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Stowage planning in maritime container
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We consider a stowage-planning problem of arranging containers on a container ship in the maritime transportation
system. Since containers are accessible only from the top of the stack, temporary unloading and reloading of containers,
called shifting, is unavoidable if a container required to be unloaded at the current port is stacked under containers to be
unloaded at later ports on the route of the ship. The objective of the stowage planning problem is to minimize the time
required for shifting and crane movements on a tour of a container ship while maintaining the stability of the ship. For the
problem, we develop a heuristic solution method in which the problem is divided into two subproblems, one for assigning
container groups into the holds and one for determining a loading pattern of containers assigned to each hold. The former
subproblem is solved by a greedy heuristic based on the transportation simplex method, while the latter is solved by a tree
search method. These two subproblems are solved iteratively using information obtained from solutions of each other. To
see the performance of the suggested algorithm, computational tests are performed on problem instances generated based
on information obtained from an ocean container liner. Results show that the suggested algorithm works better than
existing algorithms.
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Introduction

In the modern maritime transportation system, minimizing

transportation time and costs while maximizing container

ship utilization is considered as a main objective. Transpor-

tation time and costs in the maritime container transporta-

tion are affected largely by the loading and unloading

operations at ports. On average, a container ship spends

approximately 60% of her time at the ports.1 Therefore, a

significant amount of cost and time savings can be obtained

through an effective and efficient planning of loading=
unloading operations or cargo handling at the ports.

As can be seen in Figure 1, the cargo space of a container

ship is made up of a number of bays, collections of stacks of

containers along the length of a ship. Generally, each bay in

the cargo space is divided into above-deck and below-deck

by hatch covers, and sub-areas of a bay divided by hatch

covers are called holds. Each hold is composed of a group of

stacks, and each stack is composed of vertically arranged

groups of cells. Each cell is a physical location or a slot

where a container is to be loaded. Containers loaded below-

deck can be unloaded only after all containers loaded above-

deck on the hatch cover above are removed as well as the

hatch cover.

In the ocean cargo industry, container ships make

repeated tours of a series of ports according to their planned

routes. At each port on a tour of a container ship, containers

are unloaded and additional containers destined for subse-

quent ports are loaded. Time duration required for loading

and unloading depends on the arrangement of the cargo on

board the ship, ie the stowage plan, which specifies where

each container is loaded on the ship. Stowage plans, if not

prepared well enough, may cause unnecessary handling

time, time required for temporary unloading and re-loading

of containers from=onto the ship, called shifting, and for

movements of gantry cranes at the ports. Consequently, port

efficiency and ship utilization are largely affected by stow-

age plans.

In general, shifting is caused by overstowage, which

denotes the situation when containers that should be

unloaded at the current port are placed under other contain-

ers that should go further in the ship’s route. In this case, the

latter containers should be temporarily unloaded in order for

the former containers to be unloaded at the current port.

These temporarily unloaded containers, commonly referred

to as overstows, must then be re-loaded before the ship

leaves.

On the other hand, movements of gantry cranes are

affected by the distribution of containers on the container
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ship, since the number of cranes that can be assigned to a

ship at each port is limited. If containers with the same

destination are spread over the container ship in different

bays, it takes a longer time to unload the containers than in

the case in which those containers are placed near each

other, since more crane movements are necessary. Delays

caused by such crane movements can be avoided if contain-

ers with the same destination are stowed in the same bay.

There have been a few studies on the stowage planning

problem, the problem of finding a stowage plan with a

certain objective. Botter and Brinati2 give another integer

programming model considering various characteristics

related to stowage operations, such as constraints related

to the ship’s stability, crane movements and loading

sequence of the containers, and use an implicit enumeration

method to solve it. Since it is not easy to solve a stowage

planning problem optimally in a reasonable amount of time,

various heuristic algorithms have been developed for the

objective of minimizing the number of required shifting

operations or maximizing the number of containers that can

be loaded on a ship. For example, Shields3 suggests a

somewhat simple solution algorithm, in which a number

of different possible loading plans are randomly generated

and the best is selected. Avriel and Penn4 develop a heuristic

procedure, called the whole columns heuristic, in which

integer programs are solved after preprocessing of data.

Later, Avriel et al5 treat the stowage planning problems as a

two-dimensional stacking problem, and give a heuristic

procedure, called the suspensory heuristic procedure, for

the objective of minimizing the number of shifting opera-

tions. However, they assume that there is only one large bay

in a ship without considering constraints related to hatch

covers and the stability of the ship. Recently, Wilson and

Roach6,7 present a tabu search method combined with a

branch and bound search and packing heuristic based on the

conceptual processes employed by human planners. On the

other hand, Saginaw and Perakis8 and Shin and Nam9

develop rule-based decision support systems or expert

systems that are based on the knowledge of a manager or

an operator in charge of loading and unloading operations.

Most existing heuristic methods have drawbacks in that

they do not consider the stability of the ship, crane move-

ments or stowage plans at subsequent ports. Although

various practical constraints in the stowage planning

problem are considered in Shields’ algorithm, it does not

guarantee the optimality of the solutions, and it may take a

long computation time to find a reasonably good solution.

On the other hand, the integer programming approach

guarantees the optimality only if the integer programs can

be solved, but they are too large to be solved in a reasonable

time even for small-sized problems.

This study focuses on the stowage planning problem with

the objective of minimizing the time that container ships

spent in port terminals, or equivalently, a weighted sum of

the number of shifting operations and the frequency of

required crane movements, which are major factors that

influence the time. For the problem, we develop a heuristic

solution method in which the problem is divided into two

subproblems, one for assigning container groups to the

holds and one for determining a loading pattern of

containers assigned to each hold. The former subproblem

is solved by a greedy heuristic based on the transportation

simplex method, while the latter is solved by a tree search

method. These two subproblems are solved iteratively using

information obtained from solutions of each other.

Problem statement

The stowage planning problem considered in this paper is

that of finding an arrangement plan of the cargo on the ship

that minimizes time required for loading and unloading

while maintaining ship’s stability. We consider the

loading=unloading time at all ports included in a tour of

the ship. Loading=unloading time increases if there are more

Figure 1 Cargo spaces of a typical modern container ship.
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shifting operations caused by overstows or if there are more

longitudinal movements of cranes. Moving distance or time

required for the movements is proportional to the number of

bays where containers are to be loaded on or unloaded from.

Thus, in order to minimize loading=unloading time, we need

to minimize overstows as well as the number of bays

occupied by the containers with the same destination port.

In general, exact loading or unloading time varies

depending on the locations of the containers being handled

and the performance of the cranes, and so does the time

required for shifting and time required to move a gantry

crane. However, such time duration, especially the time

duration required at later ports, cannot be estimated exactly

when a stowage plan is made. In this study, therefore, each

of those time durations is assumed to be constant and given,

and the average time durations for those operations (loading,

unloading, shifting and crane movement) are used for the

performance measure to evaluate stowage plans. Here, we

do not consider time required for loading or unloading

operations that are not needed for shifting, since they are

required anyway, regardless of the stowage plan. Also, we

normalize those times for simplicity of the model by letting

the average time for shifting a container be a unit time as

follows. Let TS and TC be the average time required for

shifting a container and the average time required for

moving a gantry crane between two bays. Then, in the

objective function of the stowage planning problem, the

time required for shifting a container is set to 1 and the time

for moving a crane from one bay to another is set to

c � TC=TS .

To assure the stability of a container ship, a stowage plan

should satisfy several constraints. A ship becomes unstable

if the vertical, transverse or longitudinal distribution of the

ship’s weight is excessively unbalanced. Some stowage

plans may result in the instability of the ship. In these

cases, changes of the stowage plans, ie rearrangements of

containers, are necessary to regain the ship’s stability. While

the ship’s stability is affected by various factors, we consider

the following three most influencing factors in this study:

metacentric height (GM), heel and trim.

The metacentric height ðGM Þ of a ship is defined as the

distance between the centre of gravity ðGÞ and the meta-

centre ðM Þ of the ship as illustrated in Figure 2(a). For a ship

to be stable, GM must be greater than the minimum

allowable metacentric height of the ship. Otherwise, the

ship will capsize. To make GM greater, heavier containers

should be placed at lower positions. Making GM greater

may conflict with the objective of minimizing the number of

shifting operations, if the heavier containers are to be

transported to nearer destinations. The heel is the inclination

of a ship resulting from turning the ship in the direction of

starboard or port (Figure 2(a)). The heel of a ship with

respect to the centreline must be zero, or at least within a

very narrow range around zero. The trim of a ship is the

Figure 2 Stability of a ship. (a) GM and heel, (b) trim.
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difference in draft forward and aft of the ship (Figure 2(b)).

It should also be close to zero or at least within certain pre-

specified limits for good performance of the ship. The

stability constraints stated above (GM , heel and trim) can

be linearized by representing them as the moments resulting

from the composition of all weights of the cargo with respect

to the vertical, transverse and longitudinal coordinates.

In this study, the following assumptions are made.

1. Containers to be delivered on the container ship are of

the same size (40 ft standard containers).

2. The route of the ship’s tour is given.

3. The number of containers to be delivered from one port

to another is known (at the starting port, ie the port at

which the stowage plan is to be made) for all pairs of

ports included in the tour.

4. The initial stowage pattern of the ship at the starting port

is given.

5. The number of containers to be loaded does not exceed

the capacity of the ship at any port.

6. The unit cost (time) related to crane movements is the

same at all ports, and the time required to handle an

overstow is the same at all ports.

Solution approach

In the solution procedure suggested in this paper, the stow-

age-planning problem is partitioned into two subproblems,

the problem of assigning container groups to holds and that

of determining specific positions or slots for the containers

assigned to each hold. Here, a container group denotes a set

of containers with the same source (port of loading: POL),

the same destination (port of destination: POD), and the

same weight. Throughout this paper, the former subproblem

will be denoted as the G-to-H (groups to holds) problem,

while the latter will be called the C-to-S (containers to slots)

problem.

These two subproblems are solved one after the other

iteratively using the information obtained from solutions of

each other. With this iterative procedure, we may take

account of the interdependency of the two subproblems.

For example, if a solution of the C-to-S problem results in

overstowage at an iteration, the number of containers that

can be stowed in the same hold is limited to a certain

number for container groups that cause the overstowage to

avoid such overstowage at the next iteration. As a result, the

procedure will generate a different stowage plan, possibly a

feasible plan.

Now, we give a detailed description of the solution

methods for the subproblems. For notational simplicity,

ports are indexed according to the order they are visited

on a given route of a ship. For example, port 3 denotes the

third port visited on the route of the ship.

Solution method for the G-to-H problem

Since a stowage plan at a port is affected by those made at

previously visited ports, one has to make stowage plans at

all ports included in a tour of container ships simulta-

neously. However, it may not be possible to make the

plans simultaneously because the problem becomes too

large (there are too many variables and constraints) if they

are considered together. In the suggested method, the G-to-

H problem is defined at each port separately and solved

separately. The G-to-H problem at a port is defined and

solved based on solutions of the G-to-H problems at the

ports to be visited earlier. To cope with the interdependency

of the stowage plans made at different ports, we consider not

only the time required to handle containers at the current

port but also time required to handle the containers (to be

loaded at the current port) at later ports to unload them in

the G-to-H problem. In this study, the G-to-H problem at a

port (say, port k) is formulated as a mathematical programme,

which is similar to that of the fixed charge transportation

problem. First, we give the notation used in the formulation.

Indices

i index for container groups, i ¼ 1; . . . ; I

j index for holds, j ¼ 1; . . . ; J

k index for ports, k ¼ 1; . . . ;K

q index for bays, q ¼ 1; . . . ;Q

Parameters (given)

Di number of group-i containers to be loaded at the

current port

Hq set of holds included in bay q

Bj bay in which hold j is included

ej number of empty slots in hold j

Eq number of empty slots in bay q, ie Eq ¼
P

j2Hq
ej

Wi weight of a group-i container

Xj longitudinal coordinate of the centre of hold j

Yj transverse coordinate of the centre of hold j

Zj vertical coordinate of the centre of hold j

lL lower limit of the longitudinal moment of the ship

uL upper limit of the longitudinal moment of the ship

uT upper limit of the transverse moment of the ship

uV upper limit of the vertical position of the centre of

gravity of the ship

c (normalized) time required to move a crane from one

bay to another

Parameters (to be estimated)

aij number of shifting operations required to be

performed at the current port if a group-i container is

assigned to hold j

bij number of shifting operations to be incurred at later
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ports if a group-i container is assigned to hold j at the

current port

dij time required for crane movements at the POD of

group-i containers if group-i containers are assigned

to hold j at the current port

Decision variables

xij the number of group-i containers allocated to hold j

yij ¼

1 if a group-i container is allocated to hold j

ðif xij > 0Þ

0 otherwise

8<
:

zq ¼

1 if there is a container allocated to bay q

ðif
P

i

P
j2Hq

yij > 0Þ

0 otherwise

8<
:

In this study, values for aij; bij and dij are estimated as

follows using the information on the current locations of the

containers.

Estimation of aij

Case 1. If hold j is an above-deck hold, aij is set to 0.

Case 2. If hold j is a below-deck hold, aij is set to Nj, where

Nj is the number of containers loaded in the above-

deck hold over hold j.

Estimation of bij

Case 1. If hold j is an above-deck hold: then (let hold j0 be

the below-deck hold under hold j)

Case 1a. If there is no container in hold j0 whose POD is

nearer than the POD of group-i containers, bij is

set to nN=nT , where nN is the number of empty

slots above the containers whose PODs are

nearer than the POD of group-i containers and

nT is the number of empty slots in the hold;

Case 1b. If there are containers in hold j0 whose PODs

are nearer than the POD of group-i containers,

bij is set to 1.

Case 2. If hold j is a below-deck hold, bij is set to nN=nT .

Estimation of dij

Case 1. If there is no container in bay Bj whose POD is the

same as the POD of group-i containers, then dij is

set to c.

Case 2. If there are containers in bay Bj whose PODs are

the same as the POD of group-i containers, then dij

is set to 0.

Note that aij denotes the number of shifting operations for

other containers caused by container group i, while bij

denotes the number of shifting operations for group-i

containers caused by other containers. Figure 3 gives three

examples to show how to estimate aij and bij. In all the

examples, we have aij ¼ 0 and aij0 ¼ 8 because Nj0 ¼ 8, ie

eight containers are loaded in hold j, the above-deck hold

over hold j0. In the example given in Figure 3(a), bij is set to

2=8 since nN ¼ 2 and nT ¼ 8 in hold j (Case 1a), while bij0

is set to 0 because nN ¼ 0 in hold j0 (Case 2). In Figure 3(b),

bij is set to 1 (Case 1b) and bij0 is set to 1 because nN ¼ nT in

hold j0 (Case 2). Also, in Figure 3(c), bij is set to 1 (Case 1b)

and bij0 is set to 2=6 because nN ¼ 2 and nT ¼ 6 in hold j0

(Case 2).

Now, we give an integer linear programme for the G-to-H

problem at port k.

½GHk � Minimize
P

i

P
j

aij yij þ
P

i

P
j

bij xij þ c
P
q

zq

þ
P

i

P
j

dij yij ð1Þ

Figure 3 Examples for the estimation of aij and bij.
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subject to

P
j

xij ¼ Di 8 i ð2Þ

P
i

xij 4 ej 8 j ð3Þ

xij 4 ej yij 8 i; j ð4ÞP
i

P
j2Hq

yij 4Eq zq 8q ð5Þ

P
i

P
j

W i Zj xij 4 uV ð6Þ

� uT 4
P

i

P
j

W iY jxij 4 uT ð7Þ

lL 4
P

i

P
j

W i X j xij 4 uL ð8Þ

xij 5 0 and integer 8i; j ð9Þ

yij 2 f0; 1g 8i; j ð10Þ

zq 2 f0; 1g 8q ð11Þ

The objective function to be minimized denotes the (esti-

mated) handling time required to handle overstows at the

current port k and subsequent ports k 0 for k 0 > k and to

move crane(s) at port k and subsequent ports k 0. Constraint

(2) ensures that all containers are loaded and constraint (3)

ensures that the number of containers loaded in hold j does

not exceed the number of available slots in hold j.

Constraints (4) and (5) are added to define relationships

among decision variables, that is, yij ¼ 1 if xij > 0, and

zq ¼ 1 if yij > 0 for any hold j 2 Hq. Constraints (6), (7) and

(8) ensure the ship’s stability in terms of the GM, heel and

trim, respectively.

Problem ½GHk � is similar to the fixed charge transporta-

tion problem (FCTP), but it differs from a typical FCTP in

that there are additional constraints related to the ship’s

stability and an additional fixed charge related to variable zq.

Although there are various methods to solve FCTPs as

surveyed by Adlakha and Kowalski10 and Palekar et al,11

those methods cannot be directly applied to ½GHk � because

of such differences. Since it is difficult to solve ½GHk �

optimally in a reasonable time, we suggest a heuristic.

This heuristic follows a general procedure of a heuristic

developed by Gilbert and Madan12 for production planning

and scheduling problems.

In the heuristic suggested here for the G-to-H problem,

we employ a general procedure of the transportation simplex

method. In this heuristic, an initial solution is obtained in a

form of the basic feasible solution of the transportation

problem after the objective function of ½GHk � is approxi-

mated to a linear form. Then the solution is improved with a

method similar to the pivot operation used in the transporta-

tion simplex method. A detailed description of the algorithm

is given below.

Obtaining an initial solution. First, the objective function

is approximated to a linear form using new cost coefficients

âaij defined as âaij ¼ aij þ dij þ cej=Eq0 for all i and j, where

q0 ¼ Bj. Note that time for crane movement, c, is allocated

to each hold in proportion to the ratio of the number of

empty slots in the hold to the total number of empty slots in

the bay. With this approximation, integer variables, yij and

zq, related to the fixed charge portion of the objective

function are eliminated. Also, constraints (4) and (5) can

be eliminated with such an approximation. Then, ½GHk � is

relaxed into a linear program, ½LGHk � as follows.

½LGHk � Minimize
P

i

P
j

ðâaij=ej þ bijÞxij ð10Þ

Subject to (2), (3), (6), (7), (8) and

xij 5 0 8i; j ð90Þ

In this study, ½LGHk � is solved optimally with a commercial

software package. The optimal solution of ½LGHk �, whether

it is feasible to ½GHk � or not (because the integrality

constraint is not satisfied), is modified to a form of a basic

feasible solution of the transportation problem with

constraints (2) and (3), ie a solution in which at most

ðI þ J � 1Þ variables have positive values. The procedure

of modifying solutions of ½LGHk � follows a general proce-

dure for constructing an initial basic feasible solution of a

transportation problem such as the northwest corner rule. In

the procedure, we use a transportation tableau with cells,

rows and columns corresponding to variable xij, constraint

(2), and constraint (3), respectively. Note that, in the general

procedure for the transportation problem, the value of a

basic variable is set to be large enough to exactly use up the

remaining supply in its row or the remaining demand in its

column (whichever is smaller), and this row or column is

eliminated from further consideration.

In the suggested procedure, among variables that do not

lie in an eliminated row or column, we select a variable ðxijÞ

with a positive value (in the solution of ½LGHk �) that is equal

to (or closest to) the remaining supply in its row or the

remaining demand in its column. Then, either a row or

column associated with such a selection is eliminated from

further consideration. This procedure is continued until

there is only one variable that can be chosen, when both

the row and the column associated with the variable are

eliminated.

If there still are variables with positive values in cells not

selected yet after all rows and columns are eliminated, pivot

operations are performed after identifying a chain reaction

or a y-loop in the transportation tableau.13,14 In other words,

values of the variables associated with these cells are

reduced to 0 and values of the variables associated with

the cells in the y-loop are changed so that the resulting

solution has a form of the basic feasible solution of the

transportation problem. On the other hand, if there is a row

or column not eliminated yet and none of the variables in

that row or column can have positive values, one of the
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variables in that row or column is selected randomly and it is

considered as a basic variable.

If constraints (6)–(8) are not satisfied by the solution

resulting from the above procedure, the solution is modified

with a method that is similar to the pivot operation of the

transportation simplex method as follows. Using the trans-

portation tableau, the basis is updated by replacing an

entering variable for a leaving variable. In this method, we

select as an entering variable a non-basic variable that will

reduce the number of violated constraints with the minimum

increase in the objective function value if entered into the

basis with a pivot operation. Note that a leaving variable can

be identified for each non-basic variable, which is a candi-

date entering variable, as in the transportation simplex

method. The variable selected as the leaving variable is a

basic variable with the smallest value among those corre-

sponding to donor cells in the y-loop that includes the

entering variable in the transportation tableau. Such pivoting

operations are repeated until the solution becomes feasible.

Improving the solution. Next, the initial solution is

improved with a method that is similar to the pivot operation

of the transportation simplex method as follows. Define the

fixed charge portion of the objective function of

½GHk �;
P

i

P
j aij yij þ c

P
q zq þ

P
i

P
j dij yij as f ðxijÞ.

Note that the value of f ðxijÞ is easily determined by xij

from the definition of yij and zq. Using the transportation

tableau as in the method for obtaining an initial feasible

solution, the basis is updated by replacing an entering

variable for a leaving variable. Although pivot operations

to obtain new basic feasible solutions are the same as those

of the above method and of the simplex method, the

criterion used for selection of an entering variable is

different. Here, we select as an entering variable a non-

basic variable that will give the maximum decrease in the

objective function ð10Þ and will violate none of constraints

(6), (7) and (8) as follows.

For each non-basic variable, assuming it is the entering

variable, one can identify a leaving variable as in the

transportation simplex method. Then, the change in the

objective function value of ½GHk � due to replacement of

the leaving variable with the entering variable can be

computed as DVij ¼
P

i

P
j aij Dxij þ Df ðxijÞ, where Dxij

is the change of the value of xij (or the value of the entering

variable) after the replacement and Df ðxijÞ is the change

in the value of f ðxijÞ due to the replacement. Here, Df ðxijÞ

can be computed as Df ðxijÞ ¼
P

i

P
j aij Dyij þ c

P
Bi
Dzq þP

i

P
j dij Dyij, where Dyij and Dzq are the changes of the

values of yij and zq due to the changes of values of xij in the

y-loop. Note that the values of yij and zq can be easily

computed from the definition of the variables.

Since a solution obtained with this pivoting operation

should not violate constraints (6), (7) and (8), we have to

check the feasibility of the solution resulting from the pivot

for each candidate entering variable. In the suggested algo-

rithm, a non-basic variable can be considered as a candidate

entering variable if all of the following three conditions are

satisfied:

ðC1Þ
P

i

P
j

W i Zj ðxij þ DxijÞ4 uV

ðC2Þ � uT 4
P

i

P
j

W i Y j ðxij þ DxijÞ4 uT

ðC3Þ lL 4
P

i

P
j

W i X j ðxij þ DxijÞ4 uL

where Dxij is the value of the changes in the basic and non-

basic (entering) variables resulting from the pivot operation

to make the variable currently being considered a new basic

variable. Although one can compute the maximum change

in the value of the candidate entering variable that will not

violate the constraints and use that value for pivoting, such a

method is not employed in the suggested algorithm. This is

because by doing so the resulting solution would not have

the property of a basic feasible solution of the transportation

problem with constraints (2) and (3). Note that the general

concept of the suggested algorithm is to improve the

solution using pivoting operations of the transportation

simplex method.

In the suggested algorithm, pivoting operations are

repeated until the solution cannot be improved any more.

The following summarizes the solution procedure for ½GHk �

described above.

Procedure 1 (Solution method for ½GHk �)

Step 1. Find an optimal solution of [LPR].

Step 2. Modify the solution in such a way that the solution

has a form of the basic feasible solution of the

transportation problem with constraints (2) and

(3).

Step 3. For each non-basic variable, identify the y-loop in

the transportation tableau and compute Dxij. For

each non-basic variable xij that satisfies conditions

C1, C2 and C3, compute DVij.

Step 4. If DVij > 0 for all non-basic variables, stop. Other-

wise, obtain a new solution by performing a

pivoting operation to bring into the basis a non-

basic variable with the minimum value of DVij and

go back to step 3.

Solution method for the C-to-S problem

After the G-to-H problems are solved for all k, containers

allocated to each hold are assigned to available slots of the

hold, that is, the C-to-S problem is solved, for the objective

of minimizing overstows throughout a tour of the ship. In

the C-to-S problem, loading plans (or stowage plans) can be

determined for each hold independently of other holds, since

which groups of containers should be loaded on and

unloaded from each hold at each port were determined by
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the solution of the G-to-H problem. Therefore, it is sufficient

to determine at which slots containers are loaded (in each

hold at each port). However, those loading plans at a port

should be made considering the loading=unloading plans of

the other ports. Here, the stability of the ship is not

considered, since it was considered in the G-to-H problem.

Generally, containers with the same port of loading (POL)

and the same port of destination (POD) are stowed at

adjacent slots in a hold. Therefore, if relative horizontal

positions among container groups are determined, the stow-

age pattern of the containers can be easily determined

because relative positions of containers in a column can

be determined by the following simple rules. If different

containers are to be loaded in the same column, a container

of a further POD is loaded under the others. If two or more

containers have the same destination, a heavier container is

loaded under the others.

In the algorithm suggested in this paper, an implicit

enumeration method is employed to find the best stowage

pattern (in terms of overstows). Since stowage plans can be

determined for each hold separately, this enumeration

method is not expected to require excessively long compu-

tation time. A tree search method is used to enumerate all

possible configurations of the containers, ie relative posi-

tions among the container groups, and to find the best one.

In the search tree, nodes represent relative positions among

the container groups in a hold and levels of the nodes

represent POLs at which containers related to the nodes are

loaded.

In the suggested algorithm, we add a dummy container

group to fill all empty slots if the number of containers

assigned to a hold is less than the total number of empty

slots of the hold. Since there are various methods to allocate

the containers to the slots satisfying the relative positions

among them, exact positions of the containers cannot be

specified by only determining the relative positions among

the container groups without such dummy containers.

Figure 4 gives a simple example that shows the loading

pattern representation scheme used in this study. In the

figure, (a) shows a tree drawn with the representation

scheme and (b) shows the physical loading pattern corre-

sponding to the tree. The numbers in the parentheses in each

node of the tree represent relative positions among the

container groups and the level of a node represents the

port where containers are loaded. Node (0,2,4) at level 1 of

the tree (Figure 4(a)) represents a configuration in which at

port 1, containers of POD 2 are located on the left of

containers of POD 4, and there are empty slots to the left of

the containers of POD 2 (Figure 4(b)). In addition, node

(3,5) at level 2 represents that at port 2, containers of POD 3

and containers of POD 5 are loaded in slots where there

were no containers and where there were containers that

were unloaded at port 2.

Overall solution procedure

A solution obtained by solving the G-to-H problem and the

C-to-S problem sequentially may not be very good or there

may be many overstows in some cases. This is because the

information on loading plans at subsequent ports is not

considered when solving the G-to-H problem. Overstows

can be reduced if such information is utilized when solving

the G-to-H problem by not assigning too many containers to

a hold at which overstowage will occur at subsequent ports.

In the suggested algorithm, the two problems are solved

iteratively so that such information can be taken into

account.

Suppose that at an iteration of the iterative procedure

overstowage occurs because container group i is loaded over

another container group whose POD is further than that of

group i. In this case, the coefficient ðbijÞ in problem ½GHk � at

the POL of group i is modified to avoid assigning group-i

containers to the same hold at the next iteration. Then the

procedure restarts solving the G-to-H problems from the G-

to-H problem of the port at which group-i containers are

loaded, to save computation time.

The iterative procedure is summarized below. In the

procedure, k 0 denotes the port at which the occurrence of

overstowage is being checked and k 00 denotes the POL of

containers that cause overstowage.

Procedure 2. (Algorithm for the stowage planning

problem)

Step 0. Set k 00 ¼ 1 and k 0 ¼ 2.

Figure 4 Tree search method. (a) A tree, (b) the loading pattern associated with the tree.
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Step 1. Solve the G-to-H problems, ½GHk � for

k ¼ k 00; k 00 þ 1; . . . ;K.

Step 2. Solve the C-to-S problem for each hold at ports

k 00; k 00 þ 1; . . . ;K using the solutions of the G-to-

H problems.

Step 3. If overstowage occurs at port k 0, go to step 5.

Otherwise, go to step 4.

Step 4. Let k 0 ¼ k 0 þ 1. If k 0 > K, stop. Otherwise, go to

step 3.

Step 5. If containers causing the overstowage were loaded

at port k 00, go to step 6. Otherwise, go to step 7.

Step 6. Re-define ½GHk 0 �, after letting bij ¼ bij þ nO=nX ,

where nO is the number of shifting operations

required by the overstowage and nX is the

number of group-i containers assigned to hold j

at port k 00. Solve ½GHk � for k ¼ k 00; k 00 þ 1; . . . ;K,

and solve the C-to-S problem for each hold at

ports k 00; k 00 þ 1; . . . ;K using the solutions of the

G-to-H problems. If the resulting solution is

improved, let k 0 ¼ k 00 þ 1, and go to step 1.

Otherwise, go to step 7.

Step 7. Let k 00 ¼ k 00 þ 1. If k 00 ¼ k 0, let k 0 ¼ k 0 þ 1 and

k 00 ¼ 1, and go to step 3. Otherwise, go to step 5.

Computational experiments

To investigate the performance of the iterative procedure

suggested in this paper, computational tests were done on

180 randomly generated problems, 10 problems for each of

all combinations of three levels for the number of ports (4, 6

and 8), three levels for the capacity of the ship (2500, 3000

and 4000 TEUs), and two levels for the number of container

weight groups (2 and 3). These parameter values used for

problem generation were selected so that resulting test

problems reflect real stowage planning problems in a

Korean maritime transportation company relatively well. It

is assumed that ships with the capacities of 2500, 3000 and

4000 TEUs have 12, 15 and 20 bays, respectively. Each bay

of the ships consists of three hatch covers and six holds (as

illustrated in Figure 1). Also, in problems in which contain-

ers are of two different weights (heavy or light), a heavy

container was assumed to be twice as heavy as a light one.

In these problems, the number of heavy containers and that

of light containers were set to be approximately equal. On

the other hand, in problems with three container weight

groups (heavy, medium and light), the ratio of the weights of

the containers was assumed to be 5:3:1. Specific weights of

containers are not considered here, since it is assumed that

containers can be loaded on a ship up to the ship’s capacity

(in TEUs), regardless of the weights of the containers, once

the stability condition is satisfied.

The number of containers that are to be transported from

port i to port j was generated from DU ð0:8c; 1:2cÞ, where

DU ða;bÞ denotes the discrete uniform distribution with

range ½a; b� and c denotes the average number of containers

that are shipped between two ports. Here, c was set to be

equal to the average number of containers on board the ship

divided by nðn � 1Þ=2, where n is the number of ports to be

visited in a tour of the ship. The average number is set to

95% of the ship’s capacity in the test problems. Since it is

assumed that the number of containers to be loaded does not

exceed the ship’s capacity as stated earlier, the value of c is

modified (reduced) if the value obtained with the above

method makes the ship’s capacity constraint violated. In

addition, it is assumed that certain containers are already

loaded on the ship at the beginning of a tour. Destinations,

weights and locations (in the ship) of those containers were

generated randomly, but in such a way the resulting problem

reflect real situations relatively well.

To evaluate the performance of suggested algorithm, we

compared each of the two parts of the suggested algorithm

with a method modified from the algorithm of Botter and

Brinati2 for solving the G-to-H problem and the suspensory

heuristic method (SH) developed by Avriel et al5 for solving

the C-to-S problem, denoted hereafter by MBB and SH,

respectively. In MBB, the G-to-H problem was solved by

assigning container groups to holds using the model of

Botter and Brinati, while containers are assigned to slots

directly in the original model of Botter and Brinati. Note

that the original model cannot be used for the stowage

planning problem considered in this paper because it

requires excessive computation time. As mentioned earlier,

SH can deal with the stowage planning problem for a ship

with one rectangular bay only, and thus the slot for each

container is determined individually without taking account

of hatch covers and the ship’s stability.

As it is very difficult to obtain optimal solutions, perfor-

mance of the algorithm was shown with a relative perfor-

mance measure, the percentage reduction of the solution

(the time required for loading and unloading containers

throughout a given tour of a ship) of each algorithm from

a benchmark solution. Here, the solution value obtained

from the combination of MBB and SH was used as the

benchmark solution. In cases where a solution of the MBB-

SH combination could not be found after a sufficiently long

time, say 24 hours, the solution of the combination of the

suggested algorithm for the G-to-H problem and SH was

used for the benchmark solution. The computational tests

were done on a personal computer with a 500 MHz Pentium

III processor, and CPLEX 6.5 was used to solve [LPR] and

integer programs for MBB.

Results of the tests are given in Tables 1 and 2, which

give average and standard deviation of the percentage

reduction of the solutions from the benchmark solutions

for each set of 10 problems defined by the parameter

combinations. The tables also show the number of problems

for which each algorithm found the best solutions. In the

tables, the algorithms suggested in this research for the

G-to-H problem and C-to-S problem are denoted by
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H-Simplex (heuristic based on the transportation simplex

method) and TS (tree search method), respectively.

As can be seen in the tables, H-Simplex and TS work

better than MBB and SH, respectively. TS gave solutions

that are approximately 9% (6% in larger problems) better

than those from SH on average, although SH gave better

solutions than TS in some cases. A reason for such out-

performance of TS over SH may be that TS finds the best

relative horizontal positions by checking all possible alter-

natives with an implicit enumeration method, although

simple (but good) rules are used for determining relative

vertical positions of containers in a column. On the other

hand, SH uses heuristic rules for determining a loading

pattern, ie vertical as well as horizontal positions of the

containers.

The difference in the performance of the algorithms for

the G-to-H problem is more significant. Solutions from H-

Table 1(a) Performance of the algorithms in easier (smaller) problems. Percentage reduction from the solution of the (MBB, SH)
combination

MBB H-Simplex

TS SH TS SH

Weight levels Ports Bays Avg. St. Dev. Avg. St. Dev. Avg. St. Dev. Avg. St. Dev.

2 4 12 1.8 10.2 0 — 17.8 31.6 0.6 23.4
15 18.9 30.6 0 — 10.6 24.3 �2.3 33.7
20 5.6 9.4 0 — 20.1 22.4 9.5 29.0

6 12 3.4 16.2 0 — 47.8 22.0 40.1 29.4
15 13.9 13.9 0 — 42.8 42.8 40.0 40.0
20 9.8 21.4 0 — 43.3 34.7 43.2 33.7

3 4 12 9.1 10.0 0 — 22.1 33.2 12.7 38.1
15 8.5 10.5 0 — 13.8 26.7 6.7 28.2
20 12.1 10.0 0 — 22.8 18.9 12.9 18.7

Overall 9.2 14.7 0 — 26.8 28.5 18.2 30.5

Table 1(b) Performance of the algorithms in easier (smaller)
problems. The frequency each algorithm found the best solution

MBB H-Simplex

Weight levels Ports Bays TS SH TS SH

2 4 12 7 4 9 6
15 8 4 6 5
20 6 5 8 6

6 12 0 0 8 2
15 1 0 9 4
20 0 1 10 8

3 4 12 5 0 4 2
15 3 1 5 3
20 2 0 6 2

Total 32 15 65 38

Table 2(a) Performance of the algorithms in harder (larger)
problems. Percentage reduction from the solution of the

(H-Simplex, SH) combination

H-Simplex

TS SH

Weight levels Ports Bays Avg. St. Dev Avg. St. Dev.

2 8 12 5.2 7.6 0 —
15 10.9 9.9 0 —
20 3.3 9.4 0 —

3 6 12 6.5 9.9 0 —
15 6.3 10.9 0 —
20 4.5 7.6 0 —

8 12 5.5 10.1 0 —
15 7.5 9.6 0 —
20 2.3 12.2 0 —

Overall 5.8 9.7 0 —

Table 2(b) Performance of the algorithms in harder (larger)
problems. The frequency each algorithm found the best solution

H-Simplex

Weight levels Ports Bays TS SH

2 8 12 9 5
15 8 6
20 6 8

3 6 12 8 2
15 7 3
20 8 2

8 12 7 3
15 7 5
20 6 6

Total 66 40

424 Journal of the Operational Research Society Vol. 53, No. 4



Simplex were approximately 18% better than those from

MBB. This may be because H-Simplex takes account of the

possibility that a stowage plan at the current port may cause

the overstowage in the subsequent ports to find out which

holds result in the minimum overstows in all ports. Also, H-

Simplex uses the information obtained from solutions of the

C-to-S problems to improve its solution, while MBB solves

the G-to-H problem independently without considering such

information. Note that the overall iterative procedure was

applied to H-Simplex only, since it could not be easily

applied to MBB because of characteristics of the algorithm

of Botter and Brinati.2

Table 3 shows the average computation time required for

each problem to solve a problem. H-Simplex required much

shorter computation time than MBB, especially in larger

problems. MBB could not find a feasible solution for larger

problems after several hours. Although it is not shown in the

table, in some cases the MBB-SH combination could not

solve a problem even after a few days. Since the stowage

planning problems should be solved relatively frequently, it

should not take such a long time to solve a problem. The

computation time required for the suggested algorithm (H-

Simplex with TS) does not seem to increase exponentially

although it contains an implicit enumeration method, TS.

Note that TS does not search all possible positions of

individual containers but checks all possible relative posi-

tions among container groups that are assigned to a hold. In

addition, the number of groups assigned to a hold at each

port is not too large, and hence all possible relative positions

among the groups can be examined in a reasonable amount

of time.

Although it is not reported as a table here, the sign tests,

non-parametric statistical tests for paired experiments, were

done to see the difference in the performance of the four

combinations of the algorithms. Results of the tests showed

that there were statistically significant (in the significance

level of 0.01) differences in the performance between all

pairs of the four combinations. Considering the computation

time required for the algorithms tested and qualities of the

solutions obtained from those algorithms, it can be argued

that the suggested heuristic solution method is significantly

better than existing algorithms and it is a viable tool for

stowage planning in the maritime container transportation.

Concluding remarks

In this study, we considered a stowage-planning problem for

a container ship with the objective of minimizing cargo-

handling time at ports, or equivalently, minimizing the

number of shifting operations and crane movements at the

ports on the route of the ship. Because of the computational

complexity of the problem, the problem was decomposed

into two subproblems, one for assigning groups of contain-

ers to holds of the ship and one for determining loading

patterns of containers in each hold. The first subproblem

was formulated as a set of integer programmes and solved

by a heuristic algorithm that employed a general procedure

of the transportation simplex method, while a tree search

method was suggested for the second. These two subpro-

blems were solved iteratively using information obtained

from solutions of each other. Computational experiments

showed that the suggested algorithm worked better than a

commercial software package for integer programming

using a model modified from that of Botter and Brinati2

and the suspensory heuristic procedure of Avriel et al.5

Although we considered several aspects or characteristics

of cargo handling operations at ports to make the research

practical, there are still more to be done. In this study, we

considered only one standard type of containers, but there

may be containers of various sizes. In such cases, additional

constraints should be taken into account. For example, if

there are two types of containers (40 ft and 20 ft containers)

are handled, possible positions of containers are limited by

the sizes of the containers. Since a container is supported on

its four corner points, it must be placed in positions where

either the ship or other containers provide suitable supports.

In general, a 40 ft container can be loaded on two 20 ft

containers, but two 20 ft containers cannot be loaded on a

40 ft container. Because of this requirement, it is not desir-

able to have containers with different lengths be stowed in

the same stack.

In addition, one has to consider a case in which positions

for special cargos such as refrigerated containers and

dangerous cargos are limited to a certain area, consider

other types of constraints related to the stability of a ship, or

consider other objectives such as balancing the workloads

of the cranes. Also, one needs to determine sequences of

unloading or loading containers from or onto a container

Table 3 Average CPU seconds required for each problem

MBB H-Simplex

Weight levels Ports Bays TS SH TS SH

2 4 12 57.5 51.9 32.0 35.7
15 87.8 67.2 29.0 20.6
20 138.0 124.5 36.2 31.3

6 12 4247.8 4246.3 110.1 118.9
15 5819.5 5819.2 122.8 120.3
20 24 580.4 24 550.1 121.8 122.3

8 12 * * 365.5 366.5
15 * * 381.7 380.9
20 * * 401.8 398.1

3 4 12 78.5 69.5 42.8 43.8
15 184.4 174.3 115.4 112.0
20 283.5 264.2 228.5 222.3

6 12 * * 94.5 90.4
15 * * 188.3 140.3
20 * * 447.3 425.8

8 12 * * 525.5 495.3
15 * * 620.7 543.0
20 * * 640.5 592.0

*Solutions were not obtained within 24 h of CPU time.
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ship that can minimize travel distances of cargo-handling

equipment for an efficient operation of ports or ships. In

fact, it is necessary to determine a stowage plan and loading

sequences simultaneously for the maximum efficiency,

because the operations of quay cranes and material handling

equipment in a yard are closely related to the stowage plan.

In some cases, intentional shifting may be needed to reduce

shifting operations at subsequent ports. Therefore, we have

to check whether the overall number of shifting operations

can be reduced if currently loaded containers are tempora-

rily unloaded, and re-loaded after containers to be loaded at

the current port is loaded.
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