Introduction

In this short chapter, we shall explain what is meant by linear programming and
sketch a history of this subject.

. DIET PROBLEM

Polly wonders how much money she must spend on food in order to get all the
nergy (2,000 kcal), protein (55 g), and calcium (800 mg) that she needs every day.
For iron and vitamins, she will depend on pills. Nutritionists would disapprove,
ut the introductory example ought to be simple.) She chooses six foods that seem
0 be cheap sources of the nutrients; her data are collected in Table 1.1.

aible 1.1 Nutritive Value per Serving

Energy Protein Calcium Price per serving
Serving size (kcal) (2) (mg) (cents)

28g 110 4 2 3
100 g 205 32 12 24
2 large 160 13 54 13
237 cc 160 8 285 9
170 g 420 4 22 20
260 g 260 80
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Then she begins to think about her menu. For example, 10 servings of pork with
beans would take care of all her needs for only (?) $1.90 per ay. /= the otuzr ha~d,
10 servings of pork with beans is a lot of pork with beans—she would not be able
to stomach more than 2 servings a day. She decides to impose servings-per-day
limits on all six foods:

Oatmeal at most 4 servings per day

Chicken at most 3 servings per day

Eggs at most 2 servings per day

Milk at most 8 servings per day

Cherry pie at most 2 servings per day

Pork with beans  at most 2 servings per day.
Now, another look at the data shows Polly that 8 servings of milk and 2 servings of
cherry pie every day will satisfy the requirements nicely and at a cost of only $1.12.
In fact, she could cut down a little on the pie or the milk or perhaps try a different
combination. But so many combinations seem promising that one could go on and
on, looking for the best one. Trial and error is not particularly helpful here. To be
systematic, we may speculate about some as yet unspecified menu consisting of x;
servings of oatmeal, x, servings of chicken, x; servings of eggs, and so on. In order
to stay below the upper limits, that menu must satisfy

0<x, <4

0<x,<3

0<x3<2

0<x,<8

0<xs<2

0< x4 <2
And,,of course, there are the requirements for energy, protein, and calcium; they
lead to the inequalities

110x, + 205x, + 160x; + 160x, + 420xs + 260x,
4x, + 2%, + 13x3 + 8xg+  4xs + 14x, (1.2
2%, + 12x, + 54x; + 285x, + 22x5 + 80x¢ 800.

If some numbers x,, X,, - . - , X¢ satisfy inequalities (1.1) and (1.2), then they describe
a satisfactory menu; such a menu will cost, in cents per day,

3x, 4+ 24x, + 13x5 + 9x4 + 20x5 + 19xs. (L.3)

In designing the most economical menu, Polly wants to find numbers Xq, X,,..., X¢ ‘
that satisfy (1.1) and (1.2), and make (1.3) as small as possible. As a mathematician

would put it, she wa

minimize 3

subject to

0
0
0
0
0
0

110x; + 205x,
dx; + 3I2x,
2x; + 12x,
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110x; + 205x, + 160x; + 160x, + 420x5 + 260x, > 2000

dx; + 32x, + 13x3 + 8x, + 4xs + 1ld4xg > 55
2x; + 12x, + 54x3 + 285x, + 22x5 + 80xs > 800.
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Her problem is known as a diet problem.

LINEAR PROGRAMMING

}

Problems of this kind are called “linear programming problems,” or “LP problems”
for short; linear programming is the branch of applied mathematics concerned with
these problems. Here are other examples:

maximize S5xy + 4x; + 3x,

subject to 2%y + 3%, + x5 5

4, + x, +2x; < 11 (1.5)
3x; + 4%, + 2x3 < 8

IA

IA

xl’ x2a x3 Z 0

= 0” used as shorthand for “x; > 0,x, > 0, x; > 0”) or

ind calcium; they

minimize 3x, — x5

=X + 6%y — %3+ x4 = —3

7%, +2x,= 5 (16)
X+ X, + X5 = 1 '
X3+ x, < 2

then they describ Xy, %3 = 0.

eral, if ¢, c,, ..., c, are real numbers, then the function f of real variables
» X; defined by '

bers Xy X2se00s

i o :
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is called a linear function. If f is a linear function and if b is a real number, then the
equation

Sy, X5y %) = b

is called a linear equation and the inequalities

f(xlax25---,xn)_<_b
f(xl,x27‘-~;xn)2b

are called linear inequalities. Linear equations and linear inequalities are both
referred to as linear constraints. Finally, a linear programming problem is the problem
of maximizing (or minimizing) a linear function subject to a finite number of linear
constraints. We shall usually attach different subscripts i to different constraints and
different subscripts j to different variables. For simplicity of exposition, we shall
restrict ourselves in Chapters 1-7 to LP problems of the following form:

n
maximize Y e
i=1

n
subject to Yoax;<b  (i=12...,m)
j=1
x; =20 G=L2,...,n.

These problems will be referred to as LP problems in the standard form. (The reader
should be warned that the terminology is far from unified; several authors prefer the
terms canonical or symmetric form, and others reserve these adjectives for altogether
different problems.) For example, (1.5) is a problem in the standard form (with
n=3m=3a,, =2a,, = 3,and so on). What distinguishes the problems in the
standard form from the rest? First, all of their constraints are linear inequalities.
Secondly, the last n of the m + n constraints in (1.7) are very special: they simply
stipulate that none of the n variables may assume negative values. Such constraints
are called nonnegativity constraints. (Note that problem (1.6) differs from the standard
form on both counts: two of its constraints are linear equations and the variables
X, X, May assume negative values.)

The linear function that is to be maximized or minimized in an LP problem is
called the objective function of that problem. For example, the function z of variables
X1, X5, X3, X4, X5, Xg defined by '

Z(X1, Xgy v+ -5 Xg) = 3%y + 24x; + 13x3 + 9%y + 20x5 + 194

is the objective function of Polly’s diet problem (1.4). Numbers x;, X5, ..., X, that

satisfy all the constraints of an LP problem are said to constitute a feasible solution

of that problem. For instance, we have observed that

X1=O, x2=0, X3=0, X4=8, x5=2, x6=0
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al number, then the is a feasible solution of (1.4). Finally, a feasible solution that maximizes the objective
function (or minimizes it, depending on the form of the problem) is called an optimal
solution; the corresponding value of the objective function is called the optimal value
of the problem. As it turns out, the unique optimal solution of (1.4) is

xl = 4, x2 = 0, X3 = 0, X4 = 4.5, x5 = 2, x6 = 0

or simply (4, 0, 0, 4.5, 2, 0). Accordingly, the optimal value of (1.4) is 92.5. Not every
LP problem has a unique optimal solution; some problems have many different
optimal solutions and others have no optimal solutions at all. The latter may occur
for one of two radically different reasons: either there are no feasible solutions at all
or there are, in a sense, too many of them. The first case may be illustrated on the
problem

1equalities are both
oblem is the problem
ite number of linear
srent constraints and
exposition, we shall
ing form:

maximize 3x; — X,

subject to X+ x, < 2
—-2x; — 2x, < —10

(1.8)

X1s X2 = 0

(1.7)

which has no feasible solutions at all. Such problems are called infeasible. On the
other hand, even though the problem
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does have feasible solutions, none of them is optimal: for every number M there is a
sible solution x;, x, such that x;, — x, > M. In a sense, (1.9) has such an abun-
nce of feasible solutions that none of them can aspire to be the best. Problems with
property are called unbounded. As we shall prove later (Theorem 3.4), every
ear programming problem belongs to one of the three categories noted here: it
an optimal solution, is infeasible, or is unbounded.
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problems in production management could be stated in linear programming terms and, most
importantly, solved by the simplex method. Such problems, if noticed at all, had traditionally
been tackled by a hit-or-miss approach guided only by experience and intuition. The use of
linear programming often brought about a considerable increase in the efficiency of the whole
operation. (Until then, expansion of the efficiency frontier usually came from technological
innovations. This new way to increase efficiency—under existing technological conditions—by
improvements in organization and planning, made many managers appreciate the practical
importance of mathematics. At least, it made them aware of the advantage of stating their deci-
sion problems in clear-cut and well-defined terms.) As the popularity of linear programming
theory increased, applications in new areas occurred, many of them far from obvious. In turn,
these applications stimulated further theoretical research by pointing out the need for solving
problems that would have otherwise seemed uninteresting. In this fascinating interplay between
theory and applications, a new branch of applied mathematics established itself.

As calculus developed from the seventeenth century’s need to solve problems of mechanics,
linear programming developed from the twentieth century’s need to solve problems of manage-
ment. Yet other profound influences stimulated the evolution of the new field from its very
inception. Economics was one of them: as early as 1947, T. C. Koopmans began pointing out
that linear programming provided an excellent framework for the analysis of classical economic
theories, such as the renowned system proposed in 1274 by L. Walras. On the other hand, linear
programming brought together previously known theorems of pure mathematics concerning
such diverse topics as the geometry of convex sets, extremal problems of combinatorial nature,
and the theory of two-person games. Finally, it was fortunate and perhaps even inevitable that
linear programming developed concurrently with modern computer technology: without elec-
tronic computers, present-day large-scale linear programming would be unthinkable.

Scientific fields are rarely born overnight; with the advantage of hindsight, one can often
track down the sources that paved the way for the decisive breakthrough. The field of linear
programming is no exception. At the core of its mathematical theory is the study of systems of
linear inequalities; such systems were investigated by Fourier as far back as 1826. Since then,
quite a few other mathematicians have considered the subject, although none of them has devised
an algorithm whose efficiency has come close to that of the simplex method. Nevertheless, some
of them proved various special cases of a fundamental theorem that is now called the duality
theorem of linear programming. On the applied side, L. V. Kantorovich pointed out the practical
significance of a restricted class of LP problems, and proposed a rudimentary algorithm for their
solution as early as 1939. Regrettably, this effort remained neglected in the U.S.S.R. and unknown
elsewhere until long after linear programming became an elegant theory through the independent
work of Dantzig and others.

In the 1970s, linear programming came twice to public attention. On October 14, 1975, the
Royal Sweden Academy of Sciences awarded the Nobel Prize in economic science to L. V.
Kantorovich and T. C. Koopmans “for their contributions to the theory of optimum allocation
of resources.” (As the reader may know, there is no Nobel Prize in mathematics. Apparently the

Academy regarded the work of G. B. Dantzig, who is universally recognized as the father of

linear programming, as being too mathematical) The second event was even more dramatic.

Ever since the invention of the simplex method, mathematicians had been looking for a theo-

retically satisfactory algorithm to solve LP problems. (A word of explanation is in order: theo

retical criteria for judging the efficiency of algorithms are quite different from practical ones.

Thus, an algorithm like the simplex method, which is eminently satisfactory in practical appli
tions, may be found theoretically unsatisfactory. The converse is also true: theoretically satis
factory algorithms may be thoroughly useless in practice. We shall return to this distinction i
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Chapter 4.) The breakthrough came in 1979 when L. G. Khachian published a description of
such an algorithm (based on earlier works by Shor, and by Judin and Nemirovskii). Newspapers
around the world published reports of this result, some of them full of hilarious misinterpretations.
We shall present the algorithm in the appendix.

For a thorough survey of the history of linear programming, the reader is referred to6 Chapter 2
of Dantzig’s monograph (1963). References to many applications of linear programming may be
found in Riley and Gass (1958). Some of the more recent applications are referenced in Gass
(1975).

PROBLEMS
ke

Answers to problems marked with the symbol A are found at the back of the book.

1.1 Which of the problems below are in the standard form?
a. Maximize 3x, — 5x;

subject to 4x, + 5x, > 3
6x; — 6x, = 7

xy + 8x, <20

X1, Xo 0.

Minimize 3%, + X3 + 4x3 + x4 + S5xs

<
>

subject to 9%y + 2x; + 6x3 + 5x4 + 3x;
8%y + 9%, + Tx3 + 9%, + 3xs
X1s X2, X3, X4
Maximize 8x; — 4x,
subject to 3x, + X,
9%, + 5x,
X1, X
_ State in the standard form:
minimize —8xy + 9x, + 2x3 — 6x4 — Sxs
subject to 6x; + 6x; — 10x5 + 2x, — 8xs
X1, X2, X35 Xg, X5

rove that (1.8) is infeasible and (1.9) is unbounded.

nd necessary and sufficient conditions for the numbers s and ¢ to make the LP problem
maximize X; + X,
subject to - sx; + tx, < 1
- X, X, >0
haye an optimal solution,
be infeasible;
be unbounded.
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A15 Prove or disprove: If problem (1.7) is unbounded, then there is a subscript k such that the These gasolines
problem lines (Avgas A 3
maximize X aviation gasoline

subject to Yoax;<b (=12....m
j=1

=20  (j=12...,n

is unbounded.

[Adapted from Greene et al. (1959).] A meat packing plant produces 480 hams, 400 pork

bellies, and 230 picnic hams every day; each of these products can be sold either fresh or

smoked. The total number of hams, bellies, and picnics that can be smoked during a normal The PN and RV
working day is 420; in addition, up to 250 products can be smoked on overtime at a higher constituents. For
cost. The net profits are as follows:

Smoked on Smoked
Fresh regular time on overtime

Hams 38 514 $11
Bellies $4 $12 57
Picnics 34 $13 $9

For example, the following schedule yields a total net profit of §9,965:

Fresh Smoked Smoked (overtime)

Hams 165 280 35
Bellies 295 70 35
Picnics 55 70 105

The objective is to find the schedule that maximizes the total net profit. Formulate as an
LP problem in the standard form.

[Adapted from Charnes et al. (1952).] An oil refinery produces four types of raw gasoline:
alkylate, catalytic-cracked, straight-run, and isopentane. Two important characteristics of
each gasoline are its performance number PN (indicating antiknock properties) and ifs .
vapor pressure RVP (indicating volatility). These two characteristics, together with' th
production levels in barrels per day, are as follows:

PN RVP Barrels produced

Alkylate 107 5 3,814
‘Catalytic-cracked 93 8 2,666
Straight-run 87 4 4,016
Isopentane 108 1,300
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cript k such that the These gasolines can be sold either raw, at $4.83 per barrel, or blended into aviation gaso-
lines (Avgas A and/or Avgas B). Quality standards impose certain requirements on the
aviation gasolines; these requirements, together with the selling prices, are as follows:

PN RVP Price per barrel
Avgas A at least 100 at most 7 $6.45
Avgas B at least 91 at most 7 $5.91

, 480 hams, 400 pork
e sold either fresh or
vked during a normal
| overtime at a higher

The PN and RVP of each mixture are simply weighted averages of the PNs and RVPs of its
constituents. For example, the refinery could adopt the following strategy:

» Blend 2,666 barrels of alkylate and 2,666 barrels of catalytic into 5,332 barrels of Avgas
A with

(2666 x 107) + (2,666 x 93)

PN 5332 100
(2,666 x 5) + (2,666 x B)
RVP = = 6.5.
P 5,332 63

o Blend 1,148 barrels of alkylate, 4,016 barrels of straight-run, and 1,024 barrels of iso-
pentane into 6,188 barrels of Avgas B with

(1,148 x 107) + (4,016 x 87) + (1,024 x 108)

PN = 94,
! 6,188 942
5 4,016 x 4 1,024 x 21
Ryp - (L1489 + (4016 X 4+ (L024 x 2D,

Sell 276 barrels of isopentane raw.
This sample plan yields a total profit of
(5,332 x 6.45) + (6,188 x 5.91) + (276 x 4.83) = §72,296.

The refinery aims for the plan that yields the largest possible profit. Formulate as an LP
problem in the standard form.

An electronics company has a contract to deliver 20,000 radios within the next four weeks.
The client is willing to pay $20 for each radio delivered by the end of the first week, $18 for
10s¢ delivered by the end of the second week, $16 by the end of the third week, and $14 by
¢ end of the fourth week. Since each worker can assemble only 50 radios per week, the
mpany cannot meet the order with its present labor force of 40; hence it must hire and
n temporary help. Any of the experienced workers can be taken off the assembly line to
uct a class of three trainees; after one week of instruction, each of the trainees can either
ceed to the assembly line or instruct additional new classes.

present; the company has no other contracts; hence some workers may become idle
ce the delivery is completed. All of them, whether permanent or temporary, must be kept
payroll till the end of the fourth week. The weekly wages of a worker, whether assem-
instructing, or being idle, are $200; the weekly wages of a trainee are $100. The pro-
on costs, excluding the worker’s wages, are $5 per radio.

T e}gample, the company could adopt the following program.

rofit. Formulate as an

types of raw gasolin
tant characteristics
ck properties) and i
ics, together with th

week 10 assemblers, 30 instructors, 90 trainees
Workers’ wages: $8,000
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Trainees’ wages: $9,000
Profit from 500 radios: $7,500
Net loss: $9,500

Second week: 120 assemblers, 10 instructors, 30 trainees
Workers’ wages: $26,000
Trainees’ wages: $3,000
Profit from 6,000 radios: $78,000
Net profit: $49,000

Third week: 160 assemblers
Workers® wages: $32,000
Profit from 8,000 radios: $88,000
Net profit: $56,000

Fourth week: 110 assemblers, 50 idle
Workers® wages: $32,000
Profit from 5,500 radios: $49,500
Net profit: $17,500
This program, leading to a total net profit of $113,000, is one of many possible programs.
The company’s aim is to maximize the total net profit. Formulate as an LP problem (not
necessarily in the standard form).

[S. Masuda (1970); see also V. Chvatal (1983).] The bicycle problem involves n people who
have to travel a distance of ten miles, and have one single-seat bicycle at their disposal. The
data are specified by the walking speed w; and the bicycling speed b; of each person j
(j=1,2,...,n); the task is to minimize the arrival time of the last person. (Can you solve
the case of n = 3 and w, = 4, wy = wy = 2, by = 16, b, = b; = 127) Show that the
optimal value of the LP problem

minimize t

subject to t—x;—xX;j—y;—y;=z 0 (G=1.,2,...,n

t =X y— XY=z 0
j=1 j=1

W;X;

— wix; + byy; — byy; =10 Gg=12,....n

7

Z b;y; — Z byy; =10
j=1 j=1

XpXpypyi= 0 (j=12...,n
provides a lower bound on the optimal value of the bicycle problem.




