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Abstract. Stowage planning occurs frequently in logistics but is generally consid-
ered as a problem with one loading point and one unloading point. The stowage
pattern can be seen as a generalization of a stack if access to the packed items is
possible only from one direction. We will call this a pile of items.
A well-known application of a pile of items are the bay plans of containerships,
which consist of many parallel stacks of containers. The generation of stowage
plans of such containerships becomes complicated due to the multiple loading und
unloading points (here: ports) and the objective to minimize moved items at each
point.
In our presentation we want to introduce in the field of stowage planning in terms of
an application of discrete mathematics in operations research and present heuristics
for some cases in order to stimulate discussion for advanced solution methods.

1 Stowage Planning

Cargo stowage is the way of arranging and allocating items in a transport
unit in view of the most economic conveyance ([5]). The stowage planning has
to consider one big object B, which can be a transport unit or some storage
space. The cargo to be stowed consists of many small objects O = {o1, . . . on}.
In a general model the objects have beside of volumetric and gravimetric
characteristics some other properties:

• Given orientations (”this side up”)
• Limited stackability
• Different builds
• Securing means and values

Usually there is only one loading point for the small objects, where the
stowage takes place and one unloading point for clearing the big object.
Though we want to focus on a new setting: Each small object has a loading
point, where it waits to get stowed and an unloading point, where it will be
discharged. This can be expressed through α : O → N and ω : O → N with
α(o) ≤ ω(o) ∀o ∈ O. The α(O) are the loading points or departures and
the ω(O) are the unloading points or destinations. The big object B travels
from the first loading point to the last unloading point and at every point
loading and unloading of small objects can occur.
Dependant on the dimensions of the objects and the nature of the transport
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unit there are limited possibilities of access to the stowed items. This can
cause some items block the retrieval of others. This yields to our first

Definition 1. Object o1 ∈ O overstows object o2 ∈ O if ω(o1) > ω(o2) and
o1 blocks o2.

Clearly the blocking condition has to be specified. Withal broad notions we
can now make the central

Definition 2. Stowage planning is the problem of packing all given small
items at each loading point into a given big object and thereby minimizes
the number of items overstowed.

2 Classification as a packing problem

We can classify stowage planning as a packing problem due to [6]:

• The dimensionality can be one, two or three.
• Kind of assortment is of type I, which means to use all objects and pack

all items.
• Quantity measurement is discrete.
• Objects are of rectangular shape.

The objective can be set to:

• Packing all items in the object at each loading point and
• avoiding unnecessary temporarily (re-)loadings.

Latter means to minimize number of overstowed items. Obviously there is a
trade-off between overstowage and volume utilization.
Overstowage cannot only occur due to a given tour of the big object but also
to other causes:

• The availability of the small objects can be limited and therefore they
build a sequence with partial order.

• There are operational characteristics of the packing problem like multi-
stage environment.

• There are some dynamics of allocation, which means a dynamic stowing
of items with reallocation like in a warehouse.

Additionally it is perhaps possible to change the sequence of loading points
to obtain fewer overstows. For this aspect see [10].

3 Special cases of the problem

There are some special cases, we will discuss now.
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3.1 Special cases in time

If α(o) = 1, ω(o) = n ∀o ∈ O, then we have a classical container loading
problem in the respective dimension and there are no overstowed items.
If ω(o) = n ∀o ∈ O and no restriction on α emerges then the stowage planning
can be seen as if the items have an availability sequence or the transport unit
collects the items along the loading points. There are no overstowed items
but possible rearrangement costs.
If α(o) = 1 ∀o ∈ O then all items are loaded at the same point and dropped
along the tour in their destinations. There are no overstowed items if the
stowage pattern at the loading point consists of guillotine cuts because then
we can sort appropriately.
If the small objects are fragmented in disjuct sets like O = O1∪̇O2∪̇ . . . ∪̇Ok

with no common loading and unloading points ω(Oi) < α(Oj) ∀i < j and
further α(o) = kj , ω(o) = lj ∀o ∈ Oj then we have a sequence of classical
container loading problems and there are no overstowed items.

3.2 Special cases in space

Since overstowage can only occur if objects block each other, we can look for
special cases in space.
If the transport unit is of a shape, that no two items can block each other,
then no overstowage occurs. This can be due the fact, that there is one access
direction and the pile depth of the items is one or the pile depth is greater
than one but there are more than one access directions (see for instance
Fig.1).

Fig. 1. Example of pile depth two

Another interesting case occurs when all items have a fixed orientation,
their width is more than half of the width of the transportation unit and
there is one access point (see Fig.2). This case is mentioned in [9] and solved
in [2]. We will call this the one stack overstowage problem (OSOP).

In the multi-stack case all items are of the same size, with fixed orientation
and can only be arranged in stacks like in the OSOP. There is one access
direction for every stack (see Fig.3). The corresponding decision problem is
NP-complete due to [3] and its economic relevance is due to the fact that it
is a simple version of the containership stowage problem ([7]).
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Fig. 2. One stack case

Fig. 3. multi-stack case

4 Piles

To handle the stowage planning problem, we have to find a characterisation
of the stowage pattern that allows us to identify blocked items. We restrict
to the cases of orthognal items of three dimensions and one specified access
direction. Obviously two items are blocked if they touch each other and ac-
cordingly have a rectangle perpendicularly to the access direction in common
(cf.[11]). But an item can block the retrieval of an other item also if they
don‘t share any area. This leads to a characterisation of stowage pattern as
graphs.

Definition 3 ([8]). A graph G = (V, A) is called a pile if it is finite, directed,
without loops and cycles.

We identify a stowage pattern with a pile. Thereby an item is represented
through an node of the graph and there is an edge between two nodes if the
corresponding two items touch each other vertically to the access direction.
A item o is then called blocked if if there is an ingoing edge at node o. (See
Fig. 4 for an example). In the case of the OSOP, the pile is a simple path.
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Fig. 4. Left: stowage pattern, right: pile
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And in the multi-stack case the pile consists of many components, which are
simple paths.

5 Solution Approach

5.1 General 3D case

A heuristic solution approach for packing (3D-)boxes in a single container
with one loading point and some unloading points is mentioned in [4]:
Start from the final destination and the corresponding unloading point max{ω(o)}
and pack the shipment Omax ω with respect of maximizing the space remain-
ing for the rest. This is done by trying to pack walls while preserve container
dimension in access-direction. Then iterate from last to nearest destination.
The crucial part is the wall-building method. If there is enough space in
access direction, then this heuristics doesn’t produce any overstowed items.
However if some items of different destinations have to be intermixed in a
wall this cannot be assured any more.
Another heuristics is to build towers of the items of each destination and try
to place the towers descending on destination distances in the container.
In general, every algorithm for container loading can be applied but has to be
shifted to stow items with further destination in the rear part of the container.

5.2 Multi-stack case

In the multi-stack case with all items of equal size but multiple loading and
unloading points the solution method of the OSOP mentioned in [2] can
be sucessfully applied. The optimal solution of OSOP gives us a policy for
each loading point i: We have to decide if we need to rearrange the stack
at point i to bring the stack in order (ascending destinations) for the next
k destinations. This depends on the items to be stowed at this point and
further points.
So if we assume now for the multi-stack case that each item assigned to a
stack is loyal to this stack during its journey, then we can calculate after
assigning all items to stacks independently for each stack via the OSOP
method an optimal policy. If the items are not loyal we can calculate the best
stack having some capacity left for some temporarily unloaded items with
the OSOP method again.
The OSOP method is crucial, so we will display it here: Let the departures
be numbered 0, 1, . . . , m and the destinations numbered 1, 2 . . . , m + 1. If
V(i,j) = |{o ∈ O|α(o) = i, ω(o) = j}| then we can calculate the number
S(0, m + 1) of overstowing items in an optimal stowage plan for the OSOP
recursively (see [1]):

S(i, j) = min
i+1≤k≤j−1

{S(i, k) + r(i, k, j) + S(k, j)} i = 0, 1, . . . , m + 1 (1)
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with

S(i, i + 1) = S(i, i + 2) = 0 i = 0, 1, . . . , m + 1 (2)

and if Vi,j 6= 0 ∀(i, j), then

r(i, k, j) :=

k−1
∑

q=i+1

m+1
∑

l=k+1

V(q,l) +

i
∑

p=0

j−1
∑

n=k+1

V(p,n) (3)

If at some point only loading and no unloading occurs we have to adjust the
calculation of r(i, k, j) but this is omitted here. The optimal rearrangement
policy is gained in the recursion.
We give a upper bound for the number of overstowing items, which is given
by the following binary linear program. This is done to give an estimation
for the performance of other possible heuristics for the multi-stack case Let
|O| = n and given stacks with numbers k = 1, 2, . . . , K and capacity hk.

min
∑

i,j∈O
α(i)<α(j)<ω(i)<ω(j)

yij (4)

subject to

K
∑

k=1

xik = 1 ∀i ∈ O (5)

n
∑

i=1

K
∑

k=1

xik = n (6)

∑

i∈{o∈O|l∈[α(i),ω(i)]}

xik ≤ hk ∀k, l = 1, . . . , max{ω(o)} (7)

xik + xjk ≤ yij + 1 ∀i, j, k (8)

xik ∈ {0, 1} yij ∈ {0, 1} (9)

(4) counts the number of items in the same stack which cause overstowage.
(5) and (6) provide that all items are loaded. (7) provides that at each loading
point no more item than the allowed stacking capacity is assingend and (8)
connect the variables x and y. The variables meaning is:

xik =

{

1 item i assigned to stack k

0 otherwise

and yij = 1 indicates, that item i and item j are assigned to the same stack,
yij = 0 otherwise.
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6 Further Research

The research of stowage planning in the context given above is at the very be-
ginning and the most important questions are (1) how to classify the stowage
planning problems more accurate, (2) how to modify known packing algo-
rithmus to solve stowage planning, (3) can we get more information out of
the possible piles of a given instance of small items and (4) how well do the
proposed heuristics perform?
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