e itfalls and
ow to Avoid Them

amples illustrating the simplex method in the preceding chapter were purposely
h. They did not point out the dangers that can occur. The purpose of the present
r, therefore, is to rigorously analyze the method by scrutinizing its every step.

EE KINDS OF PITFALLS

nds of pitfalls can occur in the simplex method.

'ITIALIZATION. We might not be able to start: How do we get hold of

le dictionary?

ERATION. We might get stuck in some iteration: Can we always choose
ing variable, find the leaving variable, and construct the next feasible
y by pivoting?

MINATION. We might not be able to finish: Can the simplex method
an endless sequence of dictionaries without ever reaching an optimal
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In the preceding chapter, INITIALIZATION never came up. Given a problem

n
maximize Y cx;
j=1

subject to Y ayx; < b (i=12...,m
j=1

x; =20 (j=12...,n

we constructed the initial feasible dictionary by simply writing down the formulas
defining the slack variables and the objective function,

(i=1,2...,m

n
Z CiXj -
ji=1

In general, this dictionary is feasible if and only if each right-hand side, b;, in (3.1) is
nonnegative. This is the case if and only if

x; =0, X,=0,...,% =0

is a feasible solution of (3.1). Since the set of zero values is sometimes called the
“origin,” problems (3.1) with each right-hand side b; nonnegative are referred to as
problems with a feasible origin. For the moment, we shall avoid the pitfalls of
INITIALIZATION by default: we shall restrict ourselves to problems with a feasible
origin. Problems with an infeasible origin are discussed on pages 39-42.

Iteration
Given some feasible dictionary, we have to select an entering variable, to find a leavin,

variable, and to construct the next feasible dictionary by pivoting.

Choosing an entering variable. The entering variable is a nonbasic variable x; with
positive coefficient T; in the last row of the current dictionary. This rule is ambiguou
in the sense that it may provide more than one candidate for entering the basis, 0
1o candidate at all. The latter alternative implies that the current dictionary describe
an optimal solution, at which point the method may terminate. More precisel
consider the last row of our current dictionary,

z=72% + ), Tx;

jeN

with N standing for the set of subscripts j of nonbasic variables x;. Our curt
solution, with x; = 0 whenever je N, gives the objective function the numer
value of z* If ¢; < 0 whenever j€ N, then every feasible solution, with x;
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whenever j € N, gives the objective function a numerical value of at most z*; hence
the current solution is optimal. On the other hand, if there is more than one candidate
for entering the basis, then any of these candidates may serve. (In hand calculations
involving small problems, it is customary to choose the candidate x ; that has the
largest coefficient ¢;. In most computer implementations of the simplex method,
however, this practice is abandoned. More on this subject in Chapter 7.)

Finding the leaving variable. The leaving variable is that basic variable whose
nonnegativity imposes the most stringent upper bound on the increase of the entering
variable. Again, this rule is ambiguous in the sense that it may provide more than
one candidate for leaving the basis, or no candidate at all. The latter alternative is
illustrated on the dictionary

X; =354 2x3 — x, — 3x;
x5 =1 — 3x, — 4x,

z =54 X3— Xg4— X

The entering variable is x,, but neither of the two basic variables X,, X5 imposes an

upper bound on its increase. Therefore, we can make x; as large as we wish (main-
taining x; = x, = 0) and still retain feasibility: setting x, = ¢ for any positive ¢,
we obtain a feasible solution with x; = 0, x, =5+ 2, x, =0, xs = 7, and z =

3+t Since t can be made arbitrarily large, z can be made arbitrarily large. We

conclude that the problem is unbounded: for every number M, there is a feasible
solution x,, x,, ..., x5 such that x; — x, — x, > M. The same conclusion can be
reached in general: 1f there is no candidate for leaving the basis, then we can make the
alue of the entering variable, and therefore also the value of the objective function,
s large as we wish. In that case, the problem is unbounded. On the other hand, if
here is more than one candidate for leaving the basis, then any of these candidates

y serve. Once the entering and leaving variables have been selected, pivoting is a
ightforward matter.

generacy. The presence of more than one candidate for leaving the basis has
esting consequences. For illustration, consider the dictionary

- ZX3
= 3 - 2X1 + 4x2 - 6X3
= 2 + xl - 3XZ - 4X3

2x; — x, + 8xj.

g chosen x; to enter the basis, we find that each of the three basic variables
» X limits the increase of x5 to 4. Hence each of these three variables is a
ate for leaving the basis. We arbitrarily choose x,. Pivoting as usual, we obtain
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x5 = 0.5 — 0.5x4
Xs — 2%, + 4x, + 33Xy
X = Xy — 3%, + 2%y
7 = 44 2x; — Xp— 4%

This dictionary differs from all the dictionaries we have encountered so far in one
important respect: along with the nonbasic variables, the basic variables x5 and X
have value zero in the associated solution. Basic solutions with one or more basic
variables at zero are called degenerate.

Although harmless in its own right, degeneracy may have annoying side effects.
These are illustrated on the next iteration in our example. There, x, enters the basis
and x5 leaves; because of degeneracy, the constraint x5 > 0 limits the increment of
x, to zero. Hence the value of x, will remain unchanged, and so will the values of the
remaining variables and the value of the objective function z. This is annoying, for
the motivation behind the simplex method is a desire to increase the value of z in
each iteration. In this particular iteration, that desire remains unfulfilled: pivoting
changes the dictionary into

X, = 2x, + 1.5x4 — 0.5x5
x; = 0.5 — 0.5x4

Xg = — X, + 3.5x4 — 0.5x;5
7 = 443x,— Xg— Xs

but it does not affect the associated solution at all. Simplex iterations that do not
change the basic solution are called degenerate. (As the reader may verify, the next
iteration is degenerate again, but the one after that turns out to be nondegenerate
and brings us to the optimal solution.) ;
In a sense, degeneracy is something of an accident: a basic variable may vanish
only if the results of successive pivot operations just happen to cancel each oth
out. And yet degeneracy abounds in LP problems arising from practical application
It has been said that nearly all such problems yield degenerate basic feasible solutions
at some stage of the simplex method. Whenever that happens, the simplex metho
may stall by going through a few (and sometimes quite a few) degenerate iteratio
in a row. Typically, such a block of degenerate iterations ends with a breakthrou
represented by a nondegenerate iteration; an example of the atypical case is present

next.

Termination : Cycling

Can the simplex method go through an endless sequence of iterations without ev
finding an optimal solution? Yes, it can. To justify this claim, let us consider t
initial dictionary
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x5 = - O.le + S.SXZ + 25.X3 - 9X4
X —0.5x; + L5x, + 05x; — x4
X7 - 1 b xl

z = 10x; — 57x;, — 9x; — 24x,

and let us agree on the following:

(i) The entering variable will always be the nonbasic variable that has the
largest coefficient in the z-row of the dictionary.

(i) If two or more basic variables compete for leaving the basis, then the can-
didate with the smallest subscript will be made to leave.

Now the sequence of dictionaries constructed in the first six iterations goes as follows.
After the first iteration:
11x, + 5x3 — 18x, — 2x;
— 4x, — 2x3+  8xy, + x5
1 —11x; — 5x3 + 18x4 + 2xs
53x, + 41x; — 204x, — 20xs.

After the second iteration:

X, = — 05x3 + 2x, +025x5 — 0.25x,
' — 05x; + dx, + 0.75x5 — 2.75x,
=14 05x; — 4x, — 0.75x5 — 13.25x,
14.5x; — 98x, — 6.75x5 — 13.25x,.

\fter the third iteration:
8xy + L.5x5 — 5.5x¢ — 2x,
= 2x4 — 05x5 + 2.5x¢ +  x,
18X4 + 15x5 b 93x6 - 29x1.

er the fourth iteration:
— 0.25x5 + 1.25x¢ + 0.5x; — 0.5x,
— 05x5 + 45x5 + 2x; — 4x,
- x
10.5x5 — 70.5x¢ — 20x; — 9x,.
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After the fifth iteration:

X5 = 9xs + 4x; — 8x; — 2X5
X4 = xg — 0.5x; + 1.5x, + 0.5x,

X7 = - X1
S = 24w, + 22x;, — 93x, — 2lxs.

After the sixth iteration:

xg = — 05x; + 1.5x; + 0.5x; — X4 with the same set of b

X5 — 0.5%; + 5.5x; 4+ 2.5x3 — 9%4 that every solution x
x;=1-— X In particular, if x, is a

z = 10x1 s 57x2 _‘ 9X3 - 24X4. xk = t’ x} s O(j

. - o L . . s constituting a i
Since the dictionary constructed after the sixth iteration is identical with the initial g a solutio

dictionary, the method will go through the same six jterations again and again by — ayt = b¥ — g
without ever finding the optimal solution (which, as we shall see later, has z = 1).
This phenomenon is known as cycling. More precisely, we say that the simplex ;
method cycles if one dictionary appears in two different iterations (and so the sequence . bi=0bfay =af
of. iterations leading from t?xe dictionary to its.elf can be repeated over and over ince x, was an arbitr
without end). Note that cycling can occur only in the presence of degeneracy: since

the value of the objective function increases with each nondegenerate iteration and _ Cycling is a rare p
remains unchanged after each degenerate one, all the iterations in the sequence he simplex method
leading from a dictionary to itself must be degenerate. Cycling is one reason why the '
simplex method may fail to terminate; the following theorem shows that it is the

only reason.

Since these identities

- T. Kotiah and
THEOREM 3.1. 1f the simplex method fails to terminate, then it must cycle. lems that cycled

puter implementa
ere are ways of
PROOF. To begin, note that there are only finitely many ways of choosing 7 ‘
basic variables from all the n + m variables. Thus, if the simplex method fails t
terminate, then some basis must appear in two different iterations. Now it onl
remains to be proved that any. two dictionaries with the same basis must be identic#
(This fact becomes trivial as soon as one describes dictionaries in terms of mati
as we shall do in Chapter 7. Nevertheless, we can and shall present an easy Pt
from scratch right now.) Consider two dictionaries .
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bi - Z (JUXJ

i¢B

v+ Y e
j¢B

* *
bi - z aijx
j¢B
£ ®
= v* 4 Z CiX;
j¢B

(ie B)

J

(3.3)

with the same set of basic variables x; (i € B). It is a defining property of dictionaries
that every solution x4, X5, ..., X4, 2 Of (3.2) is a solution of (3.3) and vice versa.
In particular, if x, is a nonbasic variable and if ¢ is a number, then the numbers

=1 x;=0(¢B and j#k), x;=b —ayt(ieB), z=1v+ ¢,

constituting a solution of (3.2), must satisfy (3.3). Hence,

th the initial
n and again by —ayt =bf —aft forall ieB, and v+ ¢t = v* + cft.

L has z = 1). Since these identities must hold for all numbers ¢, we have
the simplex

‘the sequence
ver and over Since x, was an arbitrary nonbasic variable, the two dictionaries are identical.
neracy: since
iteration and Cycling is a rare phenomenon. In fact, constructing an LP problem on which
the sequence _ the simplex method may cycle is difficult. [Our example is adapted from K. T.
ason why the Marshall and J. W. Suurballe (1969). The first example of this size was constructed
that it is the by E. M. L. Beale (1955) and the first example ever was constructed by A. J. Hoffman
1953). Incidentally, Marshall and Suurballe (1969) proved that if the simplex method
cycles off-optimum on a problem that has an optimal solution, then the dictionaries
st involve at least six variables and at least three equations.] P. Wolfe (1963) and
C. T. Kotiah and D. L Steinberg (1978) reported having come across practical
blems that cycled (in 25 and 18 iterations, respectively) but such reports are
rce. For this reason, the remote possibility of cycling is disregarded in most
nputer implementations of the simplex method.
ere are ways of preventing the occurrence of cycling altogether. The classic
f choosing turbation method and lexicographic method avoid cycling by a judicious choice of
ethod fails eaving variable in each simplex iteration; the more recent smallest-subscript rule
30 by an easy choice of both the entering and the leaving variables. The former
ative maintains the freedom of choice among different candidates for entering
asis, but it requires extra computations to choose the leaving variable; the
lternative requires no extra work at all, but it gives up the multitude of choices
entering variable. We shall explain the details of both.

b;=bfay =af forall ieB, and v = v* ¢, = c}

must cycle.
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subject to Y ax
. o
Jj=1

The perturbation method and the lexicographic method. The perturbation and the lexicographic
methods are closely related. The perturbation method, suggested first by A. Orden and developed
independently by A. Charnes (1952), provides an intuitive motivation for the lexicographic
method of G. B. Dantzig, A. Orden, and P. Wolfe (1955). The lexicographic method can be seen
as an implementation of the perturbation method.

The starting point relies on the observations that cycling can be stamped out by stamping out
degeneracy and that degeneracy itself is something of an accident. T@ claborate on the second X5 = & 05
observation, consider a degenerate dictionary. The basic variables currently at zero would most :
likely assume small nonzero values if the initial right-hand sides, b;, were changed slightly; at the
same time, if these changes were truly microscopic, then the problem could be considered un- X;=1+e =  x
changed for all practical purposes. One way of exploiting these observations is to add a small 10x
positive & to each b;, and then to apply the simplex method to the resulting problem. This trick
(with e = 107¢ or so) is actually used in some computer implementations of the simplex method;
it helps to reduce the number of degenerate iterations. Nevertheless, it does not constitute a reliable
safeguard against cycling: for instance, if the simplex method is applied to the problem

This is the perturbation m
equal to the powers ¢, ¢ ;
a little more transparent.)
method cycled. There, th

Xg = &2 = 0.5x%

“ofx; to 2y, 2¢5,and 1
nd the next dictionary

maximize 10x, — 57xy — 9%3 — 24x, + 100x;
subject to xs <148
0.5%; — 5.5%; — 2.5%3 + 9x, + xs<1+¢
05%, — 1.5x; — 0.5x3 + X4 + xs<1+¢
Xy + xs <2+¢

Xg>Xgs 005 X5 0
then the degenerate dictionary

xs= L1+ & -
X, = — 0.5%; + 55%; + 25x3 — 9% +
Xg = — 05%; + 1.5%; + 0.5x3 — X4t
Xg= 1 - X +
2 — 1004100 + 10x; — 57x; — 9%x3 — 24x, — 100x

is obtained after the first iteration and, as the reader may verify, the simplex method cycle
the next six iterations. (The cycle is essentially the same as that of the preceding example

What went wrong here was that the small amounts ¢ added to the right-hand sides can
each other out in the first iteration. To guarantee that such cancellations will never take p
(and therefore all the dictionaries will remain nondegenerate), we shall perturb the di
right-hand sides by, by, .. -5 b,, by radically different amounts &, &5+ - - » & MoOre Pre
we shall choose a very small &, and then make each ¢, ; much smaller than the preceding
symbols,

0<s,,,<<s,,,_1<<~~-<<62<<81<<1.

Then we shall apply the simplex method to the perturbed problem

n
maximize Y, ¢X;
i=t
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subject to Loax;<b e (i=12...,m
i=1

X;> 0 G=12...,n).

This is the perturbation method. (The perturbation method is usually presented with £1,82, 1,
equal to the powers ¢, €2, . . ., & of the same small &. Our version makes the subsequent analysis
a little more transparent.) For illustration, let us return to our first example on which the simplex
method cycled. There, the initial dictionary reads

X5 = g = 05x; + 55x%, + 2.5x; — 9x,

X = &, ~05x; + 1.5x, + 05x; —  x,

Xp=14¢e — x

z = 10xy — 57x; — 9x; — 24x,.

Again, the entering variable is x,. The constraints X5 2 0,x¢ > 0, and x; > 0 limit the increase
of x, 10 2¢y, 2¢,, and 1 + &3, respectively. Since 2e; < 28y < 1 + &, the leaving variable is Xg»
and the next dictionary reads

X, = 2¢, + 0 3xp + X3~ 2x, — 2xg

Xs= & — & + 4x, + 2x,4 8x4 + x4

Xp= 1 — 2 +e&5— 3x;, — x; + 2x4 + 2xg

z = 20¢, = 2Tx; + x5 — d4x, — 20x;.

Now the only candidate for the entering variable is x5 and the only candidate for the leaving

variable is x,. The resulting dictionary,

=1— 28, + & = 3xy+ 2%+ 2x6 — x,
=1+ & — X5
24+ g — 5e, + 265 — 2x, — x4y + Sxg — 2x,
14 18:, + &, — 30x; — 42x, — 18x5 — x,

¢ optimal dictionary for the perturbed problem. It may be converted into the optimal dic-
nary for the original problem by simply disregarding all the terms involving &4, &,, &;.
ow should we choose the numerical values of &1, 82, . - ., 8,7 The simplest answer is that we
ot have to do that at all: rather than committing ourselves to definite values of E1,805n v v by
ay just think of these symbols as representing indefinite quantities, which satisfy (3.4). After
| iterations of the simplex method, these symbols spread throughout the various rows of
tionary, but they remain confined to the absolute terms in each of the m + 1 rows; the
ents at the nonbasic variables in the dictionary are unaffected by the perturbation. Now
t comes to finding the leaving variable, each of the constraints x; > 0 for a nonbasic X;
the increase of the entering x; to a quantity such as 2¢,, 2¢,, 1 + &3, or, more generally,

Totrigg + + Fpé, S =580+ S8 + - + 5,8, , (3.5)

1. As we are about to explain, assumption (3.4) allows us to compare the numerical values
Quantities without referring to the precise values of &), ¢,, . .., ¢,. If r and s in (3.5) are
then there is the smallest subscript k such that r, # s,. It is customary to say that r is
phically smaller than s if re < . (The choice of the term lexicographically is explained
ing that, for instance, 2 + 2le; + 19¢, + 20¢, is lexicographically smaller than
+ 20e; + 20e; + 15¢, + 14¢ for the same reason that “bust” comes before “button”
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in a dictionary.) It is easy to prove that r is lexicographically smaller than s if and only ifris
numerically smaller than s for all values of €4, 62, - - - » &m that satisfy (3:4). This statement has to
be made precise by specifying just what is meant by the symbol « in (3.4); we leave the details
for problem 3.7.

The lexicographic method is that implementation of the perturbation method in which &4,
€y - Em ATC treated as symbols, and quantities such as r and s in (3.5) are compared by the
lexicographic rule. Note that it is always possible to choose the leaving variable by the lexico-
graphic rule: in every finite set of expressions such as r and s in (3.5), there is always one that is
lexicographically smaller than or equal to all the others. Even though this fact may be taken for
granted intuitively, rigor requires that it be proved; we leave the details for problem 3.6. Another
fine point concerns the behavior of the objective function z. The value of z, equal to some expression
Vo + v161 + 7 F Unbm remains unchanged in each degenerate iteration and increases, in the
lexicographic sense, with each nondegenerate one. (In our example, the increase from 0 to 20e,
in the first iteration was followed by the increase from 20e, to 1 + 18e; + &3 in the second
iteration.) It is intuitively obvious that the total of two or more lexicographic increases is a lexi:
cographic increase; a rigorous proof of this fact follows from the result of problem 3.5. Now it
follows that, even in the generalized context of the lexicographic method, cycling is possible
only in the presence of degeneracy. Finally, note that the only function of the terms involving
€y, E2s - -+ > Em 15 1O guide us toward the appropriate choice of a leaving variable whenever two ot
more candidates present themselves in the original problem. If, at any moment, these terms are
deleted, then the dictionary for the perturbed problem reduces to a dictionary for the original
problem.

THEOREM 3.2. The simplex method terminates as long as the leaving variable is
selected by the lexicographic rule in each iteration.

PROOF. Inview ofthe preceding remarks, we need merely prove that no degenerate dictional
will be constructed. (If all dictionaries are nondegenerate, then all iterations are nondegenera
1n that case, cycling cannot occur and the desired conclusion follows from Theorem 3.1) T
we need only consider an arbitrary row

X, = (ro + 181 + 77 4 o) — Z djx;

Jj¢B
of an arbitrary dictionary and to prove that at least one of the m + 1 numbers 7, F1s
distinct from zero. (Actually, we shall prove that at least one of the m numbers 14, ¥z,
distinct from zero.) Writing d;, = 1 and d; = 0 for all basic variables x; distinct from X, W€
(3.6) as

n+m m

Y dxj=rtot Y. T
j=1 i=1
Since this equation has been obtained by algebraic manipulations from the definition
slack variables,
n
xn+i=bi+8i—zaijxj (i=1,2,...,m)
j=1

J

it must hold for all cl}
the equation

which is obtained b
Xg5 s Xgand g,

d; ~ Z dyy
i=1

we observe that the
equal zero. Thus
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it must hold for all choices of numbers x;, x5, . .
the equation

.y Xpemand e, &y, . . ., &, that satisfy (3.8). Hence,

n m n m
Sodx; 4+ Y, dyilbi + 8 — Y, ax) =1+ ) rig
j=1 i=1 i=1 i=1

which is obtained by substituting from (3.8) into (3.7), must hold for all choices of numbers x;,
Xgs.+ s Xy a0d &, &5, . . ., &,,. Writing this identity as

r)e = ro — Z dy b

i=1

Y @ - Z dyyai)x; + Y (dpyi —
i=1 i=1 i=1

i=

we observe that the coefficient at each x;, the coefficient at each ¢;, and the right-hand side must
equal zero. Thus

diy; =1 forall i=1,2,...,m
(3.9)
dj=Y dya; forall j L,2...,n
i=1

., I'm Were equal to zero, then (3.9} would imply d,,; = 0 for all i =

With the hindsight provided by Theorem 3.2, it becomes easy to prove that every LP problem
the standard form can be perturbed by adding suitable small numbers &y, &, . . ., &, to the
t-hand sides by, b,, . . ., b, in such a way that the simplex method applied to the perturbed
lem will terminate. In fact, the numbers &, &,, . . . , &, may be chosen as the powers &, &%, . . ., &”
any sufficiently small positive &. We leave the details for problem 3.8.
:we have observed, the terms involving &, &5, . . ., &, are needed only when a tie has to be
en between two or more candidates for leaving the basis. Thus we might just as well wait
uch a need arises, and only then introduce an ad hoc perturbation. This idea was developed
olfe (1963); its lexicographic counterpart comes from G. B. Dantzig (1960).

est-subscript rule. 'This term will refer to breaking ties in the choice of the entering and
variables by always choosing the candidate x, that has the smallest subscript k. The moti-
or this elegant concept is provided by the following result.

REM 3.3. [R. G. Bland (1977).] The simplex method terminates as long as the
‘and leaving variables are selected by the smallest-subscript rule in each iteration.

y virtue of Theorem 3.1, we need only show that cycling is impossible when the
script rule is used. We shall do this by deriving a contradiction from the assumption
est-subscript rule leads from some dictionary D, to itselfin a sequence of degenerate
definiteness, let us say that this sequence of iterations produces dictionaries D,
ch that D, = D,. A variable will be called fickle if it is nonbasic in some of these

| basic in others. Among all the fickle variables, let x, have the largest subscript.
D"" D, ..., Dy, there is a dictionary D with x, leaving (basic in D but nonbasic
lonaty), and some other fickle variable x, entering (nonbasic in D but basic in the

O
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next dictionary). Further along in the sequence Do, Dyiv o5 Do Dy, Dy s Dis there must be a

dictionary D* with x, entering. Let us record D as
x;=b — Y apx; (€B)
j¢B

z =0+ ) -
ieB

Since all the iterations leading from D to D* are degenerate, the objective function z must have

the same value v in both dictionaries. Thus, the last row of D* may be recorded as

n+m

z=v+ 3, cf%;

j=1

with¢f =0 whenever Xx; is basic in D*. Since this equation has been obtained from D by algebraic

manipulations, it must be satisfied by every solution of D. In particular, it must be satisfied by
x, =y x=0 (j¢Bbutj# §), x; = by — a5y (ieB)and z =0 + &Y for every choice of y.

Thus we have

p+ ey =0+ cly+ Y - aisy)
ieB

and, after simplification,

(Cs - C:‘ + 2 c?“is))) = Z Czikbi

ieB ieB

for every choice of y. Since the right-hand side of the last equation is a constant independent of

we conclude that

¢, —cf+ Y cfa =0 @1

ieB
The rest is easy. Since X, is entering in D, we have ¢; > 0. Since x, is not entering in D* and
s < t,wehave c¥ < 0. Hence (3.10) implies that

c*a,s < 0 for some reB.

Since r € B, the variable x, is basicin D; since ¢¥ # 0, the same variable is nonbasic in D*. Hel
x, is fickle and we have r < t. Actually, x, is different from Xx,: since X, is leaving in D, weh
a,, > Oandso cta, > 0.Nowr <t and yet x, is not entering in D*. Thus, we cannot have ¢
From (3.11), we conclude that

a,s > 0.

Since all the iterations leading from D to D* are degenerate, the two dictionaries descri
same solution. In particular, the value of x, is zero in both dictionaries (x, is nonbasic inD
sob, = 0.Hencex, wasa candidate for leaving the basis of D—yet we picked x,, even though
This contradiction completes the proof.

One further point: termination of the simplex method can be guaranteed even without
by the smallest-subscript rule in every single iteration. We might resort to the smallest
rule, for instance, only when the last fifty or so iterations were degenerate, and abando
the next nondegenerate jteration in favor of any other way of choosing the entering an
variables. Although cycling might conceivably take place in this case, each block of cor
degenerate iterations would be followed by a nondegenerate iteration, and so each di

01 would be constructed only a finite number of times. k
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Initialization
The only remaining point that needs to be explained is getting hold of the initial
feasible dictionary in a problem

n
maximize Y ex;
=1

subject to Yoaxi<b  (i=12...,m
ji=1

20  (j=12...,n

with an infeasible origin. The trouble with an infeasible origin is twofold. First, it
may not be clear that our problem has any feasible solutions at all. Second, even if a
feasible solution is apparent, a feasible dictionary may not be. One way of getting
around both obstacles uses a so-called auxiliary problem,

minimize X0

n
_ subject to Y agx; — Xo < i=12...,m
. j=1

Xj

>0 (j=0,1,...,n).

easible solution of the auxiliary problem is readily available: it suffices to set the
alue of each x; with 1 < j < n at zero and make the value of x, sufficiently large.
rthermore, it is easy to see that the original problem has a feasible solution if and
y if the auxiliary problem has a feasible solution with x, = 0. To put it differently,
riginal problem has a feasible solution if and only if the optimum value of the
iary problem is zero. Hence our plan is to solve the auxiliary problem first; the
nical details are illustrated on the problem

- x2 + X3

Xy + 2%

3x, + x5

xZ - 2X3

X1, X2, X3 0.

d unnecessary confusion, we write the auxiliary problem in its maximization
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Writing down the formulas defining the slack variables x4, X5, X¢ and the objective
function w, we obtain the dictionary

xg= 4-— 2% + X, — 2x3 + Xo

Xs —5 — 2%y + 3x; — X3+ Xo

xg=—1+ %1 — X, + 2x3 + Xo

w = — Xg
which is infeasible. Nevertheless, this infeasible dictionary can be transformed into
a feasible one by a single pivot, with x, entering and Xs leaving the basis:

Xg = 5 4 2%y — 3%, + X3+ Xs

X, = 9 —szﬂ— X3 + Xs

Xg = 4 + 3x, — 4%y + 3%3 + X5

w = —5 — 2x; + 3x3 — X3 — Xs:
In general, the auxiliary problem may be written as

maximize —Xg

n
subject to Y ayx; — %o < bi (i=12...,m
i=1

x; =0 (j=0,1,...,n).

;=
Writing down the formulas defining the slack variables X4 1> Xp+20+ - -
the objective function w gives us the dictionary

n
xn+i=bi'—zaijxj+X() (i=1,2,...,m)
j=1

-

w = — Xg

which is infeasible. Nevertheless, this infeasible dictionary can be transforme
a feasible one by a single pivot, with x, entering and the “most infeasible”
leaving the basis. More precisely, the leaving variable is that X, ., whose nege
value, by, has the largest magnitude among all the negative numbers b;. After piv
the variable x, assumes the positive value of — b,, whereas each basic X, +; 88
the nonnegative value ofb; — b,. Now weare set to solve the auxiliary problem.
simplex method. In our illustrative example, the computations go as follows.
After the first iteration, with x, entering and X¢ Jeaving:

%, = 14 075x; + 075x3 + 025x5 — 025%¢
xo= 2 —025x, — 125x; + 025xs + 0.75%

7 _ 1.5x1 - 2SX3 + 0-5x5 + 0.5x6
w = '—‘2 + 0.25)61 + 1-2SX3 - 0.25x$ - 0.75x6.

After the second iter

= 1.6 — 02x, 4
=22+ 0.6x1 3
X4 = 3 - X;

The last dictionary (3.1
is zero, dictionary (3,
Xy = 0, X, = 2.2, X3

desired feasible diction
the desired dictionary,
all the terms involving

(3.13) into (3.14),
X —(22+0.
—0.6 + 0.2x,

t, the desired di
1.6 — 0.2x,

22 + 0.6x;
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d the objective After the second iteration, with x; entering and x, leaving:
X3 = 16 - 0.2X1 + OZXS + 0.6x6 - 0.8x°
X, = 22 + 0.6x, + 04x5 + 0.2%5 — 0.6x,

x4 = 3 - X1 b x6 + 2x0

(3.12)

w o= - X
The last dictionary (3.12) is optimal. Since the optimal value of the auxiliary problem
-ansformed into is zero, dictionary (3.12) points out a feasible solution of the original problem:
. basis:  x, = 0,x, = 22,x; = 1.6. Furthermore, (3.12) can be easily converted into the
desired feasible dictionary of the original problem. To obtain the first three rows of
the desired dictionary, we simply copy down the first three rows of (3.12), omitting
all the terms involving x;:
x; = 1.6 — 0.2x; + 0.2x5 + 0.6x,
x, = 2.2 + 0.6x; + 04xs5 + 0.2x6 (3.13)
X4 3 - x1 - x6.
To obtain the last row, we have to express the original objective function
Z = x1 - xz + X3 (314)
terms of the nonbasic variables x,, X5, X¢. For this purpose, we simply substitute
om (3.13) into (3.14), obtaining
= x; — (22 + 0.6x; + 04x5 + 02xg) + (1.6 — 0.2x; + 0.2x5 + 0.6x,)
"‘0.6 + 0.2x1 - 0.2x$ + 0.4x6.

short, the desired dictionary reads

1.6 — 0.2x; + 0.2x5 + 0.6x

22 + 0.6x; + 04x5 4+ 0.2x4
. transformed int = 3 - x - X

—0.6 + 0.2x, — 0.2x5 + 0.4xq.

he same procedure will transform an optimal dictionary of the auxiliary
basic x,,+; asst into a feasible dictionary of the original problem whenever x, is nonbasic
ary problem by Tmer.

5 as follows. et us review the general situation. We have learned how to construct the
problem and its first feasible dictionary. In the process of solving the
problem, we may encounter a dictionary where x, competes with other
for leaving the basis. If and when that happens, it is only natural to choose

ctual feaving variable; immediately after pivoting, we obtain a dictionary

kasic, and so the value of w is zero.




O
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Clearly, a feasible dictionary with this property is optimal. However, we may also
reach the optimum of the auxiliary problem while x, is still basic. Thus, we may
obtain an optimal dictionary where

x, is basic and the value of w is nonzero (3.16)
or, conceivably, an optimal dictionary where
X, is basic and the value of w is zero. (3.17)

Let us examine case (3.17). Since the next-to-last dictionary was not yet optimal,
the value of w = —xo must have changed from some negative level to zero in the
last iteration. To put it differently, the value of the basic variable x, must have
dropped from some positive level to zero in the last iteration. But then x, was a
candidate for leaving the basis; yet, contrary to our policy, we did not pick it. This

contradiction shows that (3.17) cannot occur. Hence the optimal dictionary of the
auxiliary problem has either property (3.15) or property (3.16). In the former case,
we construct a feasible dictionary of the original problem as illustrated previously

and proceed to solve the original problem by the simplex method; in the latter case
we simply conclude that the original problem is infeasible.

This strategy is known as the two-phase simplex method. In the first phase, we set u
and solve the auxiliary problem; if the optimal dictionary turns out to have propertt
(3.15) then we proceed to the second phase, solving the original problem itself. W
shall return to the two-phase simplex method in Chapter 8.

V_/—’//—’:’_/,//_:_"”

THE FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

This name is given to the following result.

THEOREM 3.4. Every LP problem in the standard form has the following thre

properties: '
(i) Ifithasno optimal solution, then it is either infeasible or unbounded.

(i) Ifithasa feasible solution, then it has a basic feasible solution.

@iii) Ifit has an optimal solution, then it has a basic optimal solution.

PROOF. The first phase of the two-phase simplex method either discovers that the p
is infeasible or else it delivers a basic feasible solution. The second phase of the two-phase $
method either discovers that the problem is unbounded or else it delivers a basic ¢
solution. ‘
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Note that the first property is not shared by problems whose constraints may include strict
linear inequalities Y a;x; < b. To take a trivial example, the problem

maximize x subjecttox < 0

is neither infeasible nor unbounded and yet it has no optimal solution. The remaining two prop-
erties (i) and (iii) tell us that, when looking for feasible or optimal solutions of an LP problem
in the standard form, we may confine our search to a finite set. These two properties, easy to
establish from scratch, are often used to motivate the simplex method. Our exposition has fol-
lowed the reverse pattern, with an emphasis placed on actually solving the problem—and the
fundamental theorem of linear programming obtained as an effortless afterthought.

PROBLEMS

| B

A 31 Maximize Xy + 3x; — x5

subject to 2%y + 2x, — x5
3x; — 2% + X3

x; — 3x, + X3

X1, X2, X3

10
10
10

0.

VA IAIA

In the tableau format, a natural tie-breaking rule for the choice of the pivot row favors the
rows that appear higher up in the tableau. Show that in the following example (constructed
by H. W. Kuhn), this tie-breaking rule leads to cycling:

maximize 2xy + 3x, — x5 — 12x,

subject to —2x; — 9%, + x3+ 9%, <0

1
-x, + x2—§x3—— 2x, < 0

3
Xy, X9y X3, X4 = 0.
Solve problem 3.2 by the perturbation technigue.
. Arrange the following expressions in a sequence from lexicographically smallest to lexico-
raphically largest:

—_— L

+ 10g,
— 4e; + &,
+ 3e;
+ de; + &,
e 481 + &, + &3.

ove: If r = rq + rigy + ++° + 1, is lexicographically smaller than s = 5, + s;8; +
'+ 5,8, and if s is lexicographically smaller than t = t, + t;8; + ' * + f,&,, then ris
cographically smaller than ¢.

the result of problem 3.5 to prove that, in every finite set of distinct expressions, such as
d 5 in (3.5), there is an expression that is lexicographically smaller than all the others.
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Prove that for every pair of expressions in (3.5) there is a positive number 0 such that the
fol_lowing two statements are equivalent: @) ris lexicographically smaller than s; (ii) for
every choice of fumbers &y, £2, - - - » & SUCh that

0<eg <& and 0 < g < 08 foralli =2,3,...,m

r is numerically smaller than s.

Use Theorem 3.2 and the result of problem 3.7 to prove the following. For every LP problem.

n
maximize Y cx;
~

subject to Y. aix; < by (i=12...,m
=1 -

x>0 (j=12...,n

J
there is a positive number § such that the simplex method used to

. n
maximize Y, €%
=1

subject to Y e <
j=1
Xj =
terminates whenever 0 < & < 0.
. A39 Solve the following problems by the two-phase simplex method:
a. maximize 3x, + X
-1
-3
4
0

subject to Xy — X2
—Xy — X2
le + Xa

<
<
<
>

maximize Ix, + X2
subject to X, — X
—Xy — X2
2x1 + Xq

VA A IA

maximize Ix + X2

-1

-3
2
0.

subject to Xy — X2
—X; — X2

2xy — X2

X1, X2

VA A A

310 Prove or disprove: A feasible dictionary whose last row reads z = z¥ + 2.C%)
an optimal solution if and only if ¢; < 0 for allj.




