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Abst ract In this work, we are looking at the problem of determining stowage plans

for containerships. This problem, denoted in the literature as the Master Bay Plan Problem

(MBPP), is computationally difficult to solve, that is NP-hard. We start from the optimal

solution of subsets of bays related to independent portions of the ship, which are de-

termined by a previously proposed decomposition approach for the MBPP; then, we look

for the global ship stability of the overall stowage plan by using a tabu search (TS) meta-

heuristic approach. Note that at the same time the proposed TS algorithm allows us to

further reduce the handling time of the containers to be loaded on the ship. The proposed

heuristics has been implemented within a software support system that helps the planning

management in the visualisation of the stowage plans of each bay of the ship. Preliminary

computational experimentations performed on some real-life test cases related to a terminal

located at the port of Genoa, Italy are provided.
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Int roduct ion and Problem Def in i t ion

Maritime container terminals are very important logistic nodes in freight

transportation networks, and the import and export container’s flows, as well as
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the transhipment one. They have to be managed to optimise their logistic costs

and the terminal productivity (Peters, 2001). In this work we focus our attention

on the quay and ship activities, having in mind the berthing time of a con-

tainership, which can be considered as consisting of different components, such

as time for loading/unloading operations and waiting time before and after the

operations. As our main goal is the minimisation of the berthing costs, we focus

on the container loading process, which is very difficult and the one most

affecting the efficiency of the terminal operations (Imai et al, 2002).

The stowage of a containership, that is the so-called Master Bay Plan

Problem (MBPP), is carried out daily by each terminal management (Thomas

and Roach, 1989). In the past period, stowage plans for containers were per-

formed by the captain of the ship; today, the maritime terminal has to establish

the master bay plan, in accordance with the stowage instructions of the ship

coordinator representing the company holding the ship. In particular, inside

each company for managing a terminal container there is a planning office

where planners define the master bay plan for each ship approaching

the terminal. The planning office knows the profile of the ship in relation to

both structural and operational information of the ship and he communicates

with the planning office of the last terminal visited by the ship, the port au-

thority and the maritime agencies asking about containers’ content.

The stowage of a containership involves different objectives; among others,

it is required to optimise the available spaces, prevent damages to the goods, the

containership, its crew and its equipment, and minimise the berthing time of

the containership at the terminal.

Operations research techniques play a crucial role in the definition of

stowage plans; an interesting review of the literature about such methods can

be found in Steenken et al (2004), where the authors split the problem into a

two-step process, concerning respectively, the shipping line and the terminal

manager, providing for each of them the corresponding optimisation models.

A literature update is provided in Stahlbock and Voss (2008).

As it has been already mentioned, here we consider MBPP mainly as a

loading problem with the terminal manager as a decision maker. Thus, MBPP

can be more formally defined as follows: given a set C of n containers of

different types to be loaded on the ship and a set S of m available locations

on the containership, we have to determine the assignment of each container

to a location of the ship, in such a way, to satisfy all the given structural and

operational constraints related to ship and containers, and to minimise the total

stowage time.

Each location of the ship is addressed by three indices, namely i, j, k, with

the following meaning: the bay (i), which gives its position related to the cross-

section of the ship (counted from bow to stern), the row (j), which gives its
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position related to the horizontal section of the corresponding bay (counted

from centre to outside), and the tier (k) which gives its position related to the

vertical section of the corresponding bay (counted from bottom to top).

Let I, J and K be, respectively, the set of bays, rows and tiers of the ship;

K is split into subset KH of tiers in the hold and subset KD of tiers in the deck.

Set C is given by the union of two subsets, T and F, consisting respectively, of

20- and 40-feet containers, which is T,F�C. Standard locations are generally

for dry 20-feet containers (denoted by 200) and referred to as one Twenty

Equivalent Unit (TEU) location. Containers of 40 feet (denoted by 400) hence

require two contiguous 200 locations.

Note that, according to a practice adopted by the majority of maritime

companies, bays with even number are used for stowing 400 containers and

correspond to two contiguous odd bays that are used for the stowage of 200

containers. Thus, let us denote ECI for the subset of even bay and OCI for the

subset of odd bays. Two partitions are assumed for the set S of the stowage

locations l¼ (i, j, k): S¼A,P, where A includes the locations of the anterior

bays (towards the bow of the ship) and P the ones in the posterior bays

(towards the stern of the ship), and S¼ L,R, where L includes the locations

for the rows in the left side (the berth side), whereas R the ones in the right side

of the ship.

We assume that the container handling operations are performed by cranes

that are positioned on the quayside of the ship (quay cranes); therefore, the

stowage of containers in the rows nearest to the seaside will be more time

consuming.

When facing the MBPP as a mathematical programming problem, we first

have to consider its basic combinatorial optimisation constraints, like the as-

signment constraints (AC) and the knapsack constraints (KC), requiring re-

spectively, that (AC); each container to be loaded can be assigned at most to one

location and each location of the ship can receive at most one container; (KC):

the total weight of the containers to be loaded on the ship cannot be greater

than the known total capacity Q of the ship. Moreover, we have some con-

straints related to the size, weight and destination of the containers to be loa-

ded, and to the stability of the ship. For a detailed description of such

constraints, the reader is referred to Ambrosino et al (2004).

The stability conditions that must be satisfied are related to the following

three types of equilibrium: (a) the horizontal equilibrium, requiring that the

weight of the left size of the ship (that is, quayside) should be equal, within a

given tolerance, to the weight of the right side (that is, seaside); (b) the cross

equilibrium, requiring that the weight of the anterior part of the ship (that is,

centre-bow) should be equal, within a given tolerance, to the weight of the

posterior part of the ship (that is, centre-stern); this is to avoid bending (-) or
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saddling (,) of the ship; (c) the vertical equilibrium, requiring that the weight

of each tier must be greater than or equal to the weight of the tier immediately

over it. Note that the vertical equilibrium is guaranteed by the weight con-

straints, forcing the weight of the container located in a given location to be less

than the weight of the container stowed in the lower tier, in the same row and

bay.

A 0/1 Linear Programming (LP) model for the MBPP is presented in Am-

brosino et al (2004); it can be used only for solving, up to optimality, very small

instances, while for real-life instances often it is not possible to find an integer

feasible solution after hours of computation. In fact, the MBPP is NP-hard

(Avriel et al, 2000). Other integer programming models for solving the MBPP

have been proposed in literature, as in Botter and Brinati (1992); Avriel and

Penn (1993) and Imai et al (2002); unfortunately these papers also deal

with simplified version of the MBPP and the proposed models are not suitable

for real-life large-scale applications. A simplified model for the stowage problem

that also takes into a proper account the flow of containers to be loaded on

board from the yard is proposed in Ambrosino and Sciomachen (2003).

Note that according to the improved typology of cutting and packing pro-

blems reported in Wäscher et al (2007), the MBPP is classified as a three-

dimensional (Orthogonal) bin packing problem (BPP); Sciomachen and Tanfani

(2007) presented a heuristic approach for MBPP based on an exact algorithm for

the three-dimensional BPP .

Other heuristics have been proposed for stowage planning. Dubrovsky et al

(2002) used a genetic algorithm for minimising the number of container

movements, while being able to include with appropriate constraints some ship

stability criteria; they significantly reduce the search space using a compact and

efficient encoding scheme and they obtain good solution for instances of 1000

TEUs ships. Wilson and Roach (1999) and Wilson et al (2001) tested local

search techniques based on combinatorial optimisation. In particular, the au-

thors used branch and bound algorithms for solving the problem of assigning

generalised containers to a bays’ block, and successively they found a detailed

plan that assigns locations in a block to containers by a tabu search (TS)

algorithm. The computational experiments reported by the authors showed

the good quality of the sub-optimal solutions obtained in about 90 min for a

688 TEU ship. Finally, Wilson and Roach (2000) explored the potential of

applying the theory of artificial intelligence to cargo stowage problems. A TS

approach is also presented in Alvarez (2006) for determining loading plans,

taking into account both the container reshuffling and the movements of the

reach stackers.

After preliminary studies, we have noted that very computationally difficult

constraints seem to be related to the destination of containers, stating that we
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have to load first, that is, into lower tiers, those containers having as destination

the last port in the route of the ship; analogously, we have to load last those

containers having as destination the first port in the route of the ship. Other

computationally difficult constraints are those related to the weight of the

containers.

Ambrosino et al (2006) presented a heuristic approach consisting of a three-

phase algorithm. In particular, in the first phase the ship is split into different

portions and containers are associated with different subsets of bays according

to their destination; note that in this way it is possible to remove the destination

constraints from the model thus solving different single-destination models.

Then the optimal stowage plan related to each partition of the ship is

determined by solving the resulting 0/1 LP sub-problem for single destination.

Finally, the global solution is determined by the union of the optimal solutions

obtained in the second phase; its possible unfeasibility, because of the cross and

horizontal stability constraints violation, is removed by performing some local

search exchanges. More precisely, the algorithm looks for a profitable exchange

by performing some moves that concern either a single container or a stack of

containers at a time.

In this paper we face the MBPP by a new three-phase heuristic approach

which extend the one which is outlined in Ambrosino et al (2006) as (1) a new

0/1 LP model is adopted for the solution of the single-destination problems

and (2) the last phase is based on a TS algorithm (Reeves, 1993; Glover and

Laguna, 1997), which allows us not only to convert the starting global solution

into a feasible one but also to improve its objective value. Note that the 0/1 LP

model, which is introduced here, considers equivalent classes of containers

instead of single elements of set C, thus it is able to face medium and real large-

size instances of the problem.

Finally, we stress that the power of operations research models and methods

can be enhanced by incorporating them within a decision support system, which

takes advantage of modern information technology. In particular, a prototype of a

stowage planning supporting system is presented along with some computational

results related to real case medium size instances provided by an import/export

maritime container terminal located in the port of Genoa, Italy.

The Proposed Three-Phase Heur is t i c for the Master Bay
P lan Prob lem

The proposed heuristic method for the MBPP is based on the following three

successive phases, which are detailed in the following:

1 Bay assignment to containers according to their destinations.

Ambrosino et al
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2 Determination of a trial master bay plan by optimally solving the MBPP for

single destination with limited ship stability conditions.

3 Determination of a whole feasible plan and global optimisation.

The overall algorithm description

Phase 1. The first phase, which is performed according to the bay assignment

algorithm presented in Ambrosino et al (2006), determines a partition of set S of

the available stowage locations in the ship into p subsets, each one consisting

of a subset of bays that have to be used to stow containers towards a given

destination. Note that this algorithm aims also at homogeneously distributing

the load throughout the ship and consequently at maximising the handling

operations that can be performed concurrently by the quay cranes.

Phase 2. The second phase produces a ‘good’ trial solution for the MBPP by

optimally solving p single-destination stowage problems, here denoted as

SD-MBPPs, starting from the bay assignment determined in phase 1. Note that

this trial solution is obtained disregarding the cross stability condition and

imposing the horizontal stability condition only for the involved subset of bays.

With such simplifying assumptions each SD-MBPP can be formalised with a 0/1

LP model, which is described in detail in the next section.

Phase 3. The union of the p solutions of SD-MBPP problems produces a trial

solution for the whole MBPP, which may fail to satisfy the overall ship stability

conditions, that is, the horizontal and cross equilibrium. Then, in the third

phase a TS meta-heuristic algorithm is adopted to determine both a globally

feasible solution (that is, a stowage plan satisfying the ship stability conditions)

and possibly to improve it (that is, to reduce the total loading time). The TS

algorithm has been designed as an extension of the exchange algorithm based

on a set of neighbourhood searches proposed in Ambrosino et al (2006).

The 0/1 linear programming model based on classes of container weights

We propose a new 0/1 LP model to solve the SD-MBPP such that the location

decisions are not associated with the single containers but with sets of con-

tainers characterised by a weight within a given range (weight classes) and a

specified type and destination. We devise such a problem formulation to con-

spicuously reduce the number of variables and constraints with respect to the

model in Ambrosino et al (2006) in order to deal with containerships of medium

or large size. In addition, the new model takes into account the presence of

hatches between hold and deck locations; hatches, in fact, allow to separate the

constraints relevant to the weight of containers in a stack (that is, locations with
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the same bay and row) in the hold from the one for the same stack on the deck.

As a consequence, this new model better fits into the actual stowage plans

because it allows empty locations between the top of a stack in the hold and the

container in the first location of the same stack on the deck. Since a generally

adopted ‘good’ practice is that of favouring the location of lighter containers on

deck to improve the ship stability, we also impose that the total weight located

on the deck cannot be greater than the one located in the hold.

Before reporting here the proposed mathematical formulation of the

SD-MBBP we must introduce some further notation.

Sets

G set of weight classes (for example, 1¼ light, 2¼medium, 3¼heavy)

D set of locations in even bays of the hold (iAE, k¼ 1,y, |KH|�1) under

which a single available odd location exists (also denoted as irregular even

bay locations)

Constants

tijk loading time 8(i, j, k)AS

ng20, ng40 number of 200 and 400 containers in group g, respectively, to be

loaded

M20, M40 maximum cumulative weight for a triple of containers of type 200

and 400, respectively

wg weight of a container in group g

Q1 maximum horizontal equilibrium tolerance.

Variables

xijkgA{0, 1} 8iAI, jAJ, kAK, gAG; xijkg¼ 1 denotes that location (i, j, k) is

assigned to a container of class g.

Note that, as 400 containers can

be located only in iAE whereas

200 containers only in iAO; the

container type is univocally de-

termined by the assigned bay.

The SD-MBPP problem is formulated as follows:

min LðxÞ ¼
X

ijkg

tijkxijkg ð1Þ

subject to

X

ijk:i2E

xijkg ¼ ng40; 8g 2 G ð2Þ

Ambrosino et al
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X

ijk:i2O

xijkg ¼ ng20; 8g 2 G ð3Þ

X

g

xijkgp1; 8i 2 I; j 2 J; k 2 K ð4Þ

X

g

ðxi�1jkg þ xijkgÞp1; 8i 2 E; j 2 J; k 2 K ð5Þ

X

g

ðxiþ1jkg þ xijkgÞp1; 8i 2 E; j 2 J; k 2 K ð6Þ

xijkþ1gp
X

h2G
h�g

xijkh; 8i 2 O; j; k ¼ 1; . . . ; jKH j � 1; 8g ð7Þ

xijkgp
X

h2G
h�g

xojk�1h; 8ði; j; kÞ 2 D; 8g; o 2 fi� 1; iþ 1g : ðo; j; k� 1Þ 2 S ð8Þ

xijkþ1gp
X

h2G
h�g

xijkh; 8i 2 E; j; k ¼ 1; . . . ; jKH j � 1; ði; j; kÞ=2D; 8g ð9Þ

xijkgp
X

h2G
h�g

xijk�1h; 8i; j; k ¼ jKH j þ 2; . . . ; jKj; 8g ð10Þ

X

g

wgðxijkg þ xijkþ1g þ xijkþ2gÞpM20; 8i 2 O; j; k ¼ 1 ð11Þ

X

g

wgðxijkg þ xijkþ1g þ xijkþ2gÞpM40; 8i 2 E; j; k ¼ 1 ð12Þ

X

g

wgðxijk�2g þ xijk�1g þ xijkgÞpM20; 8i 2 O; j; k ¼ jKH j þ 3 ð13Þ

X

g

wgðxijk�2g þ xijk�1g þ xijkgÞpM40; 8i 2 E; j; k ¼ jKH j þ 3 ð14Þ

X

ijkg
k=2KH

wgxijkgp
X

ijkg
k2KH

wgxijkg ð15Þ

j
X

ijkg
j2L

wgxijkg �
X

ijkg
j2R

wgxijkgjpQ1 ð16Þ

xijkg 2 f0; 1g; 8i 2 I; j 2 J; k 2 K; g 2 G ð17Þ

Equation (1) defines the objective function as the total loading time. Constraints (2)

and (3) impose that the required number of ship locations is assigned to each

weight class and container type. Assignment constraints (4) ensure that any

single ship slot is assigned at most once. Constraints (5) and (6) impose that if a
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location in an even bay i is assigned to a 400 container, then the two contiguous

odd bay, i�1 and iþ 1, cannot be used or vice versa. The four sets of inequalities

(7)–(10) are introduced to avoid the situation in which a container in a heavier

class of weight is located directly over another belonging to a lighter class of

weight (pair weight condition). Constraints (7), (8) and (9) ensure that this

condition is satisfied in the locations in the hold taking into account for possible

irregularity in the hold because of the shape of the keel of the ship, whenever

below a location in an even bay there is only one of the two locations in the

corresponding odd bays. In particular, (7) and (9) impose the pair weight,

respectively, for odd bays (that is, for 200 containers) and even bays (that is, for

400 containers) in the hold, simply stating that an upper location can be as-

signed to a weight class only if the lower location has not been assigned to a

lighter weight class, whereas inequalities (8) imposes that whenever an irre-

gular even bay location is assigned to a 400 container the single location in an

odd bay below it is in turn assigned to a 200 container with an appropriate

weight class. As no irregularity is assumed for the locations on the deck, the

single set of constraints (10) is used to impose the pair weight condition for

them. Finally, note that the four sets of constraints (7)–(10) introduce a se-

paration between hold and deck. Constraints (11)–(14) impose a maximum

weight for any stack of three containers (stack weight condition). Noting that the

pair weight condition ensures that the weight of container in any stack is non-

increasing, the stack weight condition is satisfied by imposing it for any fixed

bay and row only for the first stacks of three containers in the hold (from tier

k¼ 1 to k¼ 3) and on the deck (from k¼ |KH|þ 1 to k¼ |KH|þ 3); in particular,

(11) and (12) take into account stacks, respectively, of 200 and 400 container in

the hold, whereas (13) and (14) on the deck. The separation between hold and

deck locations because of the presence of hatches (stated by both pair and stack

weight conditions) allows us not to fill the bays in the hold before assigning the

corresponding bays on the deck; however, taking into account that loading

times associated with deck locations are usually smaller than the ones for the

hold, this fact could lead us to generate plans with an unacceptable mass dis-

tribution. In order to prevent such a drawback, we introduce inequality (15) to

impose that the total weight located on the deck cannot be greater than the one

located in the hold. Constraint (16) states the horizontal equilibrium stability

condition for the subset of containers with the considered destination, and

finally (17) is the definition of the variables.

The solution of a SD-MBPP for a destination d is then converted into an

actual single-destination stowage plan by a straightforward container assign-

ment procedure: first the subset of container directed to d is clustered into the

considered classes of weight, and then the containers in each cluster are located

into the stowage locations assigned to the corresponding class of weight by the

Ambrosino et al
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SD-MBPP solution. Finally, the union of the single-destination plans so thus

determined produces the whole trial solution for the MBPP used as starting

solution in the last phase of the heuristic algorithm.

The tabu search algorithm

The third phase of the proposed heuristic consists of a TS procedure to itera-

tively modify the starting MBPP solution by applying a sequence of moves in

order both to determine a solution satisfying global stability conditions and to

possibly improve its objective value. The TS algorithm (Reeves, 1993; Glover

and Laguna, 1997) extends the Local Search (LS) algorithm for combinatorial

problems. Differently from LS, which iterates the generation of a sequence of

modified solutions until no more moves improving the problem objective can

be found, TS accepts also worsening moves to avoid a too early termination in a

local optimum. In particular, TS uses a first-in-first-out list of forbidden moves,

called tabu list (TL), which provides the algorithm with a short-term memory to

avoid cycling during the search process; the number of positions of the TL,

called tabu tenure, specifies the number of iterations that must be executed

since the last time a move has been used to modify the solution, before that

move can be applied again. This rule, however, can be overridden by specifying

a so-called aspiration criterion that, for example, accepts tabu moves producing

an improved solution.

We consider for the TS the objective function Z(x)¼M(s1(x)þ
s2(x))þL(x), which includes not only the horizontal and cross equilibrium

stability violation functions, respectively s1(x), s2(x), introduced in Ambrosino

et al (2006), but also the total loading time L(x) of a solution x. Note that

we introduce in Z(x) the M coefficient, such that Mc0, to strongly penalise the

stability violation functions, so giving priority to the generation of feasible

solutions. We use a general set of moves (that is, neighbourhood structures) in

order to modify a solution generating neighbouring solutions. In particular,

we define seven classes of moves, combining three kinds of items that can be

moved, that is, a single container, a stack of containers and a bay, with three

kinds of position exchanges, that is, anterior–posterior location exchange, left–

right side exchange and cross exchange. Note that one of the two items involved

in a move can correspond to one or more empty locations.

The seven classes of moves are detailed as follows:

1 Anterior–Posterior exchange of containers: This kind of move exchanges the

current positions lAA-X and l0AP-X of two containers c and c0, X being a

fixed side of the ship; note that this change may affect the cross equilibrium

but does not modify the horizontal equilibrium of the ship.

The Master Bay Plan Problem
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2 Anterior–Posterior exchange of stacks: This move exchanges the positions of

two whole stacks of containers, s and s0, where s¼ {l: lAA-X, l¼ (i, j, k)

with i and j fixed} and s¼ {l: lAP-X, l¼ (i0, j0, k) with i0 and j0 fixed},

X being a fixed side of the ship, that is, two stacks currently located one

in an anterior bay and the other in a posterior bay, but both in the same left or

right side of the ship; again these moves may affect only the cross

equilibrium.

3 Left–Right side exchange of containers: Two containers c and c0 located,

respectively, in lAL and l0AR are exchanged; this move may affect the

horizontal equilibrium whereas it does not modify the cross one.

4 Left–Right side exchange of stack: As for move 2, two stacks of containers s

and s0 made of location, respectively, belonging to the left and right sides of

the ship are exchanged; analogously to the above move only the horizontal

equilibrium may be affected.

5 Cross exchange of containers: This kind of move exchanges current positions

lAA-L (or lAA-R) and l0AP-R (or l0AP-L) of two containers c and c0,

hence affecting both the horizontal and the cross equilibrium.

6 Cross exchange of stack: Similarly to the previous moves, in this case two

stacks s and s0 of containers are exchanged, whose locations are, respectively,

in A-L (or A-R) and in P-R (or P-L).

7 Anterior–Posterior exchange of bays: This move exchanges all the containers

in two bays i and i0, respectively, located in A (or P) and P (or A) without

changing the original row and tier positions of the containers; for this reason,

these moves may affect only the cross equilibrium.

Note that any of the above moves always involves containers with the same

destination. Three different TLs are initialised; in particular, a separate TL is

considered for each type of items affected by the seven classes of moves

previously described, that is, single containers, stacks and bays. Note that each

TL can have a different tabu tenure, which is an input parameter of the algo-

rithm. The TS algorithm executes a cycle of external iterations until a termi-

nation condition, corresponding to a maximum number of external iterations or

a maximum number of external iterations without improvement, is met. Each

external iteration is in turn made of a sequence of neighbourhood explorations

that are executed on the different neighbourhood structures defined by the

seven classes of moves introduced. This kind of behaviour tries to exploit the

variable neighbourhood search proposed in Mladenovic and Hansen (1997)

rationale, according to which local optimisers may depend on the explored

neighbourhood structure, in order to help the TS to escape from local optima

and to diversify its exploration. Even in this case the search corresponds to an

internal iteration cycle performed until a maximum number of iterations or

Ambrosino et al
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iterations without improvement is reached. During an internal search iteration,

a sequence of feasible candidate solutions is generated in the neighbourhood

N(x) of the current solution x (note that feasibility tests are used to select moves

not violating both destination and weight constraints); a candidate solution x0 is

allowed either if it is produced by a move not included in a TL (tabu move) or if

x0 satisfy the adopted aspiration criterion. In particular, we adopt the so-called

best objective criterion that is satisfied by any candidate solution x0 generated by

a tabu move such that Z(x0) o Z(x1), where x1 is the current best solution found

by the TS algorithm. Note that a candidate solution is feasible if it satisfies all

the assignment and weight constraints (2)–(10) in the SD-MBPP problem for-

mulation.

The exploration of the neighbourhood N(x) of the current solution during

an internal iteration is completed according to the first improvement selection

criterion: as soon as an allowed candidate solution x0 is found, such that

Z(x0)oZ(x), this candidate becomes the new current solution; alternatively, if

none of the allowed candidate solutions generated improves the current one,

the candidate x00 such that

x0 0 ¼ arg min
x 02NðxÞnfxg

Zðx0Þ ð18Þ

is chosen as new current solution. Note that the neighbourhood exploration is

not complete but the candidate solutions are generated by a random extraction

of the moves. Besides, the TL is updated removing the move, if any, in the

last position of the list, then increasing by one the positions of the other

moves currently in the list and inserting the move selected to update the

current solution in the first position of the list. Finally, after a given number of

iterations without improvements, a diversification procedure tries to escape

from a local minimum performing a number of feasible swap moves, dis-

regarding the cost that they produce. After this procedure the TS exploration

restarts normally.

A Master Bay P lanning Support System

In order to provide the terminal operator with a tool allowing an easy and

friendly inspection of the stowage plan generated by our three-step heuristics,

we developed a support system for the master bay planning activity, which is

based on an interactive graphic user interface. In Figures 1 and 2 we provide an

example of the kind of information that the developed master bay planning

support system (MBPSS) is able to provide. Figure 1 shows the main stowage

The Master Bay Plan Problem
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views produced by the system, which is the row view in the upper part of the

interface and the tier view in the lower one; the terminal operator can inspect a

plan as follows:

1 the operator can select the desired row and tier with the mouse or keyboard;

for example, Figure 1 shows the containers located in row 1 (row view) and

in tier 12 (tier view) for all the bays, whereas different combinations of row

and tier are selected in the two images of Figure 2;

2 the operator can observe the container distribution according to three

alternative views, that is, destinations (Figure 2a), container types (Figure

2b), classes of weight (Figure 1); note that the meaning of the used colour

scheme is highlighted in the Colour legend box of the interface;

3 the operator can retrieve information for the container pointed by the mouse;

in images of Figures 1 and 2 the data for the selected container are reported in

the upper-right box, Container info, of the interface.

Figure 1: An example of the container weight view of a master bay plan for the European Senator
containership provided by the MBPSS.

Ambrosino et al
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Finally, in the lower box of the interface, Solution information, we provide

aggregate data characterising the showed plan, as the loading time and the total

weight for the left (L), right (R), bow (A) and stern (P) portions of the ship.

Figure 2: An example of the master bay plan inspection facilities for the European Senator containership
provided by the MBPSS: (a) the destination view of a master bay plan and (b) the container type view of a
master bay plan.
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Exper imenta l Resu l ts

The proposed MBPP algorithm was coded in Cþþ , using the commercial Cplex

9.0 as 0/1 LP solver, and tested on a 1.5GHz, Intel Celeron PC with 1Gb RAM. In

particular, the tests were related to two containerships of different size whose

data have been provided by the SECH Terminal of Genova, Italy. A first set of

problem instances concerns a small size containership, named Chiwawa, with a

maximum capacity of 198 TEU, composed of 11 odd bays, 4 rows and 5 tiers (3

in the hold and 2 in the upper deck, respectively). Table 1 reports the char-

acteristics of the considered 10 small size test instances, showing the total

number of containers, both in TEU and absolute number (#), the number of 200

and 400 containers, the number of containers for three classes of weight (l¼ low,

m¼medium, h¼high), the partition of containers for each destination and

finally the level of occupancy of the ship (Full). Table 2 shows the loading times

for the Chiwawa containership; in this case loading times, depending on the

row and tier and growing from left side rows to the right ones and from highest

tiers on the deck to the lowest ones in the hold, have been assumed.

Table 1: The small size test instances

Instance TEU # Type (#) Weight (#) Destination (TEU) Full (%)

20’ 40’ L M H 1 % 2 % 3 %

1 138 100 62 38 46 50 4 47 47.00 53 53.00 — — 73.4
2 165 120 75 45 52 64 4 55 45.83 65 54.17 — — 87.7
3 170 130 90 40 60 66 4 62 47.69 68 52.31 — — 90.0
4 175 130 85 45 58 68 4 62 47.69 68 52.31 — — 93.0
5 180 140 100 40 62 74 4 61 43.57 79 56.43 — — 98.4
6 180 150 120 30 70 76 4 65 43.33 85 56.67 — — 98.9
7 185 130 75 55 60 66 4 62 47.69 68 52.31 — — 95.7
8 185 140 95 45 58 78 4 65 46.43 75 53.57 — — 98.4
9 185 140 95 45 62 73 5 50 35.71 40 28.57 50 35.71 100

10 188 148 108 40 68 76 4 50 33.78 50 33.78 48 32.43 95.7

Table 2: Loading times for the Chiwawa containership (times are in 1/100 of minute)

Tier Row

3 1 2 4

2 240 250 260 270
4 230 240 250 260
6 220 230 240 250

82 210 220 230 240
84 200 210 220 230

Ambrosino et al
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We show the results obtained for the set of small size instances in Table 3,

where objective values are given in 1/100 of minute and CPU times in seconds;

the results are divided into three groups of columns relevant to the solutions

found, respectively, by the exact 0/1 LP model after 1 hour of computation, by

the SD-MBPP 0/1 LP model in Ambrosino et al (2006) with an absolute gap

(that is, the difference between the incumbent integer solution and the lower

bound) equal to 1 min as termination condition, and by the TS algorithm. Note

that, as we adopted a stochastic TS, the Avg obj column reports the average

results obtained over five independent runs of our TS. The %dev from (a) and

%dev from (b) columns quantify the relative variation of the average TS results,

respectively, from the exact 0/1 LP solutions and the SD-MBPP ones; the last

column (Cumul Time) indicates the total (average) CPU time needed by the

SD-MBPP and TS phases, which apparently are the most time demanding

phases of the proposed approach. Table 3 highlights the effectiveness of the

approach, showing that globally feasible solutions can be produced in a very

short computational time (24.5 seconds on the average) with a very reduced

average optimality gap (0.17 per cent), corresponding to the average percentage

difference from the solution produced after 1 hour of computation by the exact

complete model for the MBPP, which includes both destination and global

stability constraints.

However, we performed a further analysis relaxing the termination condi-

tion for the 0/1 LP solver; this test revealed that the exact 0/1 LP model needed

only 26.1 seconds average CPU time to produce solutions with, on the average,

a 0.08 per cent gap from the ones obtained after 1 hour of computation. This

fact pointed out that actually very small size containerships do not represent a

challenging test for the proposed approach.

Then, a second set of 14 instances was considered for a medium size

containership, the European Senator, with a 2124 TEU capacity, composed of 17

odd bays, 10 rows and 6 tiers in the hold and 21 odd bays, 12 rows and 5 tiers in

the upper deck.

We report in Table 4 the characteristics of the medium size instances and in

Table 5 the corresponding loading times as done for Tables 1 and 2. Note that

this second test highlighted the need of considering weight groups instead of

single containers because in the latter case the 0/1 LP solver was not able

to find any integer solution after hours of computation. Nevertheless, as

we highlight in the following, the medium size instances remain quite hard. We

fixed termination condition as an absolute gap¼ 5Nd min, where Nd is the

number of destinations of the considered instance, and a maximum time limit of

1 hour. Then, we found that for all the four instances with three destinations no

integer solution was found in 1 hour of computation, for five instances over ten

with two destinations the solver stopped after reaching the maximum time
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limit, whereas for the remaining five instances with two destinations the solver

required on the average 16 min and 47 seconds to terminate; it is important to

underline that trying to find out an exact solution for the instances with three

destinations appeared significantly harder than solving the ones with two

destinations, so this supports the need of an effective heuristic approach for

medium or large containerships. We can analyse the behaviour of the 0/1 LP

solver with the exact MBPP model considering the two plots in Figure 3, where

we report the relative gap (that is, the percentage difference between the best

integer solution and the lower bound) variation during the solution process,

having fixed 3 hours as maximum time limit and not imposing any gap stopping

criterion. Figure 3a shows the medium-sized instance 4 with two destinations,

which in our tests was solved after 26 min 25 seconds because of the absolute

gap criterion: the figure points out that after an extension of computation time

of 2 hours 33 min 35 seconds the absolute gap is not significantly reduced and

the relative percentage improvement of the first integer solution found

(�0.20per cent) is negligible. In Figure 3b we can observe the solver behaviour,

for instance 5 with three destinations not solved within the 1 hour time limit:

for such an instance, the first integer solution was found after 1 hour 18 min 14

seconds, but even after 3 hours the absolute gap (25 min 33 seconds) would not

be sufficient to stop the solver (note that also in this case a negligible �0.34 per

cent relative percentage improvement was measured after 3 hours).

The comparison of the results produced by the exact model and the solution

of the SD-MBBP problems, that is, after the first and second phases of the

proposed approach, is reported in the first nine columns of Table 6. An absolute

Table 4: The medium size test instances

Instance TEU # Type (#) Weight (#) Destination (TEU) Full (%)

20’ 40’ L M H 1 % 2 % 3 %

1 945 715 485 230 215 429 71 463 48.99 482 51.01 — — 52.50
2 1022 762 502 260 228 458 76 501 49.02 521 50.98 — — 56.78
3 1120 820 520 300 246 492 82 549 49.02 571 50.98 — — 62.22
4 1218 898 578 320 270 541 87 600 49.26 618 50.74 — — 67.67
5 1320 980 640 340 295 589 96 450 34.09 514 38.94 356 26.97 73.33
6 1380 1090 800 290 327 654 109 676 48.99 704 51.01 — — 76.67
7 1386 984 582 402 296 590 98 680 49.06 706 50.94 — — 77.00
8 1415 1069 723 346 321 642 106 481 33.99 524 37.03 410 28.98 78.61
9 1420 1060 700 360 318 636 106 696 49.01 724 50.99 — — 78.89

10 1528 1202 876 326 361 721 120 749 49.02 779 50.98 — — 84.89
11 1522 1138 754 384 341 683 114 524 34.43 586 38.50 412 27.07 84.56
12 1627 1215 803 412 365 729 121 804 49.42 823 50.58 — — 90.39
13 1724 1331 938 393 400 799 132 588 34.11 669 38.81 467 27.09 95.78
14 1800 1413 1026 387 424 848 141 882 49.00 918 51.00 — — 100.00
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gap¼ 5 min was fixed as termination condition for the SD-MBPP model and

the loading times shown in the columns Obj are expressed as 1/100 of minute.

Table 6 indicates that the solutions obtained by the SD-MBPP are worse but not

very far from the ones yielded by the exact 0/1 LP model (the average
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Figure 3: The variation of the relative gap for two medium size instances provided by the 0/1 LP solver
with the exact MBPP model: (a) medium size instance 4 (two destinations) and (b) medium size instance
5 (three destinations).
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percentage deviation is 3.41 per cent, which corresponds to an average differ-

ence in the total loading time¼ 1 hour 2 min 21 seconds) and the average CPU

time needed is very short (37.9 seconds); however, the stability conditions

(especially the horizontal one) are never satisfied. Table 6 also reports that in

the last five columns the results are obtained after the execution of the TS

algorithm from the starting solutions provided by the SD-MBPP.

We performed some preliminary tests to select suitable values for the TS

parameters, finally determining the following configuration: tenure¼ 80, di-

versification after 30 non-improving iterations, diversification length¼ 35

iterations, termination condition corresponding to maximum number of iter-

ations¼ 500 and maximum not improving iterations¼ 50. As random choices

are used in the proposed TS, five independent runs were performed for each

instance and then the average results were considered. In particular, Table 6

shows the average total loading time (Avg obj), as well as the percentage

deviations from the objective produced by the exact 0/1 LP model (%dev from

(a)) and by the SD-MBPP (%dev from (b)), the CPU time for the TS phase and

the cumulative one (SD-MBPPþTS time). Note that the TS was able to obtain

solutions satisfying both the cross and the horizontal stability conditions on

every run for each instance. This second set of results clearly highlights the

quality of the proposed approach for the MBPP: the solutions provided in 74.7

seconds cumulative average CPU time are not only always globally feasible but

they improve on the average ones yielded by the SD-MBPP (�1.90 per cent) so

that they are only 1.33 per cent worse than the ones because of the exact 0/1 LP

model after a much longer computation (corresponding to an average difference

in the total loading time¼ 24 min 49 seconds). We also tested the TS algorithm

Table 5: Loading times for the European Senator containership (times are in 1/100 of minute)

Tier Row

11 9 7 5 3 1 2 4 6 8 10 12

2 220 230 240 250 260 270 280 290 300 310 320 330
4 210 220 230 240 250 260 270 280 290 300 310 320
6 200 210 220 230 240 250 260 270 280 290 300 310
8 190 200 210 220 230 240 250 260 270 280 290 300

10 180 190 200 210 220 230 240 250 260 270 280 290
12 170 180 190 200 210 220 230 240 250 260 270 280
82 160 170 180 190 200 210 220 230 240 250 260 270
84 150 160 170 180 190 200 210 220 230 240 250 260
86 140 150 160 170 180 190 200 210 220 230 240 250
88 130 140 150 160 170 180 190 200 210 220 230 240
90 120 130 140 150 160 170 180 190 200 210 220 230
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in order to analyse its behaviour with both a faster and a slower alternative

configurations. In particular, we performed five TS runs with maximum number

of iterations¼ 10 (without diversification), obtaining the results in an average

CPU time¼ 0.9 seconds but with a loading times 3.10 per cent worse on the

average than the ones of the exact 0/1 LP model (corresponding to an increase

in loading time of 58 min 6 seconds); finally, five TS runs with maximum

number of iterations¼ 1000, non-improving iterations¼ 200 and diversification

after 100 non-improving iterations, produced in an average CPU time¼ 84.1

seconds results 1.17 per cent worse (that is, an average increase in loading

time¼ 21 min 42 seconds) than the ones of the exact 0/1 LP model.

Conc lus ions

In this paper we have proposed a three-step heuristic for solving the MBPP for

containership of medium-large size instances, which includes a new 0/1 LP

model for the single-destination problem.

The proposed three-phase approach is able to obtain feasible master bay

plans for the challenging medium size containership in a short average CPU

time (74.7 seconds), which require on an average only 24 min 49 seconds more

than the ‘almost’ optimal loading time. In addition, the NP-hardness of the

problem as well as the observed increase in the computation time required by

the exact model, when compared with the one needed by the proposed ap-

proach, appears to indicate this latter as appropriate to face the MBPP for

containership of medium-large size.

The effectiveness of the proposed optimisation method is enhanced by a de-

cision support system for stowage planning, which includes the implemented al-

gorithms and displays the obtained solutions for each bay, row and tier of the ship.
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