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Abstract. This paper deals with the containership stowage problem. Containers
are placed on the ship in a last-in-first-out manner and therefore temporary unload-
ing and reloading in subsequent ports along the route, called shifting, is common
and results in high costs. This is true, in particular, if the stowage plan is based
only on stability constraints of the ship.

The generating of such schedules depends on the transportation load, the technical
constraints and possibilities in the ports, the ship geometry, the sequence of ports
visited and some other rather technical constraints (e.g. very heavy containers or
hazardous goods).

We will show how this containership stowage problem can be modeled as a mixed
integer programming model and discuss the computational complexity of the prob-
lem. Based on these results, solution methods are developed and some special cases
are analyzed.

Furthermore, as a cross reference, we draw our attention to other combinatorial
problems like the three-dimensional packing problem with special precedence con-
straints or pile-up problems. Finally, we propose possible directions for further
research.

1 The Containership Stowage Problem

Containerships call at many ports and at each port containers are loaded and
unloaded. The containers on board of a containership are put into stacks. A
container is only accessible if it is on the top of the stack (last-in-first-out).
The task of determining a good container arrangement is called stowage plan-
ning, e.g. [1]. Because modern containerships carry up to 7000 containers and
visit up to 20 ports, optimization requires solution of a large scale combinato-
rial problem. To come up with a good stowage plan there might be multiple
objectives that could be pursued. We attempt to minimize the container
shifts, but there are other objectives as well like (see [14]):

e minimizing usage of ballast water,
e minimizing torsional and shear forces,
e maximizing utilization of the terminal equipment,
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e minimizing trim,
o cffective hatch usage.

In addition to the accessibility constraint named above, a huge set of other
constraints, such as manitain ship stability, requirements for the storage of
hazardous cargo, deck strength limits, electric supply of refrigerated units,
and limited mixture of 20’ and 40’ containers.

Also, there are some more limitations for the container terminal and in gen-
eral the loading of a ship begins before all containers to be shipped have
arrived. This makes the problem stochastic and results in several updates of
the stowage plan.

2 Basic Model

In the basic model (as given e. g. in [4]) the containership is modeled as a
single bay as an array with R rows (heigth of stacks) and C' columns (total
number of stacks). There are N ports. The ship starts with an empty bay at
port 1 and at port N all containers will be unloaded. The placement of the
containers remains unchanged between port ¢ and port 4 1. We call the bay
uncapacitated if R = oo, capacitated otherwise.

The transportation load is given as a (N — 1) x (N — 1) matrix T' = (T3;),
where T;; is the number of containers orginating at port ¢ with destination
j. There is one standard size of container, which can be placed on arbitrary
positions in the shipbay. The transportation load should be feasible in respect
of hold and deterministic at every port.

There is one crane at every port which can lift any container on the quay
and on the bay without limitations. All containers orginating in that ports,
respectively, have arrived before the ship. The shifting cost per container is
equal to 1.

Definition 1 ([1]). A container u of a column is overstowed when it blocks
the retrieval of another container v and the destination port j of u is later
on the schedule than the destination port i of v.

If there are overstowed containers shiftings become necessary, i. e. to tem-
porarily unload the containers and reload them later.

Definition 2 (uCSP). Given a transportation matrix, a bay, and a nonneg-
ative integer s, the unrestricted containership stowage problem (uCSP) is the
decision problem if there exists a stowage plan that cause at most s shifts.
Associated optimization problem is to minimize shifts.

The term ”unrestricted” means, that there are no technical restrictions to be
considered in a sense that each container can be placed in any empty slot.
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Theorem 1 ([4]). Let C be the number of columns in an uncapacitated bay.
Then, the uncapacitated, unrestricted containership stowage problem is N'P-
complete for C > 4.

There are some special cases. Clearly every bay with N — 1 uncapacitated
columns can result in a zero-shifts plan for every transportation matrix, but
it can further be reduced:

Theorem 2 ([4]). Let T be a (N — 1) x (N — 1) transportation matriz with
no zero entry on or above the diagonal. Then the minimum number of unca-
pacitated columns C* needed for a zero-shifts plan to exist is equal to f%]

The common formulation of the uCSP is (see in [2]):
N-1 N R C j-1
Min Z Z ZZ Z Zijo(r, €)
i=1 j=i+1r=1c=1v=i+1
subject to

Shipquant (: =1,.... N—-1,j=4i+1,...,N):

J i—1 R
D20 2w =3 > ) wwilre) =T M)
r=1c=1v=i+1 k=1r=1c=1
Slot (i =1,....N—1,r=1,...,R,c=1,...,C):
% N J
Do > wwjulre) = wilre) (2)
k=1j=i+1v=i+1

OnTop (i=1,....N—-1,r=1,...,R—1,¢c=1,...,C):

yi(r,c) —yi(r+1,¢) 20 (3)
Shift (j=2,...,N,r=1,...R—1,¢=1,...,0):
j—1 N j—1 N P
DD wmi(m 4 Y, Y w1 <1 “)
i=1 p=j i=1 p=j+1lv=j5+1

xij0(r,c) € {0,1} yi(r,c) € {0,1}
We define ;;,,(r,¢) = 1 if there is a container in slot (r,¢) loaded on board
in port ¢ with final destination j, and unloaded in port v and 0 otherwise.
Furthermore y;(r, ¢) = 1 if upon sailing from port 4, slot (r,¢) is occupied by
a container and 0 otherwise.
The constraints allow for the following interpretation: (1) specifiy the number
of containers to be shipped. (2) ensure that there is at most one container in
each route segment. (3) are needed to ensure that the containers are stored in
stacks and (4) define shifting movements. The objective counts the shiftings
caused by overstowed containers.
Other formulations of the CSP as a mixed integer program can be found in
[5] and in [11], but there are even more variables and constraints in use.
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3 Extensions of the Basic Model

There are a lot of potenial expansions of the basic model, in particular with
regard to technical constraints. For example, heavy containers should be
loaded in the columns first. Or the containers which need electricity have
to be stowed separately.

Different costs of container movements in ports can be incorporated intro-
ducing weigths into the objective function.

The provision for the ship geometry can be carried out through the usage
of virtual containers to be unloaded in a port N + 1 or an appropriate data
structure other than a matrix for the bay plan.

Conspicuous it is that stowage plans generated on the basic model tend to
group containers with the same destination. This is certainly a plausible way
if there is only one crane at a terminal. But it might be unfavorable in cases
where more than two cranes are available because the grouped containers are
only accessible by one crane.

In [12] an integrated approach which combines stowage planning and selection
of loading sequences of the quay cranes is presented. Especially the just-in-
time arrival of containers at the terminal is modelled.

In all cases mentioned above the basic model is not suited without arranging
columns in two dimensions.

We augment the approach in that we include everal additional constraints
and we examine how given solution methods and data structures have to be
modified.

First: Ships are never completely empty. This makes it usually impossible to
arrange all containers in order leaving the first port.

Second: Ports visited are not all different as some ports are visited twice, e. g.
a typical tour between Europe and Asia is calling Shanghai and Hong Kong
two times.

Third: Ships make round trips. Therefore the transportation matrix cannot
be defined as above mentioned as there will be no transports between port 4
and ¢ + N or other pairs.

4 Solution Methods

Due to the fact CSP is NP-complete and the formulations as a binary linear
program does not provide us with much hope to obtain results in reason-
able time developing heuristics seems suggestive. There are some methods
for producing solutions like simulation, heuristics, rule-based expert systems
and decision support systems. We want to mention here [15] as a good starting
point. Wilson et al. in [15] and [14] use a two stage process of computerized
planning i. e. generalized placement strategy as well as specialized placement
procedures. They incorporate many of the technical constraints in the objec-
tive function and their procedure models the human planner’s conceptional
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approach.

We examined the basic model with our own extensions mentioned above.
The generation of random instances was conducted in the following way:
Departing from the empty transportation matrix, a given number of ports,
and the capacity of the ship generation of the transportation matrix is done
by adding several transports. Input factors are the number of transports to
add, and the maximum size for an additional transportation.

A single transportation is added by selecting a random valid (i, j) combi-
nation (j > ¢) and adding containers. The number of containers is set to a
random value from one to maximum for an additional transportation. If that
amount of containers can be added to the transportation matrix without ex-
ceeding the ship capacity, it is done. If not, a new random value is selected
up to the amount that can be added without exceeding the ship capacity,
then that new amount of containers is added to the transportation matrix.
An alternative generation method tries to approximate real world transporta-
tion problem. Suppose that several ports are given, and the route of the con-
tainership is given as a string of indices to these ports, let n be the length of
the route. The container ship is expected to cruise that route several times,
the generation process approximates this loop on the given route m times.
The whole journey covers N = n * m ports.

Further, for example, a ship on a route linking Furope and China is not ex-
pected to carry many containers for transportation within Europe only or
within China only, and is not expected to transport containers from Europe
to Europe via China. Such restrictions are implemented with a port to port
matrix containing weighting factors for each combination of source and des-
tination port for the given route.

As with the simple generation of the transportation matrix, a number of
transports are added to this matrix. A new transportation is selected with
a random starting port ¢ € {1,..., N — 1} and a random destination port
je{i+1,...,i+n—1}. The port associated with the indices ¢ and j are
looked up. If the vessel will reach the destination port after ¢ and before j,
then no transportation is added. Otherwise a transportation is added in the
same manner as in the above named simple generation, but using the addi-
tional weighting factor from the port to port matrix. In case the weighting
factor is 0, no transportation is added to the transportation matrix.

The generated instances can be downloaded from the web [8].

The stowage plans for all transports steps are build up in parallel by the
following three steps of our heuristic. The first step assigning whole columns
(inspired by [2]). All steps start processing transportations with maximum
distance first. All transportation amount in the transportation matrix 1" are
divided by the row height R. The numbers of whole columns a transportation
can fill are noted for processing in the first step, the remaining transporta-
tion amount is left in the transportation matrix for further processing in the
second and possibly third step.
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At the first step whole columns are filled with containers assigned to the same
cell for the whole journey. As columns are filled with containers of the same
source and destination port only, no shifting is necessary. This step always
succeeds, but can leave some columns fragmented in transportation steps, as
the column is filled with containers only for some transportation steps but
not for all.

At the second step the heuristic tries to fill the remaining containers into
columns without causing shifts. Containers are assigned to partially filled
columns containing containers with the same destination and the same or an
earlier source port. Thus no shifts are created assigning the containers on
top of the already assigned containers. Otherwise containers are assigned to
columns empty during the required time, so the container can be assigned
without the need for shifts.

Remaining containers are filled in the third step one by one: for every con-
tainer the best assignment is calculated with a branch-and-bound algorithm
to minimize shifts necessary to store that container. This algorithm selects
several time slices, where there is at least one column for every time slice
with a free cell during the given slice, and the time slices add up to the
transportation duration of the container to be assigned. Combinations with
smaller intersections of the time slices are prefered.

Containers to be shipped from port ¢ to port ¢ + 1 can never cause a shift, if
these containers are placed last on top of all other containers and are removed
first. The first and second step do not assign such transportations.

We compared its results with the suspensory heuristic which was implemented
according to the outline Avriel et al. [3] . We could impove results in 1038
out of 1050 problem instances. Our results are available online at [8].

As placement of a column in ship bay is not specified, it is further possible
to try to meet stability constraints via adjustment.

5 Related Problems

In this section we show some other problems connected with the CSP. A
discussion of Tower of Hanoi problem(see [9] and for an application [10]) or
sorting permutations by stacks (see [7]) are omitted due to the scope of this

paper.

5.1 Tram Dispatching

In a recent PhD-Thesis [16] the tram dispatching problem is analyzed. In
this problem it has to be decided how incoming trains have to be distributed
to tracks in the depot so that no shunting occurs in the next morning. The
difference to the CSP is that no trains leave the depot before all trains have
arrived and this difference is crucial. The thesis additionally analyses the
online case. The online case means just in time changes as crash of trains



Containership Stowage Problem 7

and delays and are like result changes in the stowage plan if new containers
arrive to load. So this approach can possibly be adapted to the stochastic
CSP.

5.2 Packing with discharge conditions

The vehicle routing problem with packing constraints was recently presented
[13]. In this problem, there are some vehicles with dynamic pickup and deliv-
ery at the customers and the gemoteric load dimensions are also considered
and not only the total weight or volume of boxes to be picked. The goal is to
minimize tour length and unutilized volume.

In a new approach we analyze the loading and unloading operations by each
delivery. Because the volume of each vehicle is limited and there is normally
only one access point at the rear, it may be necessary to unload some boxes
temporarily. These shifts depend on the sequence of the visited customer and
the packaging pattern.

In general we consider a three-dimensional packing problem according to
Dyckhoff’s [6] classification as 3/V/O/C. This denotes a three-dimensional
packing problem where one large object has to be packed with all items of
congruent figures. If every item has a destination and there is a certain se-
quence of destinations it is useful to think about the discharging procedures.
One can identify two cases:

In the first case all items have to be loaded in the beginning. Then, the objec-
tive is to minimize, for example, the unutilized space and to minimize shifting
operations at each destination by unloading the items.

The second case is more complicated when loading and unloading occurs at
every destination as is the case in vehicle routing problems with packing con-
straints explained above.

In contrast to CSP, the items are not loaded in stacks and there might be very
complicated patterns of packed items. The boxes are overstowed in different
manners, e. g. there are overstowed boxes above but also in front or beside a
box. Clearly there is only one type of boxes in CSP.

6 Further Research

The complexity of the uCSP is still unknown for fixed number of rows R.
Also it can be shown that for a single uncapacitated column there exists a
polynomial time algorithm [1], the complexity of the uCSP remains unsolved
for C=2o0r C =3.

There is no application of these models and solutions methods to real data.
Many solution methods seems to be ad hoc so that a comprising analysis is
auspicious.

A new formulation as a mixed-integer program which can be expanded to
multicriteria objectives would be eligible.
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