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Abstract

In this paper a mathematical programming model for the container stowage problem
is shown; the binary decision variables determine, for each port, the container unloading
and loading sequence. In fact, the solution indicates successively which container will be
handled, and from or to which cell in the ship. '

Unless for some constraint linearizations (related to ship safety parameters), the pro-
posed model finds, from the theoretical point of view, an optimal global solution for
the stowage problem. Nevertheless, this combinatorial problem is NP-HHARD and can-
not be solved for commercial ship sizes in reasonable processing time using the available
computer software and hardware.

The basic features of this model were used for the development of an implicit enumer-
ation procedure for solving the container stowage problem. In spite of the computational
complexity of this approach, some heuristic rules are proposed to explore the combinato-
rial tree in an intelligent way and produce good, if not optimal, solutions for the problem
in a reasonable processing time.

1. INTRODUCTION

The technological advance in ship and loading equipment design and construction,
with the advent of full cellular container ships, enabled a dramatic reduction of ship in-
port time. Nevertheless, in order to take full advantage of this opportunity, the container
stowage planning along the ports of the ship route must be carried out efficiently.

The stowage plan consists in the elaboration of the container unloading and loading
sequence in each route port, so that no ship stability and stress constraints (such as
the transverse metacentric height, trim, cutting force or bending moment) are violated,
and container restows aboard the ship are avoided. In each port the unloading sequence
must be such that only will be handled, if possible, containers whose final destination is
that port. The container loading sequence must specify the position that each container
will occupy on the ship, obeying the ventilation and refrigeration requirements and the
dangerous cargo conditions of each container.
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It must be emphasized that the stowage plan must also contemplate other aspects, the
most important being the reduction of ballast required by the vessel and the reduction
of the longitudinal crane movement.

The purpose of this paper is to show the development of a appropriate computational
tools to help shipping companies in the elaboration of containership stowage plan. In
section 2 a brief literature survey of the containership stowage problem is presented. In
section 3 it is described an exact mathematical model for the elaboration of the stowage
plan of a ship which will sail along a n-port route, and whose main objective is the mini-
mization of the number of restows along that route. In this model, the interdependence of
container handling decisions in different ports of the route is well chacterized. Due to the
computational difficulties for solving this complete model, two alternative procedures for
solving the container stowage problem are presented in sections 4 and 5. Computational
experiments with these procedures are mentioned in section 6.

2. LITERATURE SURVEY

The search for an efficient procedure for container ship loading and unloading has
drawn the attention of shipping companies and academic researchers since the seventies.
The main aim of such a procedure is to minimize the number of overstows subject to a
given set of constraints. ,

The methods used for solving the stowage planning problem may be grouped into the
following main classes: probabilistic simulation methods, heuristics procedures, decision
support systems, mathematical programming approaches and expert systems. None of
them leads to an optimal solution for the problem. *

The first group includes the classical Monte Carlo simulation method, which chooses,
among several stowage plans generated for the route, the one which presents the smallest
number of restows. The works of Nehrling [1} and Shields [2] belong to this group.

In the second class one finds the works of Webster [3], Beliech [4] and Thieu [5], which
incorporate heuristic rules derived from the planners experience and are intended for the
computerized generation of the stowage plans, without the interaction with the human
being.

The methods of first and second groups do not seem to be efficient because they often
generate stowage plans that result in a high number of restows along the ports of the
route.

The methods of the third group attempt to provide the planner with capable tools
so that, at any step of the stowage plan elaboration the ship safety parameters can be
calculated. The works of Sha [6], Barauna Vieira [7] and Saginaw (8] belong to this class.
This kind of procedure scems to be more efficient, when the planner who uses it as a
decision-making support has a solid background in the subject and is able to explore
efficiently a stowage plan proposal, obtaining in general responses with a low restows
throughout the route.

Among the works belonging to the fourth group, one finds those of Scott [9] and
Aslidis [10] and [11], whose models search the optimum solution of the stowage problem by
means of a proper mathematical modelling; however, they rely on too many simplification
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hypotheses, which made them unsuitable for practical applications.

In the fifth class one finds the works of Dillingham [12], [13] and [14], that apply both
the theory and softwares of artificial intelligence for the solution of the container stowage
problem. The whole potential of this tool has not been explored yet but it is expected
that it can generate efficient procedures in the near future.

In a global way, all the works found in the literature do not analyze the loading process
in successive ports as interdependent decisions, but study it rather in a disassembled
way. The lack of considering this interdependency is likely to be the major factor cause
of container restows.

3. THE COMPLETE MATHEMATICAL MODEL FOR THE STOWAGE
PROBLEM T

In this section a mathematical programming model for the stowage problem is shown;
the binary decision variables determine, for each port, the container unloading and loading
sequence. In fact, the solution indicates successively which container will be handled, and
from or to which cell in the ship.

Some hypotheses have been assumed:

the ship attends n ports of a route, being empty as the loading starts in port 1, and
at the end in port n, when all the containers aboard are unloaded; -

- in each intermediate port of the route unloading and loading may occur, but the latter
does not begin until the former has finished;

- the ship may carry containers of 20 and 40 feet of length, but they cannot be mixed
in a same column;

- the ballast conditions of the vessel at the arrival and departure from each port of the
route are set by the user;

- the container supply and demand along the ports of the route are known.

3.1. DEFINITIONS AND DECISION VARIABLES

The complete container loading and unloading process in the several ports of the route
may be viewed as a succession of individual stages. Thus, for each possible container han-
dling, either loading or unloading, it is defined a stage k. For suitability of mathematical
modelling, all possible unloading and loading stages will be considered, i. e., the model
assumes that at each port all the containers aboard the ship may be unloaded.

Let, then:

I={1,... NCONT} be the st of containers supplied along the ports of the route;

I, be the set of containers supplied at port r of the route;

R, be the set containers supplied at all the ports of the route before port r and
demanded at all the ports after port r;
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D, be the set of containers whose destination is port r;
I(j) be the set of containers that can be placed in cell j of the ship;
O; be the origin port of container 1
T: be the destination port of container i;
J = {1,...NCEL} be the set of cells in the containership;
J(i) be the set of cells where the container i can be placed;
JCOL, be the set of cells in the z column of containership, where z = 1 to NCOL and
NCOL is the number of columns of the containership;
JSE,,. be the set of cells between the bow and section m of containership, where
m = 1to MSECTION;
K ={1,... NESTA} be the set of the possible stages along the poris of the route;
KC(i) be the set of all possible loading stages of the container i between the ports O;
and Tj;
K D(i) be the set of all possible unloading stages of the container i between ports O; and

K DR(i) be the set of all possible unloading stages of the container i between ports O;
and T} - 1. This set contains the stages for which the unloading of container
i causes a restow;

K PC(r) be the set of all possible loading stages in the port r;

K PD(r) be the set of all possible unloading stages in the port r;

K PCA(s,v) be is the sum of sets KPC(r) from port s to port v;

K PDA(s,v) be is the sum of sets KPD(r) from port s to port v.

Let the decision variables for the stowage problem be:

Kook = 1,if the container i is loaded into cell j at the kt stage;
ik =Y 0,ctherwise;

for i € I, j € J(i) and k € KC(i).

Vi = 1,if the container i is removed from cell j in the kb stage;
5= 0,otherwise;

forie I, j € J(i) and k € KD(z).

3.2. OBJECTIVE FUNCTION

The objective function of the mathematical model for the stowage problem, besides
considering the number of container restows along the route, takes into account also
another important factor, which is the longitudinal crane movement along the quay during
the container loading and unloading operations. '

The general expression of the objective function is:

f=M*fitd+fo (1)

where A, and \; represent respectively the unit cost of a restow and the longitudinal
movement of the crane.
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The first term of the objective function, fi, which counts the number of restows can
be expressed as below:

L= 5 Yige . (2)

where in the summations above i € I, j € J(i) and k € KDR(3).
The second term of the objective function, f;, which refers to the longitudinal crane
movement along the quay during the loading and unloading operations, is provided below:

f2 = Ti 55 To Tj T Xijn * Xorjega * dijje + L i Lo S T Yijur * Yojiear ¥ djje (3)

where in the summations above:
iel; jeJ@y el j'ed(i')
ke {KCE)NKC(i)}; K e {KD()Nn KD(i"}}
and djj is the longitudinal distance between the pair of cells j and j’.
The function f, above is non-linear, but it can be linearized, for instance, according
to what has been suggested by Taha [15], increasing however the number of decision
variables and constraints. ' :

3.3. CONSTRAINTS

The model considers the stability constraints, structural stress and other feasiBilit)f
conditions presented below: ’

a-) Loading of the container i in the port p of origin
EjEkXijk=17 ie]p ) (4)
where in the summations above j € J(i) and k€ KPC(p).

b-} Loading of the container i in any intermediate port p between the origin and desti-
nation ports

TiTeXie—L;TpYijp =0, i€ Ry _ (5)
where in the summations above:
i€ J(i); :

ke KPC(p) and ¥ € KPD(p).
c-) Unloading of the container i in the destination port p

e Xijp — Zp Yigp =0, i€ Tandj € J(i) : (e

where in the summations above:
ke KPCA(O;, T; — 1);
¥ € KPDA(O; +1,T3).

|
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d-) Unloading of the container i in any intermediate port p between the origin and
destination ports

T Xijs — D Yiw 2 0, i€ Tandj € J() (7)
where in the summations above:

ke KPCA(0;,T; — 1);
K e KPDA(O; +1,T; — 1).

e-) Occupation of cells in the ship

These constraints guarantee that a cell can only be filled or emptied once at most in
each port. For the loading phase at port p, the expression is:

Y S X — D e T Yow < 1, j€J (8}

where in the summations above:
ie{I,N(R,UIL,)} and i€ I(j);
i' € {I.N(R,UD,)} and i'€1(5);
ke KPCA(r,p) and ¥ € KPDA(r +1,p).
Expression (8) applied to port 1 does not have the second group of summations, since
in port 1 the ship is empty and only loading operations occur. For the unloading phase
at port p, the expression for this constraint is similar to equation 8.

f-) Container handling at stage k

This constraint guarantees that in each stage k at most one cargo handling will occur.
i Xk < 1, k€ KCP(p) ()

where in the summations above:
ie{lUL}
je J(@).
For port p, in any unloading stage, the expression for this constraint is similar to
equation 9.

g-) Impenetrability

These constraints represent the following conditions:

- acontainer only can be loaded into a cell over an occupied cell or on the bottom or over
a hatch cover. If loaded into the hold, the cover hatch must have been previously
removed;

- a container can only be unloaded if the pile above it or the hatch cover (if there is
one) has already been removed.

Supplied by The British Library - "The world's knowledge"




igin and

(7)

most in

(8)

ns, since

ig phase

Il occur.

(9)

milar to

Lor over
aviously

there is

223

For every loading stage k and for every cell j of the ship moored in whichever port p,
one has:

T Xijk < 5 Tk Xijoubkt + Thot Lir T Xirjsubkn — (10)
TPy Y S Yarjoutkm , k€ KCP(p)andj€J

where in the above summations:
i€ {R,UIL} and i€ I(j);
i'e{I,NR,} ; ¥ € KCP(p);
k" € KPCA(r,p—1) ; k"€ KPDA(r,p)
and j,u is the cell below j. Equation 10 does not apply to a cell j on the bottom or over
the hatch cover. .
The constraints that represent the other conditions mentioned are similar-to those

presented in equation (10).
h-) Weight constraint for containership columns

The equation of this constraint that appears only in the loading phases of each port
pis:

i Tk Xy *pi + TP T T Tw Xurjar * pur — :
Zf:l Ei' 2; Zk" },i'jk" * Dy S PEA!AX, y 2 = 1o NCOI/ (11)

where in the above summations:

i€ {R,Ul,} and i€ I(j);

j€JCOL, ; ke KCP(p);

e{l,nR,)} ; e KPCA(r,p—1);

k" € KPDA(r,p)
and PEMAX, is the maximum permissible weight for column z of the ship and p; is the
weight of container i.

i-) Transverse metacentric height (GM) constraint

For a stage k during a loading phase in port p:

- 12
i Tk X kpikzi+ TP S0 L5 T Kujir # pir ¥ 25— (12)

Y Tu 3oy i Yjenxpirkzi + MZo < A#(KB+BM~GMpnin—DG), k€ KCP(p)

where in the above summations:

i€ {R, UL} ; j€JG)

i'e{l,NR,} ; ¥ e KPCA(r,p—1);

k" € KPDA(r,p)
and K B and BM are respectively the vertical coordinate of the center of buoyancy in
rclation to the base line of the ship and the transverse metacentric radius (both depend
on the displacement change after each weight loading into and unloading from the ship);
GM,.n is a known condition given by the operation handbook of the ship; DG is the
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component related to the free surface effect of the tanks (during the container loading and
unloading process, one may assume that there will be no alteration of the tank conditions
and therefore DG is known); A is the ship displacement after the cargo addition; z; is
the vertical coordinate of the center of cell j in relation to the base line of the ship (it
is assumed that the vertical center of gravity of the container lies in the middle of its
height) and M Zo is the vertical moment resulting from the composition of all the weights
items except the cargo.

The GM constraint for the unloading phases is similar to equation (12). Notice the
non-linearity of the term A * (I{ B + BM), where A depends on the sum of container
weights and KB and BM depend on A.

The proposed linearization is the following:

- in the beginning of a loading or unloading phase, the weights of all the containers
that will be handled are known and thus an average weight per container can be
obtained;

- at each stage, one adds to or subtracts from the previous value of A the average weight
of the containers;

- the values of K B and BM will also be calculated from the hydrostatics curves, based
on the displacement value calculated as mentioned above.

j-) Heel angle constraint

Assuming a maximum allowed heel angle A, this constraint for a stage k of a loading
phase may be written in the following way:

“BEYi T e Xiprpivy; Y Tu T o X * pir %Y —
TP, T 0y L Yrjur # 9 #y5+ MYo < B, k€ KCP(p) (13)

where in the above summations:

ie{R,UL) ; j€E J(i);

e {I,NR,} ; ke KPCA(r,p—1);

k" € KPDA(r,p)
and B =| tg(A) | *A * GM, y; is the transverse coordinate of the center of cell which is
loaded in stage k and M Yo is the transverse moment resulting from the composition of
all the weights items except the cargo.

Once more, there is a non-linearity in the term A + GM , which depends on the
weights of the containers that are being loaded or unloaded. A linearization similar to
that proposed in item i can be done.

The heel constraint equation for a stage k of an unloading phase is similar to equation

(13).

= 4
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k-) Trim constraint

Assuming a maximum trim TRI M. for the ship, the equation for trim constraint
in the stage k of a loading phase is:

--C < E' E’ Zk X’J"‘*p‘ *(IJ -LGF)‘*'E;,_ EII Z] Ekl i3k * Pyr *(;t, —‘LCF)
4 P Ta Tj o Yajin * po * (5 — ~LCF)+ MXo £C, kEI‘CP( ) (12)

where in the above summations:
ie{R, UL} ; jEJ(E); .
e{l,NR} ; ¥e KPCA(r,p—1);
k"e KPDA(r,p)
and C = MTC# | TRIM.: | , ; is the longitudinal coordinate of the center of cell j
which is loaded in stage k, LCF is the longitudinal coordinate of the center of buoyancy
of the vessel, MTC is the moment to change the trim of one unit and AfXo is the
longitudinal moment resultmg from the composition of all the weights items except the
cargo.
The non-linearity of equation 14 can be handled in similar way to those suggested for
constraints 12 and 13.
The trim constraint equation for a stage k of an unloding phase is similar to equation

(14).
1-) Cutting force and bending moment

Assuming a maximum permissible cutting force FAfAX,, for ship section m, the
corresponding constraint for the stage k of a loading phase is written in the following
way: '

_FA[AXVN < ):a z Ek uk * b + Er'—l Z. Z] Zk' U134 *Pl‘ -

Zr..l Z' ZJ Ek“ y:r_,ku * Ppe + FRESUm _<_., FAIAXm N k € I{CP( ) (15)
andm = 1to MSECTION

where in the above summations:

i€ {R,UL} ; i€ I();

jEJSE, ; e {l.NR};

ke KPCA(r,p—-1) ; k" € KPDA(r,p)
and FRESU,, is the cutting force in the section m due to buoyancy and all the weights
except the cargo.

Assuming a maximum permissible bending moment MFAMAX,, for shlp section m,

the corresponding constraint for the stage k of a loading phase is written in the following
way:

—AIFA[AX E E Zk ijk * P * dJm + Zr**l i/ EJ EL' le' * Dir * dJ"l -
2 i & S Yijior # pis # djn + MFRESU,, £ MFMAX,, , k€ KCP(p) (16)
and m = 1o MSECTION

where in the above summations:
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ie(RUL) ; i€ I();

jeJSE, ; ¥ € {I.NR)}; A

k¥ € KPCA(r,p~1) ; ¥ € KPDA(r,p
and MFRESU,, is the bending moment in the section m due to buoyancy and all the
weights except the cargo, djn is the distance between the cell j which is loaded in stage
k and section m.

The cutting force and bending moment constraint equations for a stage k of an un-

loding phase are similar to equation (15) and (16), respectively.

3.4. MODEL SIZE AND COMPUTATIONAL COMPLEXITY

The container stowage problem, as represented by the mathematical model previously
shown, is a combinatorial problem whose size depends on ship size (given by the number
of twenty feet equivalent unities) and the container supply and demand at each port of the
route. Anyhow, even for the smallest cases, the container stowage problem, from the point
of view of combinatorial optimization, is a large scale problem. In fact, for a commercial
size container ship of 1000 T.E.Us, calling in 4 ports, the mathematical model will have
nearly 10° decision variables and approximately 10° constraints, assuming that the ship
will sail fully loaded. Obviously, the solution of this problem cannot be obtained even
using the fastest computer machine and the best integer linear programming computer
code. The set of problem constraints does not have a particular structure which allows
the utilization of specialized techniques for the large scale problem, such as lagrangean
relaxation or algorithms for solving graph-realization problems.

Two other alternative methods for solving the container stowage problem were devel-
oped and are presented below. Both of them consider essentially the same characteristics
of the complete model but, attempting to obtain a solution in a shorter processing time,
they do not look necessarily for the optimality.

4. DECOMPOSITION OF THE COMPLETE MODEL

In order to overcome the computational difficulties associated to the exact solution of
the complete model, the container stowage problem is decomposed in two subproblems
namely:

a-) an assignment problem;
b-) a sequencing problem.

The solution of the first one gives a picture of the container cell occupation at the end
of unloading and loading phases at each port of the route. That is, for a loading phase,
the solution shows the cell to which each container is assigned, without keeping track of
the loading sequence, and for the unloading phase, the solution shows which containers
are removed from the respective cell, also without specifying the order of the unloading
operations.

The decision variables X;;i are similar to those of the complete model, with the
difference that there are only two stages for each port, except for the first and last ones,
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where there is only one stage. For this problem, the objective is to minimize the number
of container restows; the set of constraints contains almost all the types of constraints
presented for the complete model, but it is much smaller in size. The main difference is
that for each k one may have a lot of Xj;x equal to 1.

The second subproblem corresponds to determining the optimal loading or unloading
sequence between two successive cell occupation pictures obtained in the solution of the
assignment problem. In fact, there are as many scquence problems as the number of
phases in the assignment problem.

For this problem, it is known a priori that the cell j will receive the container i(j)
during the loading phase at the port p. The question is to determine in which stage k
the container i(j) will be placed in cell j. In other words, the decision variables are:

X = 1,if the cell j is occupied at the kth stage of loading phase;
i* =] 0,otherwise;

Similarly for the unloading phases,

Yo = 1,if the cell j is emptied at the kt: stage of unloading phase;
75 =1 0,otherwisc;

Notice that, unlike in the complete model, the number of cffective stages in this case
is known a priori. The objective function to be minimized is the total longitudinal crane
movement. The constraints considered for each sequencing problem of a loading phase,
are those or similar to those of type a, [, g, 1,j, k and ] shown in section 3 for the complete
model. For an unloading phase the constraint type a is replaced by the constraint type
¢ shown in section 3 for the complete model.

Another step taken toward reduction reducing the model size was the grouping of
containers into classes, each of them having containers of same type, origin, destination
and within a given weight range. Therefore, 2 value X;;x in the solution of the assignment
problem means that in the stage k, a container of class i is stowed into cell j.

5. IMPLICIT ENUMERATION ALGORITHM

The second alternative method developed for replacing the complete mathematical
model in the solution of the container stowage problem aiming to reduce the processing
time, is a general implicit enumeration algorithm. A given path in the enumeration
tree corresponds to the assignment of values 1 to a subset of the decision variables Xijk
and Yi;; of the complete model. The first edge (vo,v1) of the path corresponds to the
first loading operation in the first port of the route; the following edges represent the
successive loading and unloading operations along the ports of the route. The value 1 of
variable Xjjx (or Yijx) over the Kt cdge of the path means that the container i is stowed
(removed) into (from) cell j in the stage k.

At each verlex of the path, the constraints of the problem are checked; if some of them
is violated, the vertex is abandoned. In fact, the branching selection at each vertex helps
itself to eliminate infeasible successors. A path can be interrupted at an intermediate
and feasible vertex if a lower bound for the objective function considering all possible
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branching choices from the vertex on is greater than the objective function for a known
feasible path until the last stage.

The objective function in this case is a weighted sum of the number of restows, lon-
gitudinal crane movement and amount of ballast used. Notice that this last term could
not be introduced in the mathematical model. The use of ballast is considered whenever
one reaches a vertex where either GM or trim constraint is violated.

Since the processing time for examining all possible paths using an exact implicit
enumeration algorithm is extremely long, some heuristic rules were introduced with the
aim of examining first the paths of the enumeration tree which seem to be the best
ones. Doing so, it is expected that the scarch can be interrupted within an acceptable
computation time and producing a good (eventually optimal) feasible solution for the
container stowage problem. The heuristic rules incorporated to the algorithm are based
on practical experience of shipping companies and port operators; some of them are
shown below:

- assign a lot of containers with the same destination to a same bay;

if containers of two different destinations were required to be stowed in a same bay, the
containers for the nearer port should be stowed over the containers for the farther
port;

choose during the loading process a sequence of bays to be loaded which avoid the
violation of the trim constraints.

6. COMPUTATIONAL EXPERIMENTS

The two alternative methods - decomposition with container grouping and implicit
enumeration were implemented through computer programs for main frame. With the
first method only very smalls problems could be solved using the linear programming
TEMPO and a Unysis B-7900 computer.

The implicit enumeration algorithm was applied to solve the container stowage prob-
lem for 740 T.E.U’s containership, calling in four ports with a global supply of 1200
containers, using the same hardware.
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