
Discrete Applied Mathematics 103 (2000) 271–279

Note

Container ship stowage problem: complexity and
connection to the coloring of circle graphs

Mordecai Avriel, Michal Penn ∗, Naomi Shpirer
Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technology,

Haifa 3200, Israel

Received 29 July 1997; revised 2 November 1999; accepted 8 November 1999

Abstract

This paper deals with a stowage plan for containers in a container ship. Since the approach to
the containers on board the ship is only from above, it is often the case that containers have
to be shifted. Shifting is de�ned as the temporary removal from and placement back of containers
onto a stack of containers. Our aim is to �nd a stowage plan that minimizes the shifting cost.
We show that the shift problem is NP-complete. We also show a relation between the stowage
problem and the coloring of circle graphs problem. Using this relation we slightly improve
Unger’s upper bound on the coloring number of circle graphs. ? 2000 Elsevier Science B.V.
All rights reserved.

1. Introduction

This paper was motivated by the operation of a container ship that calls many ports,
and in each port it loads and unloads containers. Since, the approach to the containers
on board the ship is only from above, it is often the case that containers have to
be shifted. Shifting is de�ned as the temporary removal from and placement back of
containers onto a stack of containers. The need for shiftings arises, for example, in a
vertical stack of containers if there is a container placed inside the stack that has port
j as its destination, while the containers on top of it have destinations further away
from port j. In this case the latter containers have to be shifted. The cost of shiftings
for a large ship can be very considerable.
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The number of containers shifted along the ship’s route is greatly a�ected by planning
the placement of containers on board the ship. The task of determining the best con-
tainer placement is called stowage planning, see e.g. [16,17]. Whereas most stowage
plans are based on port e�ciency, and stability–strength considerations of the ship,
not much attention has been given to devise a plan that minimize the number of
shifts. Some attempts in this direction can be found in [2–4]. A related problem
that can be modelled similarly is the problem of dispatching trams on storage yard
(see [5]).
In this paper we address the computational complexity of this optimization problem.

Aslidis [1] presents a polynomial-time algorithm for solving the single column case.
We, further, show that the general optimization problem is NP-complete. It is clear
that if the number of columns in a rectangular bay is very large, we can devise a plan
that no shiftings would be necessary along the ship’s route. We derive upper and lower
bounds on the number of columns for which a plan can be found in polynomial time
that will result in zero shifts. For special types of transportation (source–destination)
matrices we derive the exact number of such columns. Further, we show that �nding the
minimum number of columns for which there is a zero shifts stowage plan is equivalent
to �nding the coloring number of circle graphs. Using this relation we slightly improve
Unger’s upper bound on the coloring number of circle graphs [18]. This bound and
the appropriate coloring can be computed in polynomial time by using our previous
results and Unger’s approximation algorithm.
Consider a container ship consisting of a single bay for container stowage. The bay

has C vertical columns and R rows. If each column in the bay has a �nite number of
rows, then the bay is referred to as a capacitated bay, otherwise it is referred to as
an uncapacitated bay. Assume, for simplicity, that all the containers are of the same
standard size. The ship starts its service route at port 1 with its bay empty of containers,
and it sequentially visits ports 2; 3; : : : ; n. In each port i = 1; : : : ; n − 1, containers can
be loaded to destinations i + 1; : : : ; n. In the last port n, the ship is emptied of all its
containers. The placement of containers in a bay when the ship leaves port i remains
unchanged until arrival at port i+1. Let T=[Tij] be the (n−1)×(n−1) transportation
matrix, where Tij is the number of containers originating at port i with destination
j; j = i + 1; : : : ; n. Thus, Tij = 0 for all i¿j. Note, that the indices of the diagonal of
T are Ti; i+1. Assume that the transportation matrix is known before the ship starts its
service route.
A container is a j-container if its destination is port j. A j-container is an ij-container

if its origin is i. The set of all ij-containers is referred to as an ij-group. The prob-
lem of �nding a stowage plan with the smallest number of shifts, is referred to as
the minimum shift problem. Consider the following decision shift problem: Given a
transportation matrix, a nonnegative integer s, and a bay, is there a stowage plan with
a cost of at most s shifts? A shift problem with an uncapacitated bay is referred to
as an uncapacitated shift problem. Consider the following decision uncapacitated s
(zero)-shift problem: Given a transportation matrix and an uncapacitated bay, is there
a stowage plan with a cost of at most s (zero) shifts?
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Note that it is easy to see that given a transportation matrix and an uncapacitated
bay, there is always an optimal stowage plan in which the containers of each ij-group
are assigned to successive slots in one of the columns in the bay. Thus, any so-
lution for the uncapacitated zero-shift problem, can be derived easily from a solu-
tion to a related problem where any ij-group of containers is replaced by a single
ij-container. However, if the bay is capacitated, then the above remark does not nec-
essarily hold.

2. Zero-shifts and coloring of overlap graphs

We show here the connection between the zero-shift problem and coloring of overlap
graphs. We start with some de�nitions. An [i; j]-interval is {x ∈ R: i6x6j}, where R
is the set of the real numbers. To each ij-group of containers with Tij ¿ 0, assign an
[i; j]-interval on the line. Thus, for every transportation matrix T , there is a unique set
of intervals. Observe as well that for every set of [i; j]-intervals with i; j nonnegative
integers we can associate a corresponding transportation matrix T .
We say that two intervals, say an [i; j]-interval and a [k; l]-interval, overlap if

i¡ k ¡j¡l. Observe that two intervals overlap if, and only if, their corresponding
elements in the matrix, say Tij and Tkl with i¡ k ¡j¡l, do not satisfy the following
condition: If Tij ¿ 0 then Tkl = 0. Thus, in order to avoid shifts, the ij-containers and
the kl-containers must be located in di�erent columns. We say that an [i; j]-interval
contains a [k; l]-interval if i¡ k ¡l¡j. Observe, further, that if one interval contains
the other, say an [i; j]-interval contains a [k; l]-interval, then if the kl-container is loaded
in a slot above the ij-container then the kl-container is not blocking the ij-container
at its �nal destination in port j.
Consider a family I = {I1; : : : ; In} of intervals on a line. The overlap graph of I

is de�ned to be a simple graph in which each vertex corresponds to an interval, and
two vertices are joined together if and only if the two corresponding intervals overlap
[12]. Clearly, for each transportation matrix we can construct its corresponding overlap
graph, and this graph consists of at most n(n − 1)=2 vertices, where n is the number
of ports.
A graph is C-colorable if there is a partition of its vertices into C sets, such that

no two adjacent vertices are in the same set. The problem of �nding �, the minimum
number of colors needed for coloring a given graph, is called the coloring problem.
The C-coloring problem is as follows: Given a graph, is it C-colorable? Using the
relations between overlap graphs and transportation matrices we have the following
lemma which is easy to prove.

Lemma 2.1. Given a transportation matrix T and an uncapacitated bay; the corre-
sponding overlap graph is C-colorable if; and only if; C columns are su�cient for
obtaining a zero-shifts plan.
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Thus, the uncapacitated zero-shift problem is shown to be equivalent to the C-
coloring problem of overlap graphs. Note that one can show that, under certain ordering
of the intervals corresponding to a transportation matrix, the zero-shift stowage problem
is equivalent to the problem of sorting using stacks in parallel. This sorting problem
is shown to be equivalent to overlap graph coloring [9].

3. NP-completeness

Clearly, the (uncapacitated) shift problem and the (uncapacitated) zero shift problem
are in NP. Observe that the NP-completeness of the uncapacitated zero-shift problem
implies the NP-completeness of the uncapacitated shift problem. Based on the above
observation, our aim is to prove the NP-completeness of the uncapacitated zero-shift
problem.
In 1980, Garey et al. [11] have shown that the C-coloring problem of overlap

graphs is NP-complete. Denoting by C∗ the minimum number of uncapacitated columns
needed for a zero-shifts plan to exist, it follows that �nding C∗ is NP-complete. How-
ever, for �xed C, the complexity of the C-coloring problem remained unknown for
several years. In 1988, Unger [18] partially solved the problem by showing that the
C-coloring problem of overlap graphs is NP-complete for any �xed C¿4. He com-
pleted the picture in 1992 [19] by presenting an O(|V | log |V |) algorithm for 3-coloring
of overlap graphs, where V denotes the set of the vertices of the overlap graph.
Observe that 2-coloring of an overlap graph can be done in polynomial time (recogni-
tion of bipartite graphs). Hence,

Theorem 3.1. Let C be the number of columns in a uncapacitated bay. Then; the
uncapacitated shift problem is NP-complete for C¿4.

Note that the above theorem implies that for any given s, the uncapacitated s-shift
problem is NP-complete for C¿4. Observe also that the uncapacitated shift problem
with 2 or 3 uncapacitated columns remains unsolved. For a single uncapacitated column
there is an O(|n|3) time algorithm [1], where n indicates the number of ports.
We turn now to discuss the capacitated shift problem. Consider the following decision

problem. Given a transportation matrix, a nonnegative integer s, and a capacitated bay,
is there a stowage plan with a cost of at most s shifts? It follows from Theorem 3.1
that if C¿4 then the capacitated shift problem cannot be polynomially solvable for
every R, the number of rows in each column. However, for �xed R, the complexity
of the problem is still unknown. Clearly, if R= 1 then the capacitated minimum shift
problem is polynomially solvable; yet even for R=2, solving the problem is not trivial.

4. Bounds on C∗

In the previous section we have shown that given a transportation matrix, �nding C∗,
the minimum number of uncapacitated columns needed for a zero-shifts plan to exist, is
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NP-complete. Herein, we present some bounds on this number. Based on Lemma 2.1,
these bounds are also bounds on the coloring number of the appropriate overlap graph.
The following de�nition is needed in the sequel.
De�ne a k-clique of a graph to be a completely connected subgraph on k vertices

(e.g. [8]). Let ! be the cardinality of a maximum clique in the graph. It is shown in
[15] that a maximum clique in an overlap graph can be found in O(|V |2) time. Given
an overlap graph, it is shown in [18] that a 2!-coloring is always possible and can be
found in O(|V |2) time, but the (2!− 1)-coloring problem is NP-complete.
Let T be a transportation matrix and G its corresponding overlap graph. Let C∗

be as de�ned above, and let ! be the cardinality of a maximum clique in G. Then, 2!
serves as an upper bound on C∗ by using the approximation algorithm of
Unger [18].
Also, ! is a lower bound on C∗, since �, the coloring number of a graph,

satis�es �¿!. Thus, for any transportation matrix T; !6C∗62!: We show below a
better bound for general transportation matrices and tight bounds for special types of
transportation matrices.
Denote by 1n-matrix the (n − 1) × (n − 1) upper triangular matrix with all entries

on the diagonal and above it equal to 1. Denote by b�c the lower integer part of �
and by d�e the upper integer part of �.

Lemma 4.1. Let G be the overlap graph corresponding to a 1n-matrix. Then a
maximum clique in G is of size bn=2c.

Proof. Consider the intervals and the overlap graph associated with the 1n-matrix.
Assume a clique in the overlap graph contains a vertex that corresponds to an interval
of size k. Then, the size of that clique is at most k. Hence, if a vertex of the clique
corresponds to an interval of size k6bn=2c, then the clique size is at most bn=2c.
Now, if all the vertices of the clique correspond to intervals of size ¿ bn=2c, then
there are at most bn=2c such vertices. Therefore !6bn=2c. To see the equality, one
should consider a clique where each vertex of the clique corresponds to an interval of
size bn=2c. Since there are at least bn=2c such vertices, the corresponding clique would
be of size bn=2c. Thus, a maximum clique is of size bn=2c, and the proof of the lemma
is complete.

Note that if n is even, then there is a unique maximum clique of size n=2.

Lemma 4.2. Let T be an (n− 1)× (n− 1) transportation matrix with no zero entry
on or above the diagonal. Then;⌊n

2

⌋
6C∗6

⌈n
2

⌉
:

Proof. Clearly, we can assume without loss of generality that T is a 1n-transportation
matrix. Based on Lemma 4.1, the fact that C∗ and the coloring number are the same
(Lemma 2.1), and that always �¿!, we obtain that bn=2c6C∗:
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Fig. 1. Coloring the vertices of G according to their Aij values.

It will follow from the two lemmas to follow that C∗6dn=2e: We originally proved
this part by presenting a simple polynomial-time algorithm for obtaining a zero-shift
plan. However, after having communicated our result to Ron Holzman, he pointed out
how to present our zero-shifts plan in a bay with dn=2e uncapacitated columns, as
coloring of the appropriate overlap graph. We have chosen to present here Holtzman’s
proofs [14].

Lemma 4.3. Let T be a 1n-transportation matrix and let G be its corresponding
overlap graph. Then; G is dn=2e-colorable.

Proof. For 16i¡ j6n, let the [i; j]-interval be the one corresponding to the ij-
container. For each [i; j]-interval let Aij = i + j. Observe that if two intervals, say
[i; j] and [k; l], overlap, then

26|Aij − Akl|6n− 2: (1)

Below, we show an dn=2e coloring for any even n. One can obtain in a similar way,
an dn=2e coloring for any odd n. We color the vertices according to their Aij values
as shown in Fig. 1. To see that the above coloring is proper, one should observe that
(1) does not hold for each set of vertices having the same color.

Lemma 4.4. Let T be an (n− 1)× (n− 1) transportation matrix with no zero entry
on or above the diagonal; let n be an odd number; and let G be its associated overlap
graph. Then �¿!= bn=2c:

Proof. Consider the set of all [i; j]-intervals, each corresponding to an ij-group of
containers. Consider, further, the set V of all vertices of G. For each [i; j]-interval we
denote by vi; j its corresponding vertex. Recall that n is odd and let n=2k+1. Observe
that by Lemma 4.1 ! = k. Consider the following two maximum cliques. The �rst
one is {v1; k+1; v2; k+3; v3; k+4; : : : ; vk;2k+1} and the second one is {v1; k+2; v2; k+3; v3; k+4; : : : ;
vk;2k+1}. Observe that the two cliques di�er only by one vertex. Thus, in any proper
k-coloring of G, v1; k+1 and v1; k+2 would have the same color.
Consider now another pair of maximum cliques. One is {v2; k+2; v3; k+3; v4; k+4; : : : ;

vk+1;2k+1} and the other is {v1; k+2; v3; k+3; v4; k+4; : : : ; vk+1;2k+1}. These two cliques also
di�er by one vertex and hence in every proper k-coloring v2; k+2 and v1; k+2 would have
the same color.
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Recall that for any 16i¡ j62k + 1 the vertex vi; j exists in the graph. Thus, in
every proper k-coloring, v1; k+1; v1; k+2 and v2; k+2 would have the same color. But this
is a contradiction, since v1; k+1 and v2; k+2 are adjacent in G.

Theorem 4.5. Let T be an (n − 1) × (n − 1) transportation matrix with no zero
entry on or above the diagonal. Then; C∗ = dn=2e and there is a simple linear time
algorithm to obtain a zero-shifts plan with C∗ columns.

Proof. If n is even then bn=2c = dn=2e and therefore by Lemma 4.2 C∗ = n=2. If n
is odd then from Lemmas 4.3 and 4.4 bn=2c¡C∗6dn=2e implying C∗ = dn=2e. The
algorithm in consideration is the algorithm mentioned after Lemma 4.2.

The following corollary is an immediate consequence of Lemma 4.1, Unger’s ap-
proximation algorithm for 2!-coloring of overlap graphs [18] and the above theorem.

Corollary 4.6. Let T be an (n− 1)× (n− 1) transportation matrix; and let ! be the
cardinality of a maximum clique in its corresponding overlap graph. Then; !6C∗6
min{2!; dn=2e}; and there is a polynomial time algorithm to obtain a zero-shifts plan
with min{2!; dn=2e}-columns.

5. Coloring of overlap (circle) graphs

We turn now to discuss coloring of overlap graphs and to present a slightly better
upper bound to the one obtained in [18]. Recall that given a transportation matrix T
and its corresponding overlap graph G; C∗ and � (the coloring number of G), are
the same. Hence, the upper bound stated in Corollary 4.6 serves as an upper bound
for �. Now, if G is an overlap graph, a natural question that comes to mind is:
what is the meaning of n? We answer this question below. Gavril [10] proved that
overlap graphs are equivalent to circle graphs, where a graph is a circle graph if the
vertices can be mapped to chords of a circle so that two vertices are adjacent if and
only if the corresponding chords of the circle intersect. Circle graphs were recently
characterized by Bouchet [7] in terms of obstructions. As was shown by Bouchet [6]
and independently by Gabor et al. [13] a circle graph is not uniquely represented on
the circle. Given a circular ordering that correctly represents G, one can construct the
appropriate intervals [10]. Now, given a set of intervals that correctly represents the
vertices of G, we let p be the total number of end-points of these intervals. Note that
there is a (p−1)× (p−1) transportation matrix T which corresponds to the set of the
intervals. Hence, p can replace n in the upper bound. Observe that p might get di�erent
values for di�erent representations of G as a set of intervals. Recall that calculating
! (the cardinality of a maximum clique in G) can be done in O(|V |2) time [15].
Given an overlap graph, a circular ordering that correctly represents G can be found
in O(|V |2) time by using Spinard’s algorithm [17]. Given this circular ordering, the
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appropriate intervals can be constructed in linear time [10]. Therefore, min{2!; dp=2e}
can be calculated in O(|V |2) time. It will be nice to �nd a representation of G in
which p is as small as possible.
Consider I, a set of intervals on a line with 1 (p) as the �rst (last) end-point, and

such that for any 16i¡ j6p there is an [i; j] interval in the set. Then Gp, the overlap
graph of I, is called the complete overlap graph on p end-points. Note that for any
1n transportation matrix corresponds a complete overlap graph. Also, one can verify
that != bp=2c for Gp. Clearly, this implies that !6bp=2c for any overlap graph on
p end-points. Note as well that for any Gp; 2!¿ dp=2e. However, there are cases
were 2!¡ dp=2e. For example, the overlap graph of the following set of intervals:
{[i; j]: 16i6p− 2; j = i + 2}, for any p¿9.
Now, if !¡ dp=4e, then one can use Unger’s approximation algorithm [18] to obtain

a 2!-coloring. Otherwise, one can use a simple modi�cation of the O(|V |) dp=2e-
coloring procedure for complete overlap graphs mentioned before Lemma 4.3. Hence,

Theorem 5.1. Given an overlap graph G; a min{2!; dp=2e}-coloring can be found in
O(|V |2) time.

Recall that, in a way, the 2!-coloring obtained by Unger [18] is the best approxima-
tion, since he proved that the problem of �nding a (2!− 1)-coloring is NP-complete.
However, as was shown in the previous section 2! and dp=2e are not comparable.
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