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How the
implex Method Works

this chapter, we shall learn to solve LP problems in the standard form by the
lex method. A rigorous analysis of the details will be deferred to Chapter 3.

EXAMPLE

5x; + 4x, + 3x;
22X+ 3x, + x5
4%, + x, + 2x,4
3x; + dx, + 2x,

X1, X2, X3
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In order to motivate this concept, let us consider the first of our constraints,

2%, + 3%, + x3 <5 (2.2)

For every feasible solution x;, X,, X3, the value of the left-hand side of (2.1) is
at most the value of the right-hand side; often, there may be a slack between the
two values. We shall denote the slack by x,. That is, we shall define x, = 5 — 2x, —
3x, — X3; with this notation, inequality (2.2) may now be written as x, = 0. In an
analogous way, the next two constraints give rise to variables x5 and x¢. Finally,
following a time-honored convention, we shall denote the objective function 5x, +
4x, + 3x, by z. To summarize: for every choice of numbers x;, X,, and x;, we
shall define numbers x,, x5, X¢, and z by the formulas

X, = 5 —2x] —3x; — X3
xs = 11 — 4x; — x; — 2x5
Xg = 8 — 3x; — 4x, — 2x%;
z = 5x; + 4x, + 3x,.
With this notation, our problem may be restated as

maximize z subjectto Xj, X;, X3, Xq, X5, Xg = 0.

The new variables x,, x5, X¢ defined by (2.3) are called slack variables; the old vari-

ables x,, x,, x; are usually referred to as the decision variables. It is crucial to not
that the equations in (2.3) spell out an equivalence between (2.1) and (2.4). Mor
precisely:
s Every feasible solution x, Xx,, x5 of (2.1) can be extended, in the unique wa;
determined by (2.3), into a feasible solution x;, X5, . . . , X Of (2.4).

o Every feasible solution X;, X, ,...,Xs of (2.4) can be restricted, simply
deleting the slack variables, into a feasible solution x,, x;, X3 of (2.1).

« This correspondence between feasible solutions of (2.1) and feasible solutiq
of (2.4) carries optimal solutions of (2.1) onto optimal solutions of (2.4),
vice versa.

The grand strategy of the simplex method is that of successive improvem
having found some feasible solution x;, X5, . . . , X Of (2.4), we shall try to pro
to another feasible solution X;, X, . . ., X¢, which is better in the sense that

5%, + 4%, + 3%3 > 5x; + 4x; + 3x;.

Repeating this process a finite number of times, we shall eventually arrive
optimal solution.

To begin with, we need some feasible solution x;, X5, . . . , Xe. Finding one
example presents no difficulty: setting the decision variables x,, X,, X3 at zel

evaluate the slack var
xl = 0’ x2 = 07

yields z = 0.
In the spirit of the gr;
solution that yields a
example, if we keep x,
Thus, if we keep x, =
x¢ = 5). Better yet, if
X =1, x5 =3, x¢
obtain z = 15 and x
x; 2 0 for every i. Th
is: Just how much ca
still maintain feasibilit

_ The condition x,
implies x; < % and
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I constraints, evaluate the slack variables x,, xs, x¢ from (2.3). Hence our initial solution,
(2.2) =0, x=0, x3=0, x, =95, x5=11, x5 =38 (2.5)
hand side of (2.1) is yields z =
a slack between the In the spirit of the grand strategy sketched above, we should now look for a feasible
finex, = 5 — 2x; — solution that yields a higher value of z. Finding such a solution is not difficult. For
tten as x, = 0. In an example, if wekeep x, = x; = 0and increase the value of x,, we obtain z = 5x; > 0.

s x5 and x¢. Finally,
ctive function 5x; +
S Xy, Xg, and x;, we

Thus, if we keep x, = x; = Oand set x; = 1, weobtainz = 5(and x, = 3,x5 = 7,
x¢ = ). Better yet, if we keep x, = x; = 0 and set x; = 2, we obtain z = 10 (and
x, = 1, x5 = 3, xs = 2). However, if we keep x, = x; = 0 and set x; = 3, we
obtain z = 15 and x, = x5 = x¢ = —1; this won’t do, since feasibility requires
> 0 for every i. The moral is that we cannot increase x, too much. The question
is: Just how much can we increase x, (keeping x, = x5 = 0 at the same time) and
still maintain feasibility (x4, X5, xg = 0)?

The condition x, = 5 — 2x; — 3x, — x3 > 0 implies x, < 3; similarly, x5 > 0
implies x; < 4! and x > 0 implies x; < §. Of these three bounds, the first is the
most stringent. Increasing x; up to that bound we obtain our next solution,

=0’

X3=0, x, =0, x5 =1, x5 =, (2.6)

riables; the old vari-
. Tt is crucial to note
2.1) and (2.4). Mote

Note that this solution yields z = %%, which is indeed an improvement over z = 0.
Next, we should look for a feasible solution that is even better than (2.6). However,
this task seems a little more difficult. What made the first iteration so easy? We had
our disposal not only the feasible solution (2.5), but also the system of linear
quations (2.3), which guided us in our quest for an improved feasible solution. If

1, in the unique way

f (2.4). ish to continue in a similar way, we should manufacture a new system of linear
estricted. simply b tions that relates to (2.6) much as system (2.3) relates to (2.5).

of 2 1)’ Py What properties should the new system have? Note that (2.3) expresses the vari-
3 . .

s that assume positive values in (2.5) in terms of the variables that assume zero
In (2.5). Similarly, the new system should express those variables that assume
tive values in (2.6) in terms of the variables that assume zero values in (2.6):
1t, it should express x;, xs, X¢ (as well as z) in terms of x,, x5, and x,. In par-
the variable x,, which just changed its value from zero to positive should
lts position from the right-hand side to the left-hand side of the system of
. Similarly, the variable x4, which just changed its value from positive to
d move from the left-hand side to the right-hand side.

nstruct the new system, we shall begin with the newcomer to the left-hand
mely, the variable x;. The desired formula for x, in terms of x,, x5, x4 is
easily from the first equation in (2.3):

nd feasible solution:
lutions of (2.4), an

essive improvement
shall try to proc
e sense that

ntually arrive at

. Finding one in 0
15 X2, X3 at Zero
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Next, in order to express Xs, Xq, and z in terms of x;, X3, X4, W€ simply substitute will appear on
from (2.7) into the corresponding rows of (2.3): to the left-hand

X3=1+x2.

5 3 1 1 )
xs =11 — 4(5 — 5%~ 5%~ §x4> — Xy — 2X3 we obtain

X3 = 14
2=

5 3 1 1 ’
x6=8—3<§—§x2—§x3—5x4>—4x2—2x3 = 1+

= 1 + 5x2 + 2X4,

VA

As we did in the first iteration, we shall now try to increase the value of z by
creasing the value of a suitably chosen right-hand side variable, while at the sa
time keeping the remaining right-hand side variables fixed at zero. Note that increa
in the values of x, or x, would bring about decreases in the value of z, which is V¢
much against our intentions. Thus, we have no choice: the right-hand side vari
to increase its value is necessarily x;. How much can we increase x;? The an
can be read directly from system (2.8): with x, = x, = 0, the constraint X,
implies x; < 5, the constraint x5 > 0 imposes no restriction at all, and the constr
x¢ = 0 implies x; < 1. Hence, x5 = 1 is the best we can do; our new solutio

x1=2, XZ——_O, X3=1, X4=0, X5:1, x6=0.

(Note that the value of z just increased from 12.5to 13)

As we have learned, getting just the improved solution isn’t good enough; W
want a system of linear equations to go with (2.9). In this system, the positive-
variables x,, X3, x5 willappear on the left, whereas the zero-valued variables x3,
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he positive-valu
ariables x,, X45
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will appear on the right. To construct the system, we begin again with the newcomer
to the left-hand side, namely, the variable x ;. From the third equation in (2.8), we have
x3 =1 4+ x, + 3x, — 2x,; substituting for x; into the remaining equations in (2.8),
we obtain

14+ x, + 3x, — 2%
= 2 —2x, — 2%, + Xg

1+ 5%, + 2x,4 (2.10)
=13 —3x, — x4 — X

Now it’s time for the third iteration. First of all, from the right-hand side of (2.10)
we have to choose a variable whose increase brings about an increase of the objective
function. However, there is no such variable: indeed, if we increase any of the right-
hand side variables x,, x,, x¢, we will make the value of z decrease. Thus, it seems
that we have come to a standstill. In fact, the very presence of this standstill indicates
that we are done; we have solved our problem; the solution described by the last
table is optimal. Why? The answer lies hidden in the last row of (2.10):

z=13 — 3x, — X, — Xs. (2.11)

Our last solution (2.9) yields z = 13; proving that this solution is optimal amounts
to proving that every feasible solution satisfies the inequality z < 13. Since every
feasible solution x;, x,,..., xs satisfies, among other relations, the inequalities
X, 2 0,x, = 0,and x4 > 0, thedesired inequality z < 13 follows directly from (2.11).

DICTIONARIES
LSk

n general, given a problem

n
maximize Y oex;
i=1

bject to Yoagx; < b j e (2.12)
, =

. » Xy m and denote the objective
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In the framework of the simplex method, each feasible solution x;,.X,, - . ., X Of
(2.12) is represented by n + m nonnegative NUMbETS X1, Xz, - - - » Xpm> WIth Xu41
Xp42>- - - » Xn+m defined by (2.13). In each iteration, the simplex method moves from
some feasible solution x, Xz, . - + » Xp+m 1O another feasible solution X4, X5, - - .
which is better than the previous one in the sense that

’ xn+m7

n n
Y X > Y. cx;e
j=1 j=1

(Actually, the last statement is not quite correct: the inequality is not always strict.
This point and other subtleties will be discussed in Chapter 3.)

As we have seen, it is convenient to associate a system of linear equations with
each of the feasible solutions: such systems make it easier to find the improved
feasible solutions. They do so by translating.any choice of values of the right-hand side
variables into the corresponding values of the left-hand side variables and of the
objective function. Following J. E. Strum (1972), we shall refer to these systems as
dictionaries. Thus, every dictionary associated with (2.12) will be a system of linear
equations in the variables X1, X2, - - - » Xntm and z. However, not every system of linear
equations in these variables constitutes a dictionary. To begin with, we have defined
Xy4 15 Xnt 25 - - - » Xnsmand zinterms of Xy, X3, . . ., Xp,andsothen + m + 1 variables
are heavily interdependent. This interdependence must be captured by every dic-
tionary associated with (2.12): the translations must be correct. More precisely, we
shall insist that:

Every solution of the set of equations comprising a dictionary must be also
. . (2.14)
a solution of (2.13), and vice versa.

For example, for every choice of numbers x,, X5, . - - » Xg and z, the following three

statements are equivalent:

* Xy, X3, - « » Xg, Z CONStitute a solution of (2.3),

® X, Xz, . - » Xg, Z CODStitute a solution of (2.8),

® Xy, Xp, - - - » Xg, Z CODStitute a solution of (2.10).

In that sense, the three dictionaries (2.3), (2.8), and (2.10) contain the same informatio
coneerning the interdependence among the seven variables. Nevertheless, each ¢
the three dictionaries presents this information in its very own way. The form ¢
(2.3) suggests that we are free to choose the numerical values of xy, X, and X3
will, whereupon the values of x4, X5, Xe> and z are determined: in this diction
the decision variables x;, x,, X3 act as independent variables, while z and the sl
variables x,, Xs, X¢ are dependent on them. Dictionary (2.8) presents X3, X3, X4
independent and x;, X5, X6, Z a8 dependent. In dictionary (2.10), the independ
variables are x,, X4, X¢ and the dependent ones are X3, Xy, Xs,Z- In general:

The equations of every dictionary must express m of the variables x,,

Xy Xntm and
variables.
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X325+ Xyt and the objective function z in terms of the remaining n (2.15)
variables.

The properties (2.14) and (2.15) are the defining properties of dictionaries.

In addition to these two properties, dictionaries (2.3), (2.8), and (2.10) have the
following property:

Setting the right-hand side variables at zero and evaluating the left-hand side
variables, we arrive at a feasible solution.

Dictionaries with this additional property will be called feasible dictionaries. Hence,
every feasible dictionary describes a feasible solution. However, not every feasible
solution is described by a feasible dictionary; for instance, no dictionary describes
the feasible solution x; = 1,x, = 0,x; = Lx, = 2,x5 = 5,x5 = 3 0f(2.1). Feasible
solutions that can be described by dictionaries are called basic. The characteristic
feature of the simplex method is the fact that it works exclusively with basic feasible
solutions and ignores all other feasible solutions.

SECOND EXAMPLE
2T RAAWE

—
We shall complete our preview of the simplex method by applying it to another
P problem:

5xy + S5x, + 3x,

Xy + 3%, + xy

- + 3x,

— X3 + 2x3

2x; + 3x, — x4

X1, X325 X3

case, the initial feasible dictionary reads

3“ x1—3x2

4—-2x, + x,
— 2 — 2y, — 3y,
5x; + 5x, + 3x,. ‘
ough the order of the equations in a dictionary is quite irrelevant, we shall
,abit of writing the formula for z last and separating it from the rest of the

olid line. Of course, that does not mean that the last equation is the sum
10us ones.) This feasible dictionary describes the feasible solution
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However, there is no need to write this solution down, as we just did: the solution
is implicit in the dictionary. ’

In the first iteration, we shall attempt to increase the value of z by making one
of the right-hand side variables positive. At this moment, any of the three variables
X4, X2, X3 would do. In small examples, it is common practice to choose the variable
that, in the formula for z, has the largest coefficient: the increase in that variable
will make z increase at the fastest rate (but not necessarily to the highest level). In
our case, this rule leaves us a choice between x; and x,; choosing arbitrarily, we
decide to make x, positive. As the value of x, increases, so does the value of xs.
However, the values of x4, Xe> and x, decrease, and none of them is allowed to
become negative. Of the three constraints x, = 0,%g = 0,%, 2 0 that impose upper
bounds on the increment of x;, the last constraint x, = 0 is the most stringent:
it implies x; < 1. In the improved feasible solution, we shall have x; = 1 and
x, = 0. Without writing the new solution down, we shall now construct the new
dictionary. All we need to know is that x, just made its way from the right-hand
side to the left, whereas x, went in the opposite direction. From the fourth equation
in (2.16), we have

3 1 1

x,=1- 5%2 + 5%3 5%7 (2.17)

Substituting from (2.17) into the remaining equations of (2.16), we arrive at the
desired dictionary

3
x1—1—§x2+

2-‘§x2"‘

3—5.)(32—

=24+ 4dx, — 3x3+ X
R

5 it 5
z =5—§x2+—2—x3—§x7.

The construction of (2.18) completes the first iteration of the simplex method.

Digression on Terminology

The variables x; that appear on the left-hand side of a dictionary are called ba
the variables x; that appear on the right-hand side are nonbasic. The basic varial
are said to constitute a basis. Of course, the basis changes with each iteratio
example, in the first iteration, x, entered the basis whereas x- left it. In each iter
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we first choose the nonbasic variable that is to enter the basis and then we find out
which basic variable must leave the basis. The choice of the entering variable is
motivated by our desire to increase the value of z; the determination of the leaving
variable is based on the requirement that all variables must assume nonnegative
values. The leaving variable is that basic variable whose nonnegativity imposes the
most stringent upper bound on the increment of the entering variable. The formula
for the leaving variable appears in the pivot row of the dictionary; the computational
process of constructing the new dictionary is referred to as pivoting.

Back to the Second Example

In our example, the variable to enter the basis during the second iteration is quite
unequivocally x;. This is the only nonbasic variable in (2.18) whose coefficient in
the last row is positive. Of the four basic variables, x5 imposes the most stringent
upper bound on the increase of x;, and, therefore, has to leave the basis. Pivoting,
we arrive at our third dictionary,

2 4 1 1

X3 = 5 §x2 + §x7 §x6
4 5 1 1

1= 37 X2 T 3% g%
7 1

= 1 3% + 5% (2.19)

4 29 4 5

= g—gxz—§x7+ §%e
_%.» 2 1

B 3 6 X2 3x7 5 Xg.

In the third iteration, the entering variable is x, and the leaving variable is xs.
Pivoting yields the dictionary

b o — ix + ix _6
2 29 29 7 29 6 29x5
_ 3 8
00 - 29%7 ~ 3% ~ 5%
= 2 - ix 4 = (2.20)
1 29~ 29%7 29x6 + Exs
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At this point, no nonbasic variable can enter the basis without making the value of z
decrease. Hence, the last dictionary describes an optimal solution of our example.

That solution is

32

29’

and it yields z = 10.

X, =

FURTHER REMARKS
 I—

The reader may have noticed that, having first carefully laid down the definition of a
dictionary, we then proceeded to refer to (2.18), (2.19), and (2.20) as dictionaries,
without bothering to verify that they do indeed have property (2.14). Such careless-
ness can be easily justified. Take, for example, system (2.18). Since (2.18) arises from
(2.16) by arithmetical operations (namely, pivoting with x, entering and x, leaving),
every solution of (2.16) must be also a 'solution of (2.18). The converse is also true,
since (2.16) can be obtained from (2.18) by pivoting with x, entering and x, leaving
Hence, every solution of (2.18) is a solution of (2.16), and vice versa. Similar argument

show that every solution of (2.19) is a solution of (2.18), and vice versa; and that every
solution of (2.20) is a solution of (2.19), and vice versa.

Another point of concern is the question of the uniqueness, as opposed to the existence, 0
optimal solutions. This question will be of no great interest to us; nevertheless, it is easy to dea
with and so we will get it out of the way now. Note that in each of our two examples, we not only
found an optimal solution, but we also collected the evidence to prove that there is only on
optimal solution. For instance, the final dictionary for our first problem reads

Xy = 14+ x4+ 3x4 — 2xg
b 2 — 2x; — 2x4 + Xg
Xs 1+ Sxy + 2x4

z =13 - 3x, — x4 — Xs-

The last row shows that every feasible solution with z = 13 satisfies x, = x4 = X¢ = 0; 1
rest of the dictionary shows that every such solution satisfies x; = 1, x; = 2, %5 = 1; therefc
there is just one optimal solution. A similar argument applies to the second problem.

Of course, there are LP problems with more than just one optimal solution; having s

such problems by the simp]
example, consider the follgw
Xo =3+ X3 — 2%, 4
xp=1—="5x, + 6x, —
X6 4 + 9x2 + 2x5 =
z =8
The last row shows that eve;
x5 = 0). For such solutions,
g =3+ x; =2x;
Xy =1 — 5x, + 6x;
Xg = 4 + 9x2 + 2x5.
We conclude that every opt
%, and x5 such that

=X, + 2x5 <3
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such problems by the simplex method, we can effectively describe all the optimal solutions. For
example, consider the following dictionary:

Xs =3+ Xy — 2x5 + Tx,

X =1=5x, + 6x5 — 8x,

Xe =4+ 9%, + 2x;, — x,

z =8 - X3

The last row shows that every optimal solution satisfies x, = 0 (but not necessarily x, = 0 or
x5 = 0). For such solutions, the rest of the dictionary implies
Xe =3+ x, — 2xs
Xy =1~ 5%, + 6x5
Xg =4 + 9x, + 2x,.

.21

We conclude that every optimal solution arises by the substitution formulas (2.21) from some
%, and x5 such that

—X; + 2x5 < 3
Sx; —6x5 < 1
~9%, — 2x,
X5, %5 = 0,
(In fact, the inequality —9%; — 2x5 < 4 is clearly redundant; its validity is forced by x, > 0

and x; > 0.

There are a few other rough spots we deliberately failed to point out in our overview of the
implex method. We shall discuss them in Chapter 3.

LEAU FORMAT

‘simplex method is often introduced in a format differing from ours. To outline the more
ular tableau format, we shall return to the first example of this chapter. To begin, let us write
/m the equations of the first dictionary in a slightly modified form:

2%y + 3%, + x5 + x, = 5
4x; + x, + 2x, =11
3%, + 4x, + 2x4

dlng Just the coefficients at the x;'s, together with the right-hand sides, we obtain our first
u:

O
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In a similar way, the equations of the second dictionary,

3 1 1
Xy + §x2 + §x3 + §x4

— 5x, — 2x4 + X5

1 1 3
- Exz + §x3 - §x4 + X¢

7 1 5
—2Z —§x2+§x3—- 5)(34

give rise to a second tableau:

o
o

—
o

1

IRV NGRS SRR S T
o
—

o
<o

It is a routine matter to translate the pivoting rules, previously derived in terms of dictionaries,
into the language of tableaus. The following steps describe the procedure; the reader should
have no trouble verifying its correctness. (At any rate, the procedure is not important for out
exposition since we do not use the tableau format.)

Step 1. Examine all numbers in the last row (except the one farthest right, which equals the

current value of — z). If all of them are negative or zero, stop: the tableau describes an optimal

solution. Otherwise find the largest of these numbers; the column in which it appears is calle
the pivot column and corresponds to the entering variable.
For example, the pivot column in our first tableau is the first one:

5
11

0

Step 2. For each row whose entry r in the pivot column is positive, look up the entry sl
. . LS. .

the rightmost column. The row with the smallest ratio —1s called the pivot row and correspond:

¥ i

to the leaving variable. (If all the entries in the pivot column are negative or zero, then
problem is unbounded; more on that in Chapter 3.)

. .5 5
In our example, the pivot row is the first row with - = 5):
r

2
4
3
5
L
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Step 3. Divide every entry in the pivot row by the pivot number, found in the mtersectlon of
the pivot row with the pivot column:

Lo

1

3
2
1
8

01
4 000 o

Step 4. From every remaining row, subtract a suitable multiple of the new pivot row. This
operation is designed to make every entry in the pivot column (except for the pivot number)
become zero; hence, the “suitable multiple” results when the new pivot row is multiplied by
the entry appearing in the pivot column and in the row in question. (In our example, step 4
results in the second tableau.)

A tableau is nothing but a cryptic recording of a dictionary with all the variables collected on
the left-hand side and the symbols for these variables omitted. We shall continue to use dictio-

- naries instead, since they are more explicit. (Of course, nothing prevents the reader tired of

writing the same symbols x,, x,, . . . over and over again from using the tableau shorthand.)

1

ere is often more than one way of describing a particular algorithm; descriptions
imed at clarifying underlying concepts are often quite different from those that
uggest efficient computer implementations. The simplex method is no exception.
ictionaries may provide a convenient tool for explaining its basic principles. How-
’r, in implementing the method for computer solutions of large problems, consider-
tions of computational efficiency and numerical accuracy overshadow such didactic
eties. We shall begin to study efficient implementations of the simplex method in
apters 7 and 8.




26 2 How the Simplex Method Works

PROBLEMS

A 21 Solve the following problems by the simplex method:
a. maximize 3x, 4 2%, + 4%3

subject to X+ Xg o+ 2X%3

2% + 3x;

2%, + Xy + 3x3

X1s X25 X3

vV IA N IA

maximize 5%y + 6x5 + 9%x3 + 8x4
subject to Xy 4+ 2x5 + 3x3 + X
X+ Xg 4 2%3 + 3x4

X1, X2, X35 Xa

maximize 2+ X2
subject to 2%, + 3x,
X1 -+ 5x2

2x; + X2

4x, + X,

X1, X2

vV IANIAIA A
O wn =W

22 Use the simplex method to describe all the optimal solutions of the following problem:
maximize 2x, + 3%, + 5x3 + 4x4

subject to Xy 4 2x; + 3x3 + X
Xy + X+ 2x3 + 3x4
X1, X2y X3, X4




