poor criterion for assessing the
ciency of a rule for choosing the entering variable. It is the total computing ti
counts, and rules that tend to reduce the number of iterations often take t00
time to execute. In this light, even the largest-coefficient rule is found too
consuming and therefore rarely, if ever, used in practice. The choice of €
variables in efficient implementations of the simplex method is influence
logistics of handling large problems on a computer; this matter will be st
Chapter 7.

rules; the smallest-syh

EFFICIENCY OF AL

As noted in Chapter 1, t
algorithms are radically di
1ts running time increas
stands; we are going
et us consider a fixed ¢
.~) and a fixed algorith
interpretation of the ¢
fferently, the size of a
writer in order to writ

Efficiency of Algorithms in Theory and Practice 51

sis brings A systematic rule that always leads to an unambiguous choice of the entering
e largest- variable, and to an unambiguous choice of the leaving variable in case of a tie, is
leads the called a pivoting rule. The largest-coefficient rule and the largest-increase rule,
sed to the amended by unambiguous instructions for tie-breaking, are two examples of pivoting
However, rules; the smallest-subscript rule of Chapter 3 is another.
. Jeroslow

the Klee—
number of

m and n.)
thod. It is
1g variable , EFFICIENCY OF ALGORITHMS IN THEORY AND PRACTICE

ions.

;tations, the As noted in Chapter 1, the theoretical and the practical criteria for judging the efficiency of
.+ than the algorithms are radically different. From the theoretical point of view, an algorithm is satisfactory

if its running time increases only slowly with the size of the problem. This is a vague definition
as it stands; we are going to make it precise.

Let us consider a fixed class of problems (such as linear programming problems in the standard
form) and a fixed algorithm (such as the simplex method) for solving problems in this class, A
_ [air interpretation of the “size of the problem” is the time required to transmit the data. To put
it differently, the size of a problem is the number of times you have to hit the keyboard of your
pewriter in order to write down the data. For instance, the size of the Klee-Minty problems
(42) is roughly n3/3 when n gets very large (each of the i — j + 1 digits in each coefficient 2 - 10°~7
as to be written down). A fair interpretation of “running time” is the total number of elementary
eps (such as adding up, multiplying, or comparing two one-digit numbers; executing a “go to”
tuction in a computer program; and so on) that have to be executed. (Thus it is implicitly
umed that each elementary step requires one unit of time.) Now for each s, there may be many
nly finitely many) different problems of size s in our class, and our algorithm may require
ent amounts of time £y, t,, . . .,) for different problems P,, P,, ..., P, of this size. Only
largest of these numbers ¢, matters in the theoretical context. Of course, this largest ¢; depends
we shall denote it by #(s). Thus, our algorithm solves every problem of size s within t(s) units
é and actually uses up these t(s) units of time in the worst case. F inally, the algorithm is
dered satisfactory if t(s) grows only slowly with s. More precisely, the algorithm is satis-

if there is a polynomial p such that t(s) < p(s) for all s.
s definition, proposed by J. Edmonds (1965), is one of the most fruitful and stimulating
s in theoretical computer science. [Those wishing for more information on this subject
tred to Garey and Johnson (1979).] Nevertheless, even though this concept does reflect

iments lead

ute than © extent the reasons why practitioners are satisfied by some algorithms and unsatisfied
nputing , it fails to capture these reasons fully. Two of the features that make it unrealistic from
ssing the. ical point of view are:

he worst-case criterion.
he asymptotic point of view.

fquacy of the worst-case criterion is demonstrated most dramatically on the case of the
nethod itself: even eminently useful algorithms may be labeled unsatisfactory on the
ew isolated examples of a kind that might never come up in practice. The average
me (Y't,/M) might provide a more realistic criterion than the worst running time
nfortunately, a rigorous analysis of the average performance is often much more

O

0

52 4 How Fast Is the Simplex Method?

difficult than an analysis of the worst performance. The inadequacy of the second feature may
manifest itself even when the running time depends only on the size of the problem, so that the
average performance and the worst performance coincide. The point is that the actual values
t(s), with s restricted to a finite range, do not matter at all; the only thing that counts is the rate
of growth of t(s) as s increases beyond every bound. Thus, a hypotheticalfalgorithm with a running
time ¢ = 10¢/1,000:000,000 (rounded up to the nearest integer) would be found theoretically un-
satisfactory even though #(s) < 10 whenever s = 10°; on the other hand, an algorithm with a
running time ¢(s) = 1019905 would be found theoretically satisfactory even though £(s) = 101000
for all s. Theorists judge algorithms by their worst petformance on problems of sizes outside the
range of practical interest, whereas practitioners judge algorithms by their typical performance
on problems whose sizes are limited to a finite range. (In all fairness, it should be admitted that
the theoretical definition is not all that bad. As it turns out, the polynomials bounding the running
time of theoretically satisfactory algorithms often assume reasonably small values for reasonably

small values of s and, on the other hand, even the typical running time of theoretically unsatis-

factory algorithms will often get out of hand already for small values of s.)

For many years, while practitioners were trying to reduce the typical running time of the
simplex method by yet another 10% or 20%, theorists were trying to answer a fundamental
question: Is there a theoretically satisfactory algorithm for solving linear programming problems?
Eventually, L. G. Khachian (1979) provided an affirmative answer by presenting such an algo-
rithm. This “ellipsoid method” is surprisingly simple and elegant; we shall describe i
in the appendix. Will this beautiful gem of pure mathematics ever become a serious challeng
of the simplex method’s supremacy in solving practical LP problems? That remains to be seen;

[at the time of this writing, it seems very likely that the answer is no.

PROBLEMS

A4l Compare the performance of the three pivoting rules discussed in this chapter on
following examples:

a. maximize 4x; + 5x,

subject to 2%, + Xy
X1

X2

X1, X2

vV IAIAIA
o w k0

maximize 2xy + X,

subject to 3%, + %, <3

X, X =0

maximize 3x, + 5%,

subject to Xy + 2%
X1

X2

X1, X2

iV IA A IA

In the Klee-Minty

by Xn+ 15 xn+2, ot '
variables x;, s;is b

Use the result of
with the largest coe
properties:

(i) After 2"t _
z= 10(1
(i) After 27! jg
z =901
(i) After2" — 1
z = 100"

(iv) Aftereach it

i feature may
m, so that the
actual values
nts is the rate
with a running
soretically un-
orithm with a
L 1(s) = 100°°°
zes outside the
11 performance
, admitted that
ing the running
for reasonably
tically unsatis-

ing time of the

a fundamental
ming problems?
g such an algo-
scribe its details
rious challenger
\ains to be seen;

s chapter on t

Problems 53

42 In the Klee—Minty problem (4.2), denote the slack variables by sy, s3,..., S rather than
BY Xp415 Xus 25 - - - » Xop Prove that in every feasible dictionary, precisely one of the two
variables x;, s; is basic.

Use the result of problem 4.2 and induction on n to prove that, when the simplex method
with the largest coefficient rule is applied to (4.2), the resulting dictionaries have the following
properties:

() After 2"~* — 1 iterations, the last row reads
7= 10(100"_2 - "iz 10" 7ix; — s,,_1> + X,
=1
(i)} After 2! iterations, t;w last row reads
z = 90-100"" %+ 10<"i2 10" 7ix; + s,,_1> — S
=1
(ili) After 2" — 1 iterations, t}:c last row reads

n—1
z=100""1 — Y 10" 7x; — s,

ji=1
(iv) I After each iteration, all the coefficients in the last row are integers.

