The Duality Theorem

Every maximization LP problem in the standard form gives rise to a minimizati
LP problem called the dual problem. The two problems are linked in an interes
way. Every feasible solution in one yields a bound on the optimal value of the o
In fact, if one of the two problems has an optimal solution, then so does the 0

and the two optimal values coincide. This fact, known as the Duality Theoret

the subject of the present chapter. We shall also note that, in managerial applicat
the variables featured in the dual problem can be interpreted in a very useful

MOTIVATION: FINDING UPPER BOUNDS
ON THE OPTIMAL VALUE

We shall begin this chapter with the following LP problem:
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Rather than solving it, we shall try to get a quick estimate of the optimal value z*
of its objective function. To get a reasonably good lower bound on z*, we need only
come up with a reasonably good feasible solution. For example, the bound z* > 5
comes from considering the feasible solution (0,0, 1, 0). The feasible solution
(2,1, 1,%) shows that z* > 15. Better yet, the feasible solution (3,0, 2, 0) yields
z* 2 22. Needless to say, such guesswork is vastly inferior to the systematic attack
by the simplex method: even if we were lucky enough to hit on the optimal solution,
our guess would provide no proof that the solution is indeed optimal.

We shall not pursue this line any further: the subject of this chapter stems from
a similar quest for upper bounds on z*. For example, a glance at the data suggests
that z* < 232 Indeed, multiplying the second constraint by 3 we obtain the inequality

25 5 40 275
‘3—x1 + “3‘xZ + 5X3 + '_3_-)(:4 S T .

Hence every feasible solution (x,, x,, x5, x,) satisfies the inequality

40 275
X4 < —*3—

25 5
4xy 4+ X5 + 5x3 + 3%y < —-x; + =x, + Sx5 + 3

3 3

In particular, this inequality holds for the optimal solution and so z* < 215 With
a little inspiration, we can improve this bound considerably. For instance, the sum
_ of the second and third constraints reads

g, + 3x, + 6x3 + 3x, < 58,

herefore, z* < 58. Rather than searching for further improvements in a haphazard
ay, we shall now describe the strategy in precise and general terms.
We construct linear combinations of the constraints. That is, we multiply the first
straint by some number y,, the second by y,, the third by y;, and then we add
up. (In the first case, we had y; = 0,y, = 3, y; = 0; in the second case, we had
0,y, = y3 = 1.) The resulting inequality reads

5y = Ya)xXy F (= Y1+ Y2 +2y3)x, + (—y, + 3y2+3y3)xs +(3y; + 8y, — Sya)xa
<1+ 55y, + 3y,. (5.1)

urse, each of the three multipliers y; must be nonnegative: otherwise the cor-

nding inequality would reverse its direction. Next, we want to use the left-hand
(5.1) as an upper bound on z = 4x, + X, + 5x3 + 3x,. This can be justified

if in (5.1), the coefficient at each x; is at least as big as the corresponding co-
t in z. More explicitly, we want
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If the multipliers y; are nonnegative and if they satisfy these four inequalities, then to-one correspond
we may safely conclude that every feasible solution (x, X,, X3, X,) satisfies the in the objective fy
inequality hand side of the ¢

As in our exam
_ the optimal valye
In particular, this inequality is satisfied by the optimal solution; therefore (1> X25 -+ -, X,) AN

4x, + X5 4 5x3 + 3x, < yg + 55y, + 3ys.

z* <y, + 55y, + 3ys.

Of course, we want as small an upper bound on z* as we can possibly get. Thus, we

are led to the following LP problem:

minimize y1 + 55y, + 3ys

subject to yi + S5y, — Vs

—y1+  y2t+ 2y

—y1 + -3y, + 3y3

3y, + 8y, — 5y3

Y1 V25 Y3

LI—IE DUAL PROBLEM

This problem is called the dual of the original one; the original problem is called t
primal problem. In general, the dual of the problem

n
maximize Y cx;
=1

n
subject to Y. ax;
i=1
Xj

is defined to be the problem

m
minimize > by
i=1

m

subject to Sayi=zc (G=12....1n

i=1
y; =0 i=12...,m).
(Note that the dual of a maximization problem is a minimization problem. Fu

more, the m primal constraints Ya;x; < b; are in a one-to-one correspondenc
the m dual variables y;; conversely, the n dual constraints Y a;;y; = c; are in
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to-one correspondence with the n primal variables x;. The coefficient at each variable
in the objective function, primal or dual, appears in the other problem as the right-
hand side of the corresponding constraint.)

As in our example, every feasible solution of the dual yields an upper bound on
the optimal value of the primal. More explicitly, for every primal feasible solution
(%1, X2, - . - » X,) and for every dual feasible solution (yy, V5, - - - » V) We have

i Z biy:. (5.4)

i=1

The proof of (5.4), which was illustrated at the beginning of this section, can be
written down succinctly as

n n m
-21 CiXj = Z <Z aijyi>xj
=

g
R

) (Z aijxj>)’i = Z, b.y;.

i=1

Inequality (5.4) is extremely useful: if we happen to stumble across a primal
feasible solution (x¥, x%, ..., x¥) and a dual feasible solution ( y¥ y%, ..., yE) such

_ that

1t every primal feasible solution (x;, X5, . . . , X,) satisfies

that every dual feasible solution (1, V2> - - - » V) stisfies

= Z b;y¥.
i=1

j=1

nstance, we have an easy way of showing that the primal feasible solution

, X, = 14, x5 = 0, x, = 5 of our original example is optimal: just consider

1 feasible solution y, = 11, y, = 0, y; = 6. It is not at all obvious, however,

analogous proof of optimality can be given for every LP problem that has
mal solution; this fact is the central theorem of linear programming.

JALITY THEOREM AND ITS PROOF

cit version of the theorem comes from D. Gale, H. W. Kuhn, and A. W.
951); its notions originated in conversations between G. B. Dantzig and
mann in the fall of 1947.
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we eventually arrj
THEOREM 5.1 (The Duality Theorem). If the primal (5.2) has an optimal that the last row o
solution (x¥, x%,...»X3), then the dual (5.3) has an optimal solution %,
n+m

y% ..., y¥) such that z=2*+ Y ¢
k=1

epf = 2 bt (5.5)

In(5.7),eachc isa
In addition, z* is t

Before presenting the proof, let us briefly illustrate its crucial point: the optimal
solution of the dual problem can be read off the z-row of the final dictionary for th
primal problem. In the example that we used to motivate the concept of the du
problem, the final dictionary reads

x, = 14 — 2x; — 4%3 — 5x5 — 3%,

Xg= 5— Xy — X3~ 2xs — X9

xg = 1+ 5x; + 9x, + 21xs5 + 11x4

; =29 — x; — 2x3 — 11x5 — 6x4.
Note that the slack variables x5, X¢, X7 Call be matched up with the dual variabl
Vi, V2, y3ina natural way: for instance, X5 is the slack variable in the first constra
whereas y; represents the multiplier for the same constraint. By the same log

xe goes with y, and x-, goes with ys. In the z-row of the dictionary, the coeflici
at the slack variables are

—11 at x5, 0Oatxe, —6at x4.

Assigning these values with reversed signs to the corresponding dual variables
obtain the desired optimal solution of the dual: '

ylzlla y2=0’ y3=6

At first, this may seem like pulling a rabbit qut of a hat; however, the foll
general argument explains the magic. o .

PROOF OF THEOREM 5.1. We need only find a feasible solution (y%, 3,
satisfying (5.9); indeed, such a solution will be optimal by virtue of the re
following (5.4). In order to find that solution, we solve the primal problem
simplex method; having introduced the slack. variables

i=12...,m
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we eventually arrive at the final dictionary. For the sake of definiteness, let us say
that the last row of that dictionary reads

n+m
z = Z* + Z ?kxk. (5.7)
k=1
In(5.7), each ¢, is a nonpositive number (in fact, ¢, = 0 whenever x, is a basic variable).
In addition, z* is the optimal value of the objective function, and so

=) ¢} (5.8)

ji=1
Defining

® —

yE = —Chri i=12...,m : (5.9)

we claim that (y¥, y%, ..., y¥) is a dual feasible solution satisfying (5.5); the rest of
the proof consists of a straightforward verification of our claim. Substituting ) c¢;x;
for z and substituting from (5.6) for the slack variables in (5.7) we obtain the identity

n n
— % = — * _
X =25+ ), Tx; Vi <b,- % aijxj>
j=1 i=1 i=1

which may be written as

i=1 i=1 i=1
his identity, having been obtained by algebraic manipulations from the definitions
of the slack variables and the objective function, must hold for every choice of values
X1 Xq, . . -, X,. Hence we have

Z b;yf
i=1

m
¢+ Z aijy;k

i=1

(G=L1L2...,n).

< Oforeveryk =1,2,...,n + m, (5.11) and (5.9) imply

LI
,o0

' aijy?‘ . (j=1,2,...,n)

20  (i=12...,m)
Y, (5.10) and (5.8) imply (5.5).
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RELATIONSHIP BETWEEN
THE PRIMAL AND DUAL PROBLEMS
Next, let us point out that the dual of the dual is always the primal problem. Indeed,

the dual problem may be written as
m
maximize Y, (—b)yi
i=1
subject to Y (—ayi < —¢ (j
i=1

iz 0 @i
The dual of this problem is

n
minimize 3 (—ex;
j=1
n

Z(——au)sz '_bi (l: 152,"'3m)

j=1

subject to
(=127
oblem. A nice corollary to this observ

rimal problem has an optimal soluti
al solution. Note also that if the prim

xX; = 0

which is clearly equivalent to the original pr
tion and to the duality theorem is that the p

if and only if the dual problem has an optim
is unbounded, then the dual must be infeasible [this follows directly from (54

By the same argument, if the dual is unbounded then the primal must be infeasib
However, both primal and dual may be infeasible at the same time. For examp
both the problem
maximize 2%, — X3
Xy — X2 1

— X3 +x2_<_ -2

subject to

Xxp X = 0
and its dual are infeasible. These conclusions are summarized in Table 5.1.

Optimal | Infeasible "l" Unbounded

Impossible

Table 5.1
Primal-Dual
Combinations

Optimal Possible Impossible

Primal Infeasible Impossible Possible Possible

Unbounded Impossible Impossible
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In particular, if the primal problem has a feasible solution and if the dual problem
has a feasible solution, then both problems have optimal solutions.

Duality has important practical implications. In certain cases, we may find it
advantageous to apply the simplex method to the dual of the problem that we are
really interested in. (Of course, the optimal solution of the primal problem can then
be read directly off the final dictionary for the dual) For example, if m = 99 and
n = 9, then dictionaries will have 100 rows in the primal problem but only 10 rows
in the dual. Since the typical number of simplex iterations is proportional to the
number of rows in a dictionary and relatively insensitive to the number of variables,

- we shall most likely be better off solving the dual problem.

From a theoretical point of view, duality is important because it points out an
elegant and succinct way of proving optimality of solutions of LP problems: as we
have observed, an optimal solution of the dual problem provides a “certificate of
optimality” for an optimal solution of the primal problem, and vice versa. Further-
more, the duality theorem asserts that for every optimal solution there is a certificate
of optimality. To appreciate the impact of this fact, consider a student who is sup-
posed to solve the problem

n
 maximize '21 ¢j%;
iz

<b  (=L12...,m

Xj

>0 (j=12...,n.

lying the simplex method to (5.12), the student finds simultaneously an optimal
tion x¥, x%, ..., x¥ of (5.12) and an optimal solution y¥, y%, ..., yy of the dual

Z a;; Vi j (j

i=1

y; =20 (i=12...,m).

e shows both solutions to his supervisor. The supervisor has an easy wa{of
g the correctness of the answer. To check the feasibility of the allegedly
1 solution, she has to verify the inequalities

< 1ts optimality, she has to verify the inequalities
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n
Zaijy?‘ZCj (] 1,2;"'5'1)
i=1

y¥=0 @ 1,2,...,m)

and the equation

Y et = ) byt (5.16)
j=1 i=1

ffort involved in these verifications is much smaller

Of course, the computational e
ired to solve (5.12) from scratch by the simplex

than the computational effort requ
method.

COMPLEMENTARY SLACKNESS

Now we shall show how the supervisor can often recover the certificate of optimali
v, y5, ..., ym from the optimal solution x¥, x%,...,x; alone. The key to the pr
cedure is a convenient way of breaking down equation (5.16) into simple constituen

THEOREM 5.2. Let x¥, x%5,.. ., x¥ be a feasible solution of (5.12) and let
yioyh, ..., ymbea feasible solution of (5.13). Necessary and sufficient condi-
tions for simultaneous optimality of x*¥, x%,..., xx and yE V5, .., ymare

Y ayyF =c; or x¥f=0 (or both) for every j=12...,n (5.17)
i=1

and

Y. agxf =b; or y¥F=0 (or both) forevery i
j=1

PROOF. Assumptions (5.14) and (5.15) imply

exf < (Z aijy;k>x;'k (j=1,2....n

i=1

(Z aux,*-‘>y?‘ < buyf (i=12...,m
j=1

and so

n n m m n m
Y oexf < ZI<ZI aij)’?)ﬁ = ( agpx¥ Iy < > byt
i= i= 1 i=1

j=1 i= i=1 \j=

Hence, (5.21)
and (5.20). Ot
x¥ = 0; failin
ifand onlyif¢
if condition (5.
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Hence, (5.21) holds with equalities throughout if and only if equalities hold in (5.19)
and (5.20). One way to guarantee the equality et = Qa;yH)x¥ is to insist that
x¥ = 0; failing that, we must require ¢ ;= 2.a;;yF. Hence, equalities hold in (5.19)
if and only if condition (5.17) is satisfied. Similarly, equalities hold in (5.20) if and only
if condition (5.18) is satisfied.

To summarize, conditions (5.17) and (5.18) are necessary and sufficient for (5.16)

to hold. On the other hand, the Duality Theorem shows that (5.16) is necessary and

sufficient for simultaneous optimality of x¥, x¥, ..., xy and y¥, y% ..., y* The
proof is completed. [ ]

Conditions (5.17) and (5.18) gain simplicity as soon as we introduce the slack
variables

Xn+i = O (i=192""5m)

Ym+j = —CJ' + z aij.Yi (J = 15 23"':”)‘
i=1

As we observed once before, the primal slack variables x,, ,, Xp42s > Xnsm A€
naturally matched up with the dual decision variables y,, y,, .. ., V. €ach variable

Xu4; denotes the slack in the ith primal constraint, whereas the corresponding y;

represents the multiplier at the same constraint. Similarly, each primal decision
variable x ; is matched with the dual slack y,, ., 7 Conditions (5.17) and (5.18) require
1t in each of the m + n matching pairs, at least one variable must have value zero.
hese conditions are usually called the complementary slackness conditions; Theo-
m 5.2 itself is referred to as the Complementary Slackness Theorem.
t is an easy task to convert Theorem 5.2 into a form in which its applicability
omes evident.

EOREM 5.3. A feasible solution x¥, x5, ..., xx of (5.12) is optimal if
ind only if there are numbers y¥, y%, .. ., v such that

= C:

;  whenever x¥f>0

n
*
0 whenever Y a;x¥ < b
j=1

¢j

for all j

0 forall i
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PROOF. If x%, x%,...> x¥ is optimal, then, by Theorem 5.1, there is an optimal
solution v§, y3,---» y% of (5.13). That solution, being feasible, satisfies (5.23). By
Theorem 5.2, the two optimal solutions satisfy the complementary slackness condi-
tions (5.22).

Conversely, if ¥, ¥3, - - > yi satisfy (5.23), then they constitute a feasible solution of
(5.13). If they satisfy (5.22) as well, then, by Theorem 5.2, x¥, x%, ..., Xy isan optimal
solution of (5.12) and yE v y¥ is an optimal solution of (5.13). [ ]

Theorem 5.3 is often useful in checking the optimality of allegedly optimal solu
tions when no certificate of optimality is provided. Confronted with an allegedly
optimal solution x¥, x5, ... Xn Of (5.12), we first set up the system of linear equation

(5.22) and solve for [ PO A oty the solution y¥, y%, . .., ym is unique, then w
are in business: x¥, x3, ..., x* is optimal if and only if (5.23) holds. We shall illus

trate this situation with two examples.
First, let us consider the claim that

x¥ =2, xt =4, x5=0 x¥=0, xi

is an optimal solution of the problem

maximize 18x, — 7%, + 12x3 + 8x¢
subject to 2x, — 6%, + 2%3 3xs + 8xs
—3x4 X, + 4x3 x5 + 2Xg

8x; — 3%, + S5x3 + 2x¢

4x, + 8x; — x5 + 3%

5%y 4+ 2%, — 3%3 — 2x5 — Xs

X3, X4 X55 X6

In this case, (5.22) reads
2y% — 3y% + 8yF + Ayi Sy% =
—6yf — y5 — 33 + 2y% =
3yr+ )3 — yE =2
%)

%k

Ys =

Since its solution (, 0,3, 1,0) satisfies (5.23), the proposed solution x¥, x3, .
is optimal. '
Second, let us consider the claim that

xt=0 x}=2 x¥=0 xi=T7, x¥=0

is an optimal solution of the problem

 case.

maximize

subject to

Here (5.22) becomes
=3yt + 13
¥t —2y%
V%
Since its unique
x¥, x%,...,x¥isno
Of course, this

optimal solutions is
solution. The follow

THEOREM 54.
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maximize 8xy — 9x, + 12x; + 4x, + 11x,
subject to 2%y = 3%, + 4xz + x4 + 3x5 <

Xp 4+ Txy + 3x3 — 2x4 + x5

5%; + 4x; — 6x3 + 2x, + 3xs

X1, X9, X3, Xgq, X5

Here (5.22) becomes

=+ +dpk = -9
i =295 + 2% =
V3 = 0

Since its unique solution (3.4, 0, 0.3) violates (5.23), the proposed solution
x¥, x5, ..., x¥ is not optimal. } .

Of course, this straightforward strategy for verifying optimality of allegedly
optimal solutions is applicable only if the system of equations (5.22) has a unique

solution. The following result points out conditions under which this is always the
case.

THEOREM 5.4. 1If x*, x%, ..., xy is a nondegenerate basic feasible solution
0f(5.12), then (5.22) has a unique solution.

\

The proof of this theorem is postponed until the end of Chapter 7, where it will
come an exercise (problem 7.3).

CONOMIC SIGNIFICANCE OF DUAL VARIABLES

(5.24)
>

n applications, the variables y,, Y25 -+« » ¥ it the dual problem can be given
Ingful interpretation. An indication of the way these dual variables should be
cted follows from a heuristic argument occasionally used in elementary
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physics and known as “dimension analysis.” For instance, supposc that (5.24) is the . of the resource AI;
problem of maximizing profit in a furniture manufacturing firm. Each x; meas1.1res . price of the ith 'res
t (such as desks or chairs), and each b; specifies | To illustrate the

the level of the output of the j th produc
the available amount of the ith resource (such as wood or metal). Note that each a;; | timber. Felling the

is expressed in units of resource i per unit of product (in fact, each a;; s the amount of | acre in immediate
resource i required in making a unit of product j) and that each ¢; is in dollars per | alternative course

unit of product j (in fact, each c; is the net profit brought in by 2 unit of product ) would cost $50 pe
To make the left-hand side, Y a:v Of ecach dual constraint commensurate with the profits resultingpf
right-hand side c;, we must express each y: in dollars per unit of resource i- Thus, one is Unfortunately the]
led to suspect that each ¥i measures the unit worth of the ith resource. The following | area since 0n1}: 34

theorem will validate this suspicion.  problem s to
maximize

subject to

THEOREM 5.5. 1f (5.24) has at least one nondegenerate basic optimal solu-

tion, then there is a positive & with the following property: If |t < efor alli =

1,2,...,M then the problem

1ts optimal soluti
_hardwood throug‘
. emaining 75 acr
subject to Y ax; S b+t (= 1,2,...,m 4,000 yields the
j=1 ‘ Evidently, the

n
maximize Y e
j=1

xj_>_0 (j= 1,2,...,M ‘ ester might be
t-term loan;

has an optimal solution and its optimal value equals

m
2+ Y, Y
i=1 ’ .
with z* standing for the optimal value of (5.24) and with y5, ¥3, - - -» yi standin

for the optimal solution of its dual.

We postpone the proof of this theorem also until the end of Chapter T, W

will become an exercise (problem 7.4). At this moment, let us note only t

uniqueness of 5, 5, - yk is guaranteed by Theorems 5.4 and 5.2.

Theorem 5.5 reveals the effects of small variations in the suppties of the re
on the total net profit of the firm. With each extra unit of resource i, the profit i1
by y¥ dollars. Hence, v} specifies the maximum amount that the firm sh
willing to pay, Over and above the present trading price, for each extra unit of
i. For this reason, y¥ is often called the marginal value of the ith resource,

the
“marginal” referring to the difference between the trading price and the actus
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of the resource. Another term commonly used for y¥ in this context is the shadow
price of the ith resource.

To illustrate these findings, imagine a forester who has 100 acres of hardwood
timber. Felling the hardwood and letting the area regenerate would cost $10 per
acre in immediate resources and bring a subsequent return of $50 per acre. An
alternative course of action is to fell the hardwood and plant the area with pine; that
would cost $50 per acre with a subsequent return of $120 per acre. Hence, the net
profits resulting from the two treatments are $40 and $70 per acre, respectively.
Unfortunately, the more profitable second treatment cannot be applied to the entire
area since only $4,000 is available to meet the immediate costs. Clearly, the forester’s

. problem is to

maximize 40x, + 70x,

subject to Xy + X, 100
10x; + 50x, < 4,000
X1, Xy = 0.

ts optimal solution is x¥ = 25 and x% = 75. Hence, the forester should fell the
hardwood throughout the entire area, letting 25 acres regenerate and planting the

remaining 75 acres with pine. According to this program, the initial investment of

4,000 yields the ultimate net profit of $6,250.

Evidently, the forester’s initial capital represents a valuable resource. In fact, the
ester might be well advised to increase the level of this resource by taking out a
t-term loan; the resulting extra profit might make up even for a drastic interest
e. For example, suppose that she could borrow $100 now and pay back $180 later;
Id she do that? On the other hand, she might be tempted to divert some of her
000 to other lucrative enterprises. For example, suppose she could invest $100
and collect $180 later; should she do that? According to Theorem 5.5, the

ers lie hidden in the optimal solution

325, y% =075

dual problem: the forester should take out (limited) loans if and only if the

t is lower than 75 cents per dollar and she should make (small) investments if

nly if the profit is greater than 75 cents per dollar.

se claims, whose validity is guaranteed by Theorem 5.5, are easy to justify
Having borrowed ¢ dollars, the forester aims to

mize  40x, + 70x,
: X+ x, 100
10x; + 50x, < 4,000 + ¢

X, X 0.
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Every feasible solution Xy, X2 of this problem satisfies the inequalities

40x, + T0x; = 32.5(x;, + X2) T 0.75(10x, +. 50x,) (527)
< 3250 + 0.75(4000 + f) = 6,250 + 0.75¢ '

and so the extra profit will never exceed 0.75t. In fact, if t = 1,000, then the forester
can realize the additional profit of 0.75t by letting

X, =25 — 00256, X2 = 75 + 0.025t. (5.28)

Investments in other enterprises give rise to negative values of £ in (3 26);asa result
of such investments, the net profit from the original enterprise diminishes. If —1
dollars atre diverted to alternative investments (—tis positive'.) then, by (5.27, the
profit from the hardwood felling enterprise will drop by 0.75(—t) or even more. In
fact, if —¢ < 3,000, then the drop can be limited to only 0.75(—1t) by choosing X1

and X, according to (5 28).

It should perhaps be emphasized that Theorem 55 deals with small changes & in
the resource levels; its conclusions may fail when the t7s are large. For instance, out
forester has no use for loans exceeding $1,000 and, should she wish to invest all of her

$4,000 in another enterprise, she would be ill advised to demand only 75 cents 0

profit on each dollar. (A part of Theorem 5.5 can be salvaged even if the t;'s are large;

see problem 59)

Now suppose that a previously unavailable opportunity arises for the forester 10
engage in an activity such as, s3¥s felling the hardwood and planting the area with.

conifer. Fora quick assessment of this activity, the forester may appeal to the marginal
values of her resources: $32.5 per acre of hardwood and $0.75 pet dollar of capital.
If the new activity requires 4 dollars per acte, then the resources consumed by this
activity per acre are valued at $(32.5 + 0.75q) and the activity 18 worth considerin
if and only if its net profit per acte exceeds this figure. Further examples of this kin
are presented in problems 5.6 and 5.7.

In closing, let us mention that models of economy often fall into the realm of linea!
programm'mg. In particular, many theorems concerning economic equilibria may b
deduced from the Duality Theorem and the Complementary Slackness Theore
Their discussion exceeds the scope of this text; the interested reader is referred

D. Gale (1960) and R. Dorfman, P. A. Samuelson, and R. M. Solow (1958).
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In problem 1.6, one of the possible strategies is as follows:
* Smoke all 400 bellies on regular time.
* Smoke 20 picnics on regular time and 210 on overtime.
¢ Smoke 40 hams on overtime and sell 440 fresh.
. Use Theorem 5.3 to find out whether this strategy is optimal or not.

In problem 1.7, one of the possible strategies is as follows:

* Blend 3,754 barrels of alkylate, 2,666 barrels of catalytic, 920 barrels of straight-run,
and 543 barrels of isopentane into 7,883 barrels of Avgas A.

* Blend 60 barrels of alkylate, 3,096 barrels of straight-run, and 672 barrels of isopentane
_ into 3,828 barrels of Avgas B.

Sell 85 barrels of isopentane raw.

se Theorem 5.3 to find out whether this strategy is optimal or not.
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5 The Duality Theorem

In the optimal solution to problem 1.6, all the bellies and picnics are smoked. However,
sufficiently drastic changes in market prices might provide an incentive to change this
policy. Assume that the market price of fresh bellies increases by x dollars, while all the
other prices remain fixed at their original levels. How large would x have to be in order
to make it profitable for the plant to sell fresh bellies? Ask and answer a similar question
for picnics. How would the sales of small amounts of fresh bellies and picnics affect the

rest of the operation? What precisely do “gmall amounts” mean in this context?

In the optimal solution to problem 1.7, 85 barrels of isopentane are sold raw at $4.83
per barrel. Find the break-even selling prices for raw alkylate, catalytic, and straight-run.
Next, assume there is a demand for Avgas C with PN at least 80 and RVP at most 7. Find
the break-cven selling price of this gasoline. ‘

Can you interpret the complementary slackness conditions in economic terms?

Let z* be the optimal value of (5.24) and let Vv Ve y& be any optimal solution of the
dual problem. Prove that

n m
Y ezt Y vt
j=1 i=1

for every feasible solution X, X2, « -+ » Xn of (5.25).

510 Constructan example showing that the conclusion of Theorem 5.5 may fail if the hypothes

that (5.24) has a nondegenerate basic optimal solution is omitted.




