;:‘ Journal of Heuristics, 8: 585-599, 2002
' (© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Genetic Algorithm with a Compact Solution
Encoding for the Container Ship Stowage Problem

OPHER DUBROVSKY, GREGORY LEVITIN AND MICHAL PENN
Faculty of Industrial Engineering and Management, Technion, Haifa, 32000, Israel

Abstract

The purpose of this study is to develop an efficient heuristic for solving the stowage problem. Containers on
board a container ship are stacked one on top of the other in columns, and can only be unloaded from the top of
the column. A key objective of stowage planning is to minimize the number of container movements. A genetic
algorithm technique is used for solving the problem. A compact and efficient encoding of solutions is developed,
which reduces significantly the search space. The efficiency of the suggested encoding is demonstrated through
an extensive set of simulation runs and its flexibility is demonstrated by successful incorporation of ship stability
constraints.

Key Words: ship stowage, genetic algorithm, compact solution encoding

1. Introduction

Container ships have revolutionized shipping and transformed the shipping business from
work intensive, to machine intensive. Until recently, container ship loading was still done
manually, by skilled personnel, using mostly experience and rules of thumb. A few software
packages that support container ship planning have been introduced e.g. Saginaw II and
Perakis (1989), Sha (1985), Shields (1984), and Dunbleton (1980). These software packages
help to store details about each container and calculate loads and moments on the ship.
However, attempts to fully automate the planning by using heuristics, are unsatisfactory.

Today, a modern container ship may carry 5000 containers or more and visit 10-25 ports,
unloading and loading containers as it goes. The containers are stacked one on top of the
other in columns, and can only be unloaded from the top of the column using large port
cranes. The charge to the ship for moving containers could be as high as $200 per container
move. Thus, a key objective of stowage planning is to minimize the number of container
movements. The subject of our study is to devise a plan that reduces as much as possible the
number of unnecessary movements. However, it must be emphasized that the stowage plan
must also contemplate other aspects, such as, stability, stress, ballast, longitudinal crane
moment, and others.

A related problem that can be modeled similarly is the problem of dispatching trams in
a storage yard. In this problem, the incoming order of trams and the order in which trams
of different types are supposed to leave during the day are given. The aim is to minimize
the total number of unnecessary movements of trams, see Blasum et al. (1996) and Winter
and Zimmerman (1997).

586 DUBROVSKY, LEVITIN AND PENN

Binary linear programming formulations of the container stowage problem appear in
Avriel and Penn (1993) and Botter and Brinati (1992). Finding an optimal solution using
these binary models is quite limited, because of the large number of binary variables and
constraints needed for the formulation. For the very special case of one uncapacitated
column, an optimal algorithm was developed, see Aslidis (1990). Also, it is shown in Avriel,
Penn, and Shpirer (2000) that the minimum overstowage (shift) problem is NP-complete.
Therefore heuristic methods producing “good” solutions have to be explored. In Avriel and
Penn (1993) a heuristic, called the Whole Column Heuristic Procedure was described. This
procedure was unsatisfactory since it involves some binary linear programming. In Avriel
etal. (1998) a different heuristic, called the Suspensory Heuristic Procedure, was developed
and tested on a large number of simulation runs. The computation times and the quality of
the results were very satisfactory. However, this heuristic solves only a simplified version
of the problem. Its major drawback is its inflexibility in dealing with problems where some
of the simplifying assumptions are removed. For this reason a simulated annealing algorithm
and a branch and bound algorithm were used to solve the shifting problem (Flor, 1998; Horn,
2000). Their major advantage was their flexibility in handling a variety of constraints added
to the basic problem. Unfortunately, only small sized problems could be solved by these
heuristics. In addition, the simulated annealing algorithm yielded poor results.

This motivated us to try a different approach, namely, a genetic algorithm (GA), to solve
the problem. It was felt that the genetic algorithm approach could handle well the planning
of container ship loading due to its parallel and non linear nature of search, and that it
can handle a variety of constraints to be added to the simplified version of the problem.
Special care in the design of the algorithm was given, to provide a compact and an efficient
encoding, to enable parallel implementation and to allow flexibility in adding constraints.
We demonstrate this flexibility, by showing how to handle the stability constraint. In order
to study the quality of our algorithm we have adapted it to solve the simplified problem, so
it could be evaluated against the heuristics previously developed.

Recently, a GA implementation for the stowage problem, different from ours, was carried
outby Todd and Sen (1997), and they developed a multi-criteria genetic algorithm for solving
the stowage problem. In Section 4, we compare the two implementations and indicate the
advantages of our approach.

The extensive testing of the GA algorithm shows its ability to obtain good results even
when subject to constraints. This is a significant improvement over the prior developed
heuristics, which reached good solutions but could not deal with crucial constraints.

This paper is organized in the following way. In Section 2 we give a definition of the
container ship stowage problem. In Section 3 a brief description of GA is given. Section 4
is devoted to the description of the compact solution encoding technique and adaptation of
GA to the problem. In Section 5 we analyze the results obtained.

2. The container ship stowage problem

Consider a container ship consisting of a single bay with R rows labeledr =1, ..., R (row
1 is the bottom row) and C columns labeled c=1, ..., C (column 1 is the first column
on the left) for stowage of containers. Also assume that all the containers are of the same

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 587

standard size. Note that in practice the containers can be of different sizes and of different
kinds, such as refrigerated containers or containers that contain hazardous material. Also,
in practice, the ship has cargo lids that form the deck, so that the containers can be stored
above or under the deck.

The ship starts its service route at port 1 with its bay empty of containers and terminates
at port N after all its containers are unloaded. Let T =[T7;;] be the (N — 1) - (N — 1)
transportation matrix, where T;; is the number of containers originating at port i with
destination port j. T is an upper triangular matrix and we assume it is known before the
ship starts its service route. We further assume that 7 is feasible, that is, all the quantities
to be shipped can be stowed in the bay along the route. This is not a real restriction since
feasibility can be easily checked. We say that a container is a j-container if its destination
is port j. A k-container, stored on top of a j-container where k > j, is called a blocking
container. This is since the k-container blocks the j-container to be unloaded in port j.

Shifting is defined as the temporary removal from and placement back (unloading and
reloading) of containers onto a stack of containers. The need for shifting arises, for example,
in a vertical stack of containers if there is a k-container that blocks a j-container that is
placed below it. Such shifting can be done at port j, and then it is called a necessary shift,
or at some earlier port before j, and then it is said to be a voluntary shift. Voluntary shifts
are used for preventing costlier shifts in future ports. The container ship stowage problem
is to find an arrangement that would minimize the total number of shifts.

3. Genetic algorithms
3.1. General description

The GA is a search technique originally inspired by biological genetics. For a brief intro-
duction to Genetic Algorithms see Austin (1990), and for a more detailed one consider
Goldberg’s comprehensive book (Goldberg, 1989). Recent developments in GA theory and
practice can be found in Bick (1996). GAs were applied for solving various difficult combi-
natorial optimization problems, for example, the bin-packing problem (Cheng-Yan Kao and
Feng-Tse Lin, 1992; Khuri, Schutz, and Heitkotter, 1995; Reeves, 1994) and the Traveling
Salesman Problem (Johnson and McGeoch, 1997).

Unlike various constructive optimization algorithms that use sophisticated methods to
obtain a good single solution, the GA deals with a set of solutions (population) and applies
to each solution simple procedures of crossover, mutation and quality evaluation. Solutions
in the GA are encoded using finite length strings. Here, we basically use the GENITOR
version of GA (Whitley, 1989).

First, the initial population of bitwise 200 randomly constructed solutions (strings) is
generated. Within this population new solutions are obtained during the genetic cycle using
a crossover operator. Crossover produces a new solution (offspring) from a randomly se-
lected pair of parent solutions providing inheritance of some basic properties of the parents
in the offspring. Each new solution is decoded and its objective function (fitness) values
are estimated. These values, which are a measure of quality, are used to compare different
solutions.

588 DUBROVSKY, LEVITIN AND PENN

The comparison is accomplished by a selection procedure that decides which solution is
better: the newly obtained one or the worst solution in the population. The better solution
joins the population and the worse one is discarded. If the population already contains an
equivalent solution, then the solution is discarded. As a result, the population size remains
constant, and the average fitness value of the population increases monotonically or remains
unchanged over the cycles of evolution.

If the population fitness value remains unchanged for more than N, cycles, a “cataclysm”
procedure wipes out most of the population, leaving only the best solutions, and creating
random strings to replace the destroyed ones. This enriches the population with new genetic
material and helps to continue the genetic evolution in the new genetic cycle.

The GA terminates after N, “cataclysms” occurred without improvement of the best-in-
population solution. The final population contains the best solution achieved. It also contains
different near optimal solutions which may be of interest in the decision making process.

3.2. Parallel implementation

The genetic algorithm approach is ideal for parallel implementation. At each iteration, most
of the computing work is done on combining the genes of the two parents into the two off-
spring and evaluating the offspring’s quality. Creating and evaluating new pairs of offspring
could be done in separate parallel processes, as it is done in nature. Thus, by using multiple
processors, one for each offspring, it is possible to speed up the process considerably. In
fact, by implementing the algorithm on a parallel computer using 3 processors, a speedup
of 270% was achieved over runs using one processor only.

4. Implementation of the GA to the stowage problem
4.1. Encoding of the solution

A crucial issue in implementing genetic algorithms is the choice of the coding of the solutions
as chromosomes so that the algorithm will converge to good solutions. Some encodings
may cause the algorithm to create infeasible solutions, or may change and enlarge the search
space making it difficult to converge.

A straightforward encoding approach was used in Todd and Sen (1997), where a multi-
criteria genetic algorithm for the container ship stowage problem was developed. In this
approach the solution representation vector has different sections corresponding to each
port. Each section contains integer vectors of size P, where P = R * C is equal to the total
number of container slots in the ship. Each element in such a vector indicates the destination
port of the container that occupies the corresponding slot at the given port. We call such an
encoding a complete encoding.

The complete encoding scheme, while feasible, has some major disadvantages. First, it
creates very long vectors. For example, to encode a ship carrying 1500 containers and visiting
15 ports, one needs a vector of length 22500. Such long vectors cause the search space
to be very large, and slow the algorithm convergence. The complete representation is also

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 589

storage space consuming, which is especially undesirable when parallel GA implementation
is considered.

Also, the complete encoding is time consuming when evaluating the solution quality.
This is since the evaluation procedure requires the comparison of the containers’ layout at
each port, and the calculations of all the loading/unloading operations that provide these
changes.

Further, the complete encoding does not take into account the consistency of the contain-
ers’ allocation while the ship proceeds from port to port. Indeed, in many instances, there
is a large number of containers that do not change their positions during the ship route. The
complete encoding approach can not prevent drastic changes in the container allocation, and
thus leaves the entire burden of allocation consistency preservation to the genetic search.

In addition, the complete encoding can not guarantee the feasibility of the solutions
obtained by the crossover operator. Indeed, after applying the standard crossover operator
which copies fragments of two feasible parent strings into offspring string, the omissions or
duplications of some containers may occur. To provide the feasibility of the newly obtained
solution, a repair procedure should be used (Todd and Sen, 1997). However, this procedure
destroys the information inheritance mechanism of the GA by changing the fragments
inherited from the parents by the offspring string.

The compact encoding technique, suggested in this paper, is aimed to overcome these
disadvantages by:

1. Obtaining a compact solution representation that will significantly decrease the search
space and storage resource consumption, and will allow the convergence to good solu-
tions within a reasonable time.

2. Simplifying the solution quality evaluation procedure.

Preserving the layout consistency along the ship route.

4. Preserving solution’s feasibility after the use of the crossover operator.

b

The key idea behind the compact encoding method is that rather than holding the complete
layout, only the changes in the layout that result from loading and unloading of containers
along the route are to be held. Since the ship layout has a relatively small number of changes
at each port, the solution encoding vectors can be much smaller. Encoding only the changes
in the container layout significantly reduces the computation time of the solution’s quality
evaluation function. In addition, a very simple procedure can be used to insure the feasibility
of the solutions obtained by the crossover operator.

In the proposed compact encoding method, the integer string representing the entire
solution is divided into N sections, one for each port. For any port &, each section contains
four parts n, f, q and g as follows: Part n contains a list of columns where the containers
originated at port k are to be loaded to; Part f (respectively, g) contains a list of columns
to which the containers that were unloaded due to necessary shifts (respectively, voluntary
shifts) are to be loaded; Part q contains a list of columns from which the containers should
be unloaded, due to voluntary shifts.

Note that any voluntary shift is determined by parts q and g of some section in the
following way: The top container located at the column indicated by the j-th position of
part q, should be loaded to the column indicated by the j-th position of part g.

590 DUBROVSKY, LEVITIN AND PENN

To perform the ship unloading and loading operations at a given port, two auxiliary
vectors W, and w,, are used. The port waiting list W, contains the destinations of
the containers to be loaded at port p. Initially, W, is equal to the list of all the destina-
tions of the containers originated at port p. This list is obtained from the transportation
matrix (note that the cardinality of W, equals the length of the n part of the solution
encoding string section corresponding to port p). The column waiting list w,, con-
tains the destinations of the containers aimed to be loaded to the c-th column while
the ship calls at port p. This list is constructed according to the solution representation
string.

When the ship calls at port p, first, all the p-containers, i.e. destined to the current port,
are to be unloaded. Observe that there are cases where necessary shifts are unavoidable. If
so, we add all the blocking A-containers, with 2z > p, to the port waiting list. Thus, W, < h.
Then, after unloading the p-containers and those blocking them, some voluntary shifts may
occur. In such a case, the upper containers located in the columns that are specified by the
q part of the section, are moved to the waiting lists of the columns specified by part g.
That is,

Wpe(j) < U@, 1=j=<J

where U (x) is the upper container located in column x, J is the total number of voluntary
shifts, ¢(j) and g(j) are the columns indicated by the q and g parts of the section.

Thereafter, the containers from the port waiting list are distributed among the column
waiting lists according to the columns indicated by the corresponding positions of the n and
f parts of the section:

Wps(m) < W(P), 1<m<M,

where s is the concatenation of the two lists, n and f, and M is the total number of containers
in the port waiting list.

After all the containers are distributed among the column waiting lists, they are loaded
to the corresponding columns in order. That is, for any k in w),,, all the j-containers that
belong to w . with j > k, are stored below the k-container. Now, if a column to which the
containers should be loaded is completely filled up, the extra containers are moved to the
closest available column with a higher index (here, we consider column C + 1 as column 1).
An example of a solution decoding, based on the partial solution representation, is presented
in Appendix A.

It should be noted that the total number of necessary shifts is not known before running
the solution decoding procedure. Therefore, the length of part f, of any section, should be
chosen such that the greatest possible number of necessary shifts could be handled. This
implies that part f usually contains redundant elements, that is, elements that are not used by
the decoding procedure. Also, note that the maximum number of voluntary shifts allowed is
specified by the length of the q and g parts of the section. However some shifts may become
impossible if some of the columns listed in the q part are empty at the corresponding port
after unloading is completed. (Such elements of q should be skipped).

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 591

4.2. Choice of the GA parameters

A sensitivity analysis with respect to each parameter was carried out. To set the Genetic
Algorithm parameters, a large number of simulation runs were done for different values of
each of the parameters in consideration. Since these simulation runs are time consuming
we based our sensitivity analysis on the following two problems. The first problem was a
relatively easy one with R = 10, C =30 and N = 10. We have used this problem to get some
insight on the influence of the various parameters on the performance of the algorithm. The
second problem was a more difficult one with R =10, C =100, N = 11 and a transportation
matrix which is based on real data. The amount of cargo carried was as high as 98% of the
ship’s carrying capacity during the route. About 300 runs were performed on the second
problem.

Three parameters significantly influenced the algorithm’s convergence. The optimal val-
ues of these parameters had to be empirically found before we could start rigorous testing
of the algorithm. These parameters were the population size, the crossover rate and the
cataclysm rate. The method employed to fine-tune the parameters was as follows:

First a few runs with large changes in these parameters were made. After finding the
range that gave the best results in terms of convergence rate and final value, more extensive
and detailed runs were made. These runs were made by fixing two of the parameters to the
previous found values and incrementing the third over a large range of values. This process
was run three times totaling a few hundred runs.

4.2.1. Population size. The results obtained show that the best population size was 200.
This is similar to the sizes mentioned in the literature dealing with the GENITOR version
of GA (Wainwright and Blanton, 1993).

4.2.2. Crossover rate. As mentioned before we have used a bitwise crossover. In order to
fix the value of the probability p, of choosing the bit from the first parent, 44 runs were
performed with the probability value increased by 0.1 each few runs. These results are
demonstrated in figure 1. The horizontal axis of the chart indicates the various probability

160 :
140]
120 1
100
F] [} [}
£l /
(7]

0 0.2 0.4 0.6 0.8 1
crossover probablity

Figure 1. Number of shifts vs. crossover probabilities.

592 DUBROVSKY, LEVITIN AND PENN

140

120!
100!\
80

60 \

w0\ :
SR | A

0.1 0.3 0.5 0.7 0.9

Cataclysm ratio

Shifts

Figure 2. % of destruction in the population vs. number of shifts.

values, while the vertical axis indicates the number of shifts in the final solution. The chart
displays the results of all runs made for each value of p. The results obtained indicate that
p = 0.4 gives the best results with respect to the number of shifts and the running times. Also
it turns out that the standard deviation of the number of shifts and that of the running times
were the smallest for the best fitted probabilities. This gives an indication of the stability of
our algorithm with regard to the crossover rate. Figure 1 indicates as well the robustness of
the crossover rate. It shows that if p varies from p =0.3 to p = 0.7, then there is only little
variation in the final solution.

4.2.3. Cataclysm rate. In order to fix the cataclysm rate (the fraction of the population to
be replaced when the cataclysm occurs), 90 different simulations were carried out. The runs
were carried out with the cataclysm rate increased by 0.1 each few runs. The results show
that 0.5 was the best rate. It was also shown that the standard deviation of the number of
shifts was the smallest for the best fitted rate, thus indicating the stability and robustness of
the algorithm with regard to the cataclysm rate. These results are demonstrated in figure 2.

As additional numerical tests show, the GA with the chosen values of the parameters
outperforms GAs with different values of the parameters for a wide range of stowage
problems. This means that the optimal GA tuning for the container ship stowage problem
is invariant to the parameters of transportation matrix and to number of rows and columns
in the ship.

5. Numerical implementation and simulation results
5.1. Simulation results

An analysis of the GA performance and the effect of incorporating local optimization in
the GA were carried out. In order to evaluate the quality of the solutions, the algorithm
(without the additional local optimization rules) was compared to the heuristics developed
in Avriel et al. (1998). In Avriel et al. (1998) three types of triangulated transportation

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 593

Table 1. Comparison of the GA to the suspensory, primitive and multiplication heuristics.

Same or better than best heuristic

Within a difference

Ship size No. of runs (%) of 5 shifts (%) Average difference Std
10 x 50 50 38 66 34
10 x 100 41 41 68 5.8 8.9

matrices, according to the average period of time a container has to stay on board, were
considered. These types of matrices were denoted as short distance matrices, long distance
matrices and mixed matrices. All these transportation matrices were feasible. Here, runs
were carried out on mixed matrices and we used the results obtained for a comparison with
the Suspensory Heuristic. We create the mixed matrices in the following way.

5.1.1. Mixed matrices. 'We choose randomly the order in which the values of the elements
of the transportation matrix are determined. At each step, we choose i from the uniform
distribution on (1,2,...,n — 1). Next, we choose j from the uniform distribution on
(i+1,...,n). Assume the pair (i, j) was chosen. Then, we check the elements of the
matrix in an increasing lexicographic order, starting with (7, j), for an element that has not
been chosen previously. If we did not find such an element, we return to (i, j) and check
the elements of the matrix in a decreasing lexicographic order. Fixing (i, j) we choose T;;
randomly such that

k n
2 2 Ti=R-C
i=1 j=k+1
forall k=1,...,n — 1. Also, we required that 7;; < 0.2 R - C. The last constraint was
added so that the number of elements 7;; having zero value will not be too large. Note
that the first set of constraints causes the magnitude of the near diagonal elements to be
somewhat greater than that of the other elements.

A large number of simulation runs were done for each different value of the parameters
in consideration. We consider two different ship sizes, one with 10 rows and 50 columns,
and the other with 10 rows and 100 columns. The number of ports varied between N =5
and N = 14. In total, 413 runs were made. Running times were from a few minutes on small
problems to about one hour on the larger ones. Runs were carried out on a Silicon Power
Challenge XL using 3 processors in parallel.

The runs performed for problems with 5-14 ports show that the quality of the results
obtained by the GA is similar to that obtained by the heuristics. This is demonstrated in
Table 1 which shows that the difference between the results obtained by the GA and the
ones obtained by the heuristics is, in most cases, only a few shifts.

5.2. Local optimization

An interesting direction for improving the performance of the GA is to include in the
algorithm some local optimization rules. Although we have tackled this issue, as indicated

594 DUBROVSKY, LEVITIN AND PENN

below, it is unclear to us at this point whether local optimization will make any significant
improvement. The motivation for introducing these rules was to try to reduce the search
space and thus to improve the GA convergence. The following two local improvements
were examined.

1. Sort: Sorting the containers before loading them back to the ship, so that the containers
will be loaded in order. This method may lessen unnecessary shifts when unloading the
ship at the following ports.

2. Group: During a voluntary shift, move a group of j-containers, for some j, that are
stacked continuously in a column. This procedure makes voluntary moves in batches
rather then with single containers. The logic behind this is that if a j-container is moved
in order to save shifts later, and if there is another j-container underneath it, the second
Jj-container should be moved as well.

Surprisingly, incorporating these local optimization rules into the GA did not bring any
significant improvement. We have pondered over this much, and finally came to the con-
clusion that these local improvements do not actually reduce the search space. Instead, they
create multiple solution vectors that have the same fitness value. Thus the search space is
not reduced at all, so finding the optimal solution does not become any easier than in the
regular method.

6. Additional constraints

Recall that up to now we have considered the simplified version of the problem. However,
as it was indicated previously, the stowage plan must also satisfy constraints. As seen
previously, alternative heuristics could not handle constraints. To demonstrate the flexibility
of the approach suggested we incorporate in the problem a ship stability constraint. Note
that putting too much weight on one side of the ship may create a dangerous tilt. The tilt
is calculated in relation to the axis of symmetry going through the ship from bow to stern.
Containers on one side of the ship create a positive tilt, which is the product of their weight
and distance from the axis of symmetry. Containers on the other side of the ship create
a negative tilt. The total tilt of the ship is the sum of all those tilts. The ship’s tilt can be
balanced, up to a certain threshold level, by filling ballast tanks at the cost of using more fuel
on the voyage. Beyond that threshold level, the ship could capsize. It is therefore important
to keep the tilt below the dangerous threshold level during all legs of the voyage.

To incorporate the stability constraint, a penalty function was introduced into the al-
gorithm. The penalty function at each port is: penalty*max[0,(abs(tilt)-threshold)], where
penalty is a constant, abs(tilt) is the absolute tilt of the ship for the current configuration
and threshold is a constant representing the threshold level of the ship. The constant penalty
actually represents the exchange rate that we are willing to pay for each unit of tilt that is
beyond the threshold level. Since the final solutions were with a few shifts only, we set the
constant “penalty” to a value of 20. This favors arrangements with tilts that do not exceed
the threshold level. We tried a few other penalty values in the range of 20 and discovered
that this value was not sensitive to small changes.

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 595

Table 2. Runs without penalty function.

Run Final Average of tilt ~ Number of ports ~ Average of tilt in ports Std of tilt in ports
number Iteration shifts over all ports exceeding threshold exceeding threshold exceeding threshold

1 59760 0 24.3 5 17.2 18.2
2 47250 0 16.3 2 18.0 14.1
3 63810 0 14.5 3 12.0 11.5
4 47610 0 17.9 3 12.7 7.6
5 35370 0 8.8 1 12.0 -
6 67140 0 13.7 3 13.7 8.5
7 31050 0 13.0 1 7.0 -
8 58950 0 194 4 11.8 7.6
9 32670 0 25.9 4 30.3 21.4
10 60570 0 15.5 3 10.7 35
Median 53280 0 15.9 3 12.3 10.0
Average 50418 0 16.9 2.9 14.5 11.6

Twenty simulations were run on a given transportation matrix with 11 ports and a ship
size of 10 rows and 100 columns. The ship’s width was set to 5 columns abreast and all the
containers had a weight of 1. The threshold level was set at 20.

The comparison of the results presented in Tables 2 and 3 allow estimating the influence
of tilt constraints on the final solution.

Table 3 summarizes results from 21 runs with a penalty function while Table 2 summa-
rizes runs using the same transportation matrix without the penalty function. All 21 final
solutions of the constrained problem reached an arrangement with all tilts conforming to
the threshold level. This can be seen by the final penalty value which is zero for all runs.
These arrangements came at a cost of a few extra shifts for each route. This is demonstrated
when comparing to the 10 runs shown in Table 2. In this case all the final solutions reached
arrangements with O shifts, but at a cost of violating the threshold tilt at many of the ports.

Tables 2 and 3 also show the difference in the number of iterations needed to reach a
final solution. The average number of iterations in the runs with no penalty was 50,418
iterations, while in the runs with the penalty function the average was 259,084, which is
about 5 times larger. The running time on a 300 MHz Pentium II for a single problem with
tilt constraints was about 30 minutes.

On runs not implementing the penalty function, the overrun over the threshold averaged
to 2.9 ports out of the 10 ports arranged. The overruns in these ports were by an average tilt
of 14.5 beyond the threshold level (beyond 20).

7. Discussion

As was indicated in the introduction, a few heuristics were developed for solving the stowage
problem. The best of which was the Suspensory Heuristic Procedure, which provided very

596 DUBROVSKY, LEVITIN AND PENN

Table 3. Runs with penalty function.

Final value of

Run number Stop iteration Final shifts Final penalty value shifts + penalty
1 261810 2 0 2
2 268290 2 0 2
3 267390 2 0 2
4 244710 5 0 5
5 254520 3 0 3
6 260100 2 0 2
7 262620 3 0 3
8 267480 4 0 4
9 264510 21 0 21

10 264600 5 0 5

11 252720 6 0 6

12 264870 5 0 5

13 258300 8 0 8

14 265680 5 0 5

15 256860 5 0 5

16 249570 16 0 16

17 255150 1 0 1

18 254880 5 0 5

19 251190 2 0 2

20 258750 6 0 6

21 256770 6 0 6

Median 258750 5 0 5

Average 259084 54 0 54

satisfactory results for the simplified non-constrained problem. However, its drawback was
its inflexibility in dealing with constraints. An integer programming based algorithm as
well as simulated annealing and a branch and bound algorithm were developed to enable
handling a variety of constraints. Unfortunately, these heuristics could solve only small
sized problems. This motivated us to use a GA for solving the problem in the hope that
it would be able to provide solutions to large scale constrained problems, which previous
methods could not manage. As choosing the coding of the solutions is one of the crucial
issues in implementing a GA, we put a significant effort into this issue, and came out with
the compact encoding, which we believe is very promising. This compact encoding reduces
the search space and allows the GA to converge to good solutions within a reasonable time.

As can be seen from the numerical implementation for large sized problems, the re-
sults obtained by the GA for the non-constrained simplified problem were obtained in a
reasonable time with values similar to those obtained by the previous best method—the

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 597

Suspensory Heuristic. Moreover, the GA approach for solving the stowage problem has
the possibility of incorporating constraints beyond the simplified problem. We demonstrate
this by successfully incorporating the stability constraints. The algorithm provided feasible
solutions that were all within the constraint limits. The final results were compared to the
ones obtained by the best known heuristics run on identical but non-constrained problems.
These heuristics provided good valued solutions, yet they were infeasible due to deviations
from the constraints. On the other hand, the GA provided results that were both feasible and
close enough to those obtained by the heuristics on the same but non-constrained problems.
As was shown, this algorithm is much more suitable for handling real life container ship
stowage problems and may be further developed to include all ship constraints. In further
research, one should consider incorporating additional constraints beyond stability.

Appendix A
Solution decoding example

Consider a ship that enters port 2 loaded in the following way:

3 2 1 column

Assume that the port waiting list at port 2 consists of a single 4-container and two 5-
containers. Thus, W, = {4, 5, 5}.
A possible solution encoding section corresponding to port 2 is

Port 2

First, all the 2-containers should be unloaded. Note that a 3-container, which was located
above the 2-containers in the first column, is unloaded (necessary shift) and is included into
W,. After unloading is completed, the ship layout is as follows:

3 2 1 column

598 DUBROVSKY, LEVITIN AND PENN

Atthis point, all column waiting lists are empty, and W, = {4, 5, 5, 3}. Following the solution
encoding section, two additional voluntary shifts are to be performed. First the upper 5-
container has to move from column 3 to column 1, and then the upper 3-container has to
move from column 2 to column 3. The containers that were unloaded due to voluntary
shifts join the corresponding column waiting lists. Therefore, after the completion of the
voluntary shifts, the container allocation is

3 2 1 column

and the column waiting lists are wy; = {5}, wa =@, wy; = {3}.

We now turn to distribute the containers contained in W, to the column waiting lists
according to the n and f parts of the solution encoding section. Note that the i-th column
number in the concatenation of parts n and f is matched to the i-th container in W,. Thus,
the first container of W, should be added to w3, the second to w,, etc. Hence, after
the containers’ distribution, W, is empty and the column waiting lists are w,; = {5, 3, 5},
wyy = {5}, wyz = {3, 4}. Now, for each column c, the containers in w,. are loaded in order.
That is, for any j-container in w,., all the k-containers that belong to w,, with k > j, are
stored below the j-container. The ship layout upon leaving port 2 is as follows:

“h »n W

3 2 1 column

Acknowledgments

Partial support was received from the fund for the promotion of research at the Technion.
Part of this work was done as part of Opher Dubrovsky M.Sc. thesis, done under the
supervision of Gregory Levitin and Michal Penn, in the Faculty of Industrial Engineering
and Management, Technion, Haifa, Israel. The authors are grateful to the referee for valuable
comments.

References

Aslidis, A. (1990). “Minimizing of Overstowage in Container Ship Operations.” Operational Research 90, 457—
471.

Austin, S. (1990). “An Introduction to Genetic Algorithms.” Al Expert 5, 49-53.

Avriel, M. and M. Penn. (1993). “Exact and Approximate Solutions of the Container Ship Stowage Problem.”
Computers and Industrial Engineering 25, 271-274.

A GENETIC ALGORITHM FOR THE CONTAINER SHIP STOWAGE PROBLEM 599

Avriel, M., M. Penn, and N. Shpirer. (2000). “Container Ship Stowage Problem: Complexity and Connection to
the Coloring of Circle Graphs.” Discrete Applied Mathematics 103, 271-279.

Avriel, M., M. Penn, N. Shpirer, and S. Witteboon. (1998). “Stowage Planning for Container Ships to Reduce the
Number of Shifts.” Annals of Operations Research 76, 55-71.

Bick, T. (1996). “Evolutionary Algorithms in Theory and Practice.” Evolution Strategies. Evolutionary Program-
ming. Genetic Algorithms. London: Oxford University Press.

Blasum, U., M. Bussieck, W. Hochstattler, C. Moll, H.H. Scheel, and T. Winter. (1996). “Scheduling Trams in
the Morning is Hard.” Working Paper, Department of Mathematical Optimization, Technical University of
Braunschweig, Braunschweig, Germany.

Botter, R.C. and M.A. Brinati. (1992). “Stowage Container Planning: A Model for Getting an Optimal Solution.”
IFIP Transactions B (Applications in Techn.) 5, 217-229.

Cheng-Yan Kao and Feng-Tse Lin. (1992). “A Stochastic Approach for the One-Dimensional Bin-Packing Prob-
lems.” In Proc. of the 1992 IEEE Int. Conf. on Systems, Man, and Cybernetics, Vol. 2, pp. 1545-1551.

Dunbleton, J.J. (1980). “Expert System Applications to Ocean Shipping—A Status Report.” Marine Technology
27, 265-284.

Flor, M. (1998). “Heuristic Algorithms for Solving the Container Ship Stowage Problem.” M.Sc. Thesis, Faculty
of Industrial Engineering and Management, Technion, Haifa, Israel (in Hebrew).

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison
Wesley.

Horn, G.P. (2000). “A Branch and Bound Algorithm for the Container Ship Stowage Problem.” M.Sc. Thesis,
Faculty of Industrial Engineering and Management, Technion, Haifa, Israel (in Hebrew).

Johnson, D.S. and L.A. McGeoch. (1997). “The Traveling Salesman Problem: A Case Study.” In E. Aarts and J.K.
Lenstra (eds.), Local Search in Combinatorial Optimization.

Khuri, S., M. Schutz, and J. Heitkotter. (1995). “Evolutionary Heuristics for the Bin-Packing Problem.” In Proc.
of the ICANNGA’95, Ales, France, pp. 285-288.

Reeves, C.R. (1994). “A Genetic Approach to Bin-Packing.” In Proc. of the Second Finnish Workshop on Genetic
Algorithms and their Applications, Vaasa, Finland, pp. 35-49.

Saginaw II, D.J. and A.N. Perakis. (1989). “A Decision Support System for Container Ship Stowage Planning.”
Marine Technology 26, 47-61.

Sha, O.P. (1985). “Computer Aided on Board Container Management.” Computer Applications in the Automation
of Shipyard Operation and Ship Design V, 177-187.

Shields, J.J. (1984). “Container Ship Stowage: A Computer-Aided Preplanning System.” Marine Technology 21,
370-383.

Todd, D.S. and P. Sen. (1997). “A Multiple Criteria Genetic Algorithm for Container Ship Loading.” In Proceedings
of the Seventh International Conference on Genetic Algorithms.

Wainwright, R. and J. Blanton. (1993). “Multiple Vehicle Routing with Time and Capacity Constraints Using
Genetic Algorithm.” In Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 452-459.

Whitley, D. (1989). “The GENITOR Algorithm and Selective Pressure: Why Rank-Based Allocation of Repro-
ductive Trials is Best.” In D. Schaffer (ed.), Proc. of the 3th International Conference on Genetic Algorithms.
Morgan Kauffmann, pp. 116-121.

Winter, T. and U. Zimmerman. (1997). “Minimizing Shunting Costs in Storage Yards.” Internal Report, Department
of Mathematical Optimization, Technical University of Braunschweig, Braunschweig, Germany.

