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Abstract

In this paper we are involved with the so-called master bay plan problem (MBPP), that is the problem of
finding optimal plans for stowing containers into a containership, with respect to a set of structural and
operational restrictions. We describe in detail such constraints and give a basic 0—1 Linear Programming
model for MBPP. Successively, we present a heuristic approach that enables us to relax some relations from
the model and give some prestowage rules for being able to solve this combinatorial optimization problem.
In particular, we split the set of available locations of the ship into different subsets and force the stowage
of containers within them depending on their features and handling operations.

A validation of the proposed approach is given together with the analysis of real instances of the problem
coming from a maritime terminal located in the city of Genoa.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The management of a terminal container is a complex process involving many interrelated
decisions. Containers arrive and leave the terminal in various ways, for instance, by truck, train
and vessel; the terminal is hence a basic node in the transportation network, and for this reason all
the operations involved in the flow of containers have to be optimised in order to achieve max-
imum global productivity, expressed in terms of some appropriate economic indicators. Due to
the high cost related to the total time spent by a ship in a terminal, all maritime companies refer to
productivity indicators, e.g. the hourly container handling operations, for choosing the routes
of their ships and the sequence of harbours to visit.
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In this work we deal with the ship planning problem. The stowage of a containership is one of
the problems that has to be solved on a daily basis by any company which manages a container
terminal (Thomas, 1989). In the past, the stowage of containers was performed by the Captain of
the ship; today, as a consequence of containerisation, the terminal has to decide the stowage of
containers in accordance with the stowage instructions of the ship coordinator representing the
maritime company which operates the ship.

The stowage of a containership involves different objectives; among others it is required to
optimise the available space and prevent damage to the goods, the containership, its crew and its
equipment. Moreover, it is desired to minimise the berthing time of the containership at the
terminal (Atkins, 1991).

Formally, the master bay plan problem (MBPP) involves determining how to stow a set C of m
containers of different types into a set S of n available locations within a containership, with
respect to some structural and operational constraints related to both the containers and the ship,
whilst minimising the total stowage time (see, ¢.g., Ambrosino and Sciomachen, 1998).

The problem we are investigating is really complicated because of its combinatorial nature. In
the recent operations research and management science literature, decision support systems,
heuristics, genetic algorithms, analytical and stochastic models have been suggested as very
interesting approaches for solving problems that unfortunately have only some commonalties
with MBPP and are mainly devoted to the loading problem (see Avriel and Penn, 1993; Avriel
et al., 2000; Bischoff and Mariott, 1990; Bischoff and Ratcliff, 1995; Bortfeldt and Gehring, 2001;
Chen et al., 1995; Crainic et al., 1993; Davies and Bischoff, 1999; Gehring et al., 1990; Gehring
and Bortfeldt, 1997; Imai et al., 2002; Raidl, 1999; Wilson and Roach, 2000 among others).

Our first attempt to understand the problem in order to derive some rules for determining good
container stowing plans has been reported in Ambrosino and Sciomachen (1998), where a con-
straints satisfaction approach has been used for defining and characterising the space of feasible
solutions without having any objective function to optimise.

In this paper the main constraints of the problem are presented in detail in Section 2. A basic
0-1 Linear Programming model for MBPP is given in Section 3, while our proposed algorithmic
approach is presented in Section 4. In Section 5 we give a simple test case and present some
computational results aimed at validating the proposed approach. The study related to the
problem of stowing containers in an Italian maritime terminal is given in Section 6. Finally, we
give some comments and outlines for future work.

2. The structure of a containership and the constraints of the problem

When solving MBPP, of particular interest are the constraints related to the structure of the
ship and the size of the hold and upper deck. We consider here two types of containerships,
namely Ro—Ro (Roll on—Roll off), which load/unload containers through the ramps located either
at the bow or the stern of the ship, and Lo-Lo (Lift on-Lift off), which load/unload containers
from the top (by using cranes).

To give an idea of how stowage takes place, let us consider the basic structure of a ship (see
Fig. 1) and its cross section. This consists of a given number of locations, that can vary in size
depending on the ship. The most common, however is 8 feet (8') in height, 8 in width and 20’ in
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Fig. 1. Horizontal and cross sections of a standard containership.

length. Each location is identified by three indices, each one consisting of two numbers that give
its position with respect to the three dimensions. In particular, each location is addressed by the
following identifiers: (a) bay, that gives its position relative to the cross section of the ship
(counted from bow to stern); (b) row, that gives its position relative to the vertical section of the
corresponding bay (counted from the centre to outside); (c) tier, that gives its position related to
the horizontal section of the corresponding bay (counted from the bottom to the top of the ship).

Thus a container is located in a given bay, on a given row and on a given tier. We will denote by
I, J and K, respectively, the set of bays, rows and tiers of the ship. Moreover, we will use the
following additional notation:

E and O: sets of even and odd bays, respectively, such that E C I, O C/ and EUO =,
A and P: sets of anterior and posterior bays, respectively, suchthat 4 C I, P CTand AUP =1,
R and L: sets of right side and left side rows, respectively, such that R C J,L C Jand LUR = J.

Note that the address number of the ship locations depends on the system adopted by each
maritime company. One of the most used, that is also chosen in this paper, ranks in an increasing
order the first index, i.e. the bay, counted from bow to stern. In particular, each 20’ bay is
numbered with an odd number, i.e. bay 01, 03, 05, etc., while two contiguous odd bays con-
ventionally yield one even bay, for the stowage of 40’ containers, i.e. bay 04 =bay 03 + bay 05 (see
Fig. 1). The effective even bays depend on the particular structure of the ship under consideration
but, in any case, each even bay (for instance bay 04), is associated with two contiguous odd bays
(for instance bay 03 and bay 05). Consequently, both the first and last bays will have an odd
number. As for the second index, that is the row, ship locations have an even number if they are
located on the seaside, i.e. row 02, 04, 06, and an odd number if they are located on the yard side,
1.e. row 01, 03, 05, etc. Finally, for the third index, that is the tier, the levels are numbered from the
bottom of the hold to the top with even number, i.c. tier 02, 04, 06, etc., while in the upper deck
possible numbers are 82, 84 and 86. Note that, in the final stowage plan such tier numbers allow
the containers stowed in the hold to be distinguished from those in the upper deck.
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The number of bays, rows and tiers of each ship is known and together with the list containing
all the characteristics of the containers to be loaded are the input data required for making explicit
the constraints of the problem.

Together with the ship profile, that contains information related to both structural and oper-
ational constraints of the ship, the terminal has the bay plan configuration that is useful for
defining the stowage in the available locations of the ship. An example of a bay plan configuration
is given in Fig. 2.

Other useful information are provided by the ship coordinator. In particular, he/she gives
instructions for the stowage by defining the available bays for containers having different desti-
nations, and specifies the requirements for the location of reefers, hazardous and over sized
containers.

Solving MBPP means taking into account both the constraints related to the particular ship
under consideration and those of the containers.

Size of container. We consider here the standard size of a container, namely 20 and 40 feet in
length with a section of 8 x 8. Moreover, we refer to the container system expressed in terms of
TEUs (Twenty-foot Equivalent Units); that is a TEU is 8 feet wide, 8 feet high and 20 feet long,
and a 40 feet container is equivalent to two TEUs.

Containers of 40’ require two contiguous bow—stern locations of 20’ each, that is to say they
have to be located in even bays (for instance bay 02). Consequently, the locations of the same row
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Fig. 2. Example of bay plan configuration.
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and tier corresponding to two contiguous odd bays (e.g. bay 01 and bay 03) are not anymore
available for stowing containers of 20/. Moreover, as it is always required for security reasons,
we assume that 40’ containers cannot be located either under locations where 20’ containers
are already stowed or over empty locations, while 20’ containers cannot be put over either 40/
containers or empty locations.

Type of container. Different types of container can usually be stowed in a containership, such as
standard, carriageable, reefer, out of gauge and hazardous.

As it has been already said, the location of reefer containers is defined by the ship coordinator
(who has a global vision of the trip), so that we know their exact position. This is generally near
plugs in order to maintain the required temperature during transportation. Hazardous containers
are also assigned by the harbour-master’s office which authorises their loading. In particular,
hazardous containers cannot be stowed either in the upper deck or in adjacent locations. They are
considered in the same way as 40’ containers.

In the following we will denote the sets of standard 20 and 40 feet containers as 7' and F
respectively, while H will denote the set of both reefer and hazardous containers to load on board.

Weight of container. The standard weight of an empty container ranges from 2 to 3.5 tons, while
the maximum weight of a full container to be stowed in a containership ranges from 20 to 32 and
30 to 48 tons for 20’ and 40’ containers respectively. Containers are put in the yard into different
stacks on the basis of their size, destination, type and weight class. This allows a priori identifi-
cation of those containers that have to be located in the hold and those that have to be located in
the upper deck. The total weight of all containers cannot exceed the maximum weight capacity,
say Q, of the containership.

Usually, three classes of weight are considered, namely light (from 5 to 15 tons), medium (from
15 to 25 tons) and heavy containers (more than 25 tons). In this work, we will denote by w,. the
weight of container ¢, ¢ = 1,...,m, that could belong to either class lw (for light weight), or mw
(for medium weight) or hw (for heavy weight).

Moreover, the weight of a stack of three containers of 20" and 40’ cannot be greater than an a
priori established value, say MT and MF respectively; finally, the weight of a container located in a
tier cannot be greater than the weight of the container located in a lower tier having the same row
and bay.

Destination of container. A good general stowing rule suggests to load first (i.e. in the lower
tiers) those containers having as destination the final stop of the ship and load last those con-
tainers that have to be unloaded first. Moreover, in the case of Ro—Ro ship, it is necessary to
consider that in each odd bay there are stern ramps that allow entry to the hold from the upper
deck. This implies that we cannot load in the hold containers to be unloaded before those located
in the upper deck near the hatchcovers.

In Section 4 we will see that we can relax some of these constraints and use a heuristic pre-
stowing procedure to assign a priori groups of bays to containers according to their destination.

In the following we will denote by D = {1,2,...,p} the set of possible destinations and by
d. € D the destination of container c.

Distribution of container. Such constraints are related to a proper weight distribution in the
ship. This is the basic condition for good stowage. Note that it is possible to check the stability of
the ship by using some mathematical expressions only when the ship is loaded. However, there are
some rules, mainly derived from experience and from the knowledge of the load, that help in



86 D. Ambrosino et al. | Transportation Research Part A 38 (2004) 81-99

establishing the most suitable way for stowing containers that assures a well balanced distribution
of the weight. In practice, the most heavy containers are located in the hold, while the others are
located in the upper deck. Moreover, for safety reasons, after the loading operation is complete,
we have to verify different kinds of equilibrium, namely: (a) cross equilibrium, that is the weight
on the right side of the ship, including the odd rows of the hold and upper deck, must be equal
(within a given tolerance, say Q;) to the weight on the left side of the ship, including the even rows
of the hold and upper deck; (b) horizontal equilibrium, that is the weight on the stern must be
equal (within a given tolerance, say (») to the weight on the bow; (c) vertical equilibrium, that is
the weight on each tier must be greater or equal than the weight on the tier immediately over it.

Note that a ship must be loaded in such a way that it remains able to travel independently in a
variety of the weather conditions and that the stability constraints must also be satisfied after
some possible loading/unloading at intermediate destinations.

In the next section we present a model that assumes all containers are ready to be loaded on the
quay without considering their stock position in the yard. Work is in progress by the authors
aimed at also including yard constraints and thus reflecting the behaviour of the planning office
which makes the stowage plans in accordance with the stocking area requirements and the picking
list for the containers in the yard. Interesting problems related to the organization of the stocking
area have been considered in Kim et al. (2000), Preston and Kozan (2001) and Taleb-Ibraimi et al.
(1993).

3. The basic model of the MBP problem

We now introduce our 0—1 model of this combinatorial optimization problem, that is the basis
of the proposed method.

We assume x;.,, [ =1,...,n, c=1,...,m, as decision variables of the problem, with the fol-
lowing specification:

o 1 if a container c is stowed in location /
“ 710 otherwise

Note that the /th location is actually identified by indices i, j, k representing, respectively, its bay,
row and tier address, while ¢ identifies the number (or code) of the cth stowed container. This
means that, in practice, variable x;. = x4, directly giving the location where container c is stowed
if it is set to 1. Therefore, at the optimal solution we have the exact position of each container in
the ship.

The definition of variable x;., VI € S, Ve € C, enables an easy formulation of the underlying
model for MBPP, reported here below.

Model MBPP:

Min L = Z Ztlc.x;c (1)
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ceT ceT ceT
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de#de
_Q2 < Z chxijkc - Z chxi/kc<Q2 (16)
i€cdjk ¢ i€ePjk ¢
_Ql < Z chxijkc - Z chxijkc <Ql (17)
ijeLk ¢ ijeRk ¢
x. €{0,1} Vi, c (18)

(1) is the objective function that minimises the total stowage time L, expressed in terms of the sum
of time ¢, required for loading a container ¢, Vc € C, in location /, VI € S. Note that 7. is given by
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the time for handling container ¢ by a yard transtainer and its positioning on board and depends,
as we will see later, on the row and tier address in the ship.

Constraint (2) defines the number of locations to select for stowing the given containers.
Relations (3) and (4) are the well known assignment constraints forcing each container to be
stowed only in one ship location and each location to have at most one container.

The capacity constraint (5) establishes that the total weight of all containers cannot exceed the
maximum weight capacity Q of the containership.

Relations (6)—(11) are the size constraints, as they have been described in Section 2. In par-
ticular, (6) and (7) force, respectively, 40’ containers to be stowed in even bays and 20’ container to
be stowed in odd bays, while (8) and (9) make unfeasible the stowage of 20’ containers in those
odd bays that are contiguous to even locations already chosen for stowing 40’ containers, and
inversely; (10) and (11) prevent 20’ containers being positioned over 40’ ones.

Weight constraints (12) and (13) say that a stack of at most three containers of either 20’ or 40/
cannot exceed values MT and MF, respectively, that usually correspond to 45 and 66 tons; note
that such constraints verify the corresponding tolerance value in all occupied tiers in the same row
and bay for any possible stack of three containers, as it is required by the weight constraints
described in Section 2. Constraints (14) force heavier containers not to be put over lighter ones.
It is worth noting that constraints (14) also avoid the stowing of both 20’ and 40’ containers
over empty locations.

The destination constraints (15) avoid positioning containers that have to be unloaded first
below those containers that have a later destination port.

Constraints (16) and (17) are the horizontal and cross equilibrium conditions, stating that the
difference in weight between the anterior and the posterior bays and between the left and right side
must be at most O, and O, tons respectively. Note that in this model the condition related to the
vertical equilibrium given in Section 2 can be dropped since it becomes redundant due to the
weight constraint given in (14).

Finally, in (18) the binary decision variables of the problem are defined.

Note that in the formulation of the problem we assume that the ship starts its journey in the
port for which we are studying the problem and successively visits a given number of other ports
where only unloading operations are allowed. We can justify this assumption by remembering
that we are involved with the stowage planning problem of a terminal that is not really affected by
what happens in the next ports, and hence we do not interact with the ship coordinator. More-
over, we assume that the number of containers to load on board is not greater than the number of
available locations; this means that we are not concerned with the problem of selecting some
containers to be loaded among all and that the capacity constraint (5) is only related to the
maximum weight available for all containers. In the next Section we will verify condition (5) in
order to prevent unfeasibilities due to constraint (2).

4. The solution approach
The proposed solution approach for MBPP consists of three main phases. The first phase, as

described in Section 4.1, is the instance’s preprocessing aimed at tightening the constraints of the
above model and reducing the feasible region of each container ¢ € C. Note that the above LP
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model is aimed at defining the stowage plan only for standard containers, while in the prepro-
cessing step of our procedure it is possible to assign more then one location at out of gauge
containers (like hazardous or reefer containers).

The second phase, described in Section 4.2, is the prestowage procedure, where we consider set
S of available locations split into different partitions with respect to their bay address. This is done
in such a way as to make easier the stowage of containers according to their destination. Finally,
we solve the MBPP Model given in Section 3; a modified version taking into proper account the
previous preprocessing and prestowing procedures.

4.1. Preprocessing

First of all, we sort the data related to the available ship locations according to their bay
address, in such a way as to look at the location of the containers with respect to indices i, j and £,
respectively. The final solution hence gives a picture of the loaded ship as it is ready for its
journey, that is the master bay plan giving for each container its position on board.

Then, in this phase we remove from set S all potential locations that a priori are not to be
considered for stowing container ¢, V¢ € C. That is we do not have variable x,. if location / cannot
stow container ¢ (i.e. it is preset at zero for that value of ¢). Moreover, we consider the specifi-
cations for both reefer and hazardous containers by setting to one the corresponding variables
before solving the model. For instance, setting x; 02,02,004 = 1 assigns to bay 01, row 02, tier 02 the
container with code number 004 that is a container for dangerous loads. Consequently, according
to the size constraints (see Section 2) we can a priori remove all variables related to both odd bays
for 40’ containers and even bays for 20’ ones, since they would be forced to zero in any feasible
solution (see constraints (6) and (7)).

In practice, in this phase, we initially assign set S to S, where S denotes the updated set of
available locations (variables) for stowing, and remove from S location /. if the following
conditions (19) and (20) are satisfied.

if (F # 0) then for (i € O;c € F;Vj, k) S:=S\ {lix}; (19)
if (T # 0) then for (i € E;c € T;Vj, k) S =S\ {Lj}- (20)

In particular, condition (19) makes unfeasible the stowage of 40’ containers in odd bays. Ana-
logously, condition (20) forces 20" containers to be stowed only in odd bays.

Finally, since we assume in this work that all containers to be stowed are ready in the storage
area at the quay, we have to verify whether the total weight W = > _w, of the containers does
not exceed the maximum capacity Q of the ship. If this is not the case, then capacity con-
straint (5) is a redundant constraint and hence removed and the assignment constraints (3) are
put as equality constraints, since all containers have to be stowed; otherwise, constraint (2) is
put as an inequality condition defining the upper bound for the number of locations to be
chosen.

In practice in this phase we make redundant constraints (6), (7) and either (2) or (5) and tight
the constraints of Model MBPP. Note that, in particular, the relations (14) make redundant
constraints (10) and (11) since it implicitly includes them, and constraint (2) together with con-
straints (8) and (9) make redundant the assignment conditions (4).
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4.2. The prestowing procedure

Apart from the basic combinatorial constraints (3)—(5), that are the assignment and knapsack
constraints, the destination constraints (15), that are relevant for the master bay plan problem, are
active combinatorial constraints and strongly affect the computational time (see Sections 5 and 6).
Note that these last constraints force containers stowed in the highest tiers to be unloaded first
and hence, from an operational point of view, they are very important. In fact, without consid-
ering the unloading port some containers loaded last would necessarily have to be moved for
enabling the unloading operations of some others. As has been mentioned in Section 1, “empty
moves” are very unproductive for any maritime company because they increase the berthing time
at port, thus affecting the cost of the whole trip of the containership.

In order to avoid unproductivity due to a possible relaxation of the destination constraints, we
perform a heuristic prestowing procedure. In particular, we force containers to be located only in
some bays that are established according to their destination. In this way, the search for the
location of each container is limited to a portion of the ship and, therefore, the space of the
solution of the problem is reduced and thus its complexity.

Practically, this procedure can be view as the execution of certain stowing instructions given by
the ship coordinator and by the planning office that determine the loading plan. These instruc-
tions define a prestowage and based on them the final stowage plan is determined.

Presently, we briefly report the main steps of our prestowing procedure, that is described in
more detail in Ambrosino et al., 2002.

Step 1: sorting C. We split set C of all containers to be stowed in the ship into p subsets Cj,
h=1,...,p, where p is the number of different ports visited by the ship, such that ¢ € Cj, if and
only if d, = h, Vh = 1,...,p. This means that containers are grouped together according to their
destination, so that |J,_, ,C,=Cand C,NC, =0, Vh#g, h,g=1,...,p. We then sort C in
such a way that C, < C, ifand only if h < g, h # g, h,g = 1,..., p. Elements belonging to C, are
hence containers to be unloaded first, elements belonging to C, are containers having as desti-
nation the second port visited by the ship, and so on.

Step 2: partitioning I. We consider set [ of all available bays of the ship as b different partitions,
where b = |I|, and associate with each of them subset Cj, 7 = 1,..., p, depending on the value of
p. In this way we make unfeasible the stowage of containers out of their predefined bays, thus
reducing the decision space of each variable of the problem.

In particular, our idea consists of first assigning the central bays of the ship, namely bays 5/2
and b/2 + 1 to C), that is to containers that have to be unloaded first; this means that all tiers and
rows of bays /2 and b/2 + 1 are populated by containers belonging to C;. Then, if p =2, we
assign alternatively their contiguous bays to C, and C,. Otherwise, that is if p > 3, starting from
bay b/2, we assign bay /2 — 1 to C, and bay 5/2 + 2 to C;, and continue to assign alternating
bays to different subsets depending on their cardinality.

An example of different assignments of set / of bays is reported in Fig. 3, where only even bays
are conventionally considered. Fig. 3 refers to those few instances in which either 2 or 3 different
ports have to be visited by a containership.

Note that this bay assignment procedure follows the basic criterion by which containers to be
unloaded first are located in the central bays in order to avoid, as far as possible, imbalances in the
bow-stern weight distribution. In the bays close to the centre on one side are located containers
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8 bays, 3 destinations: E

Port 1

R
Port 3

NN  Port 140%, Port 2 40%, Port 3 20%

RSN Port 1 10%, Port 2 40%, Port 3 50%
1 3 5 7 9 11 13 15

Fig. 3. Example of bay assignments in the prestowing procedure.

having the second port as a destination and on the other containers to the third port. This avoids
imbalances after the first and later containers unloading. This choice also enables easier and faster
container loading in the ports visited after the original loading port.

At the end of this step we then have set Ic,, h =1,...,p, that identifies all bays where con-
tainers that have as destination port 2 must be stowed. In order to prevent unfeasibility, we keep
free some locations in the highest tiers, in such a way that only about 80% of the total locations
are assigned a priori to subsets C,, A = 1,..., p. In practice, in our procedure we do not consider
the last tier in each row and bay. This choice is justified by the fact that the loading time, for
instance by a yard transtainer, in the upper tiers is as low as possible and hence in the case where
an empty move is required it does not affect the overall loading time value L given by (1) too
much.

Step 3. reducing S. Analogous to what has been done in the preprocessing phase (see Section
4.1) we remove from S those locations having as bay address (i.e. index i) values that do not
correspond to the bay-container assignment defined in Step 2. Consequently, all variables x;j,
such that i & I¢,, Vc € Cj, are not generated.

The whole prestowing procedure is here below synthetized in a C-like formulation.

Procedure (Prestowing)
begin
I* group containers according to their destination */
split C into p subsets such that c € C, iffd, =hVh=1,... p;
sort C in an increasing order such that C, < C, iff h< gh# g, h,g=1,...,p;
I* group the bays according to the containers destination */
assign bays b/2 and /2 + 1 to Cy;
if (p >= 3) then assign bay (b/2 — 1) to C, and bay (b/2 4 2) to Cj;
else assign bays (b/2 — 1 and b/2 + 2) to Cy;
for(i=1tob/2—1)and (i =b/2+ 3 to b)
for (h = p down to 2)
assign alternatively bay i to Cj;
I* remove locations of unfeasible bay-destination assignments */
for (h=1to p)
for i ¢ 1Ic,, j€J, ke K\ {last tier}, c € C}) do
S =5\ {l)
end.
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4.3. Solution of the problem

Finally, we solve MBPP Model according to the modifications performed in the previous
phases, that is with the relaxation of constraints (4)—(7), (10), (11) and (15), considering set S
instead of the original set S of locations with subsets C,, # =1,...,p and their corresponding
feasible bay assignment /.

5. Performance evaluation
5.1. A simple case study

To give an idea of the type of problem we are involved with, let us first present a simple case
study concerning the stowage plan of a 64 TEU containership, where 15 standard containers, split
between 20" and 40’ with weight ranging from 10 to 25 tons, have to be loaded for having 1 or 2
ports to visit (see Table 1). The ship consists of four odd bays, namely 1, 3, 5 and 7, that yield two
even bays, namely 2 and 6, four rows, namely R03, R01, R02 and R04, and four tiers, denoted by
02 and 04 in the hold and 82 and 84 in the upper deck. The ship has a maximum capacity of 250
tons and the maximum cross and horizontal weight tolerance is fixed to 20 and 40 tons, respec-
tively (i.e. Q1 = 20 and O, = 40). The loading times with respect to each tier and row are reported
in Table 2, where we can see that they are independent from the bay and increase when the tier
is lower and the row is further from the yard side.

The formulation of the problem according to Model MBPP results in 1440 x.; variables and
1154 constraints. The optimal solution, corresponding to the objective function value (1), is
L* = 33.8 (that is 33 min and 48 s). While using the heuristic approach proposed in Section 4 the
minimum loading time is L = 34, corresponding to an optimality gap of 0.59%. The relative

Table 1

Data of the simple case study
Container Size Destination Weight
1 20/ 1 10
2 20 1 10
3 20 1 10
4 20/ 2 10
5 20 2 10
6 40’ 1 20
7 40’ 2 20
8 40’ 2 10
9 20 1 15
10 20/ 1 15
11 20 2 10
12 20/ 2 10
13 40’ 1 25
14 40’ 1 25
15 40 2 20
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Table 2
Loading times as a function of row and tier addresses
Tier 02 Tier 04 Tier 82 Tier 84
Row 04 2 36" 2’ 30" 2 24" 218"
Row 02 2 30" 224" 218" 212"
Row 01 224" 218" 212" 206"
Row 03 218" 212 2' 06" 2
MASTER BAY PLAN
TIER 02 TIER 04 TIER 82 TIER 84
o RO4 ROZ RO1 RO3 RO4 ROZ RO1 RO3 RO4 RO2 RO1 RO3 RO4 RO2 RO1 RO3
D1 D1 D1 D1
1 13 =3 10 14
P25 | P20 | P15 P25
2 | — SE
D1 D1 D1 D1
B 3 =] 1 3 2
i P15 P10 P10 P10
A o2 b2 b2
S 5 T 15 2
P20 Pz0 P10
1=
D2 b2 02 02
7 5 12 4 11
P10 P10 P10 P40

Fig. 4. Stowage plan of the simple case.

computational times are CPU* =7 54" and CPU = 11", respectively, obtained on a PC Pentium
II, using MPL (Maximal Software, 2000) and Cplex, together with the heuristic procedures
written in the C++ language. Our solution is shown in Fig. 4, which depicts the corresponding
master bay plan.

5.2. Computational experiments

As a comparison and evaluation of the prestowing procedure we have generated 12 classes of
medium sized scenarios, each one with either two or three destinations, with containers having
different destination, weight and size. Such scenarios have been solved by first using Model
MBPP, then relaxing the assignment constraints (4) and the destination ones (15), and finally
executing the procedure described in Section 4. All computational experiments have been per-
formed on the same platform as before. The results are shown in Table 3, where each value is the
average of seven entries. The headings are as follows: columns Destination, Weight and Size give
for each class of scenario the specification of the set of containers to be loaded on the ship; L* is
the optimal loading time (in minutes), (i.e. the solution of Model MBPP), L° is the objective
function value (1) of the relaxed model without constraints (15), that is our lower bound, and L is
the same value obtained by applying our proposed approach to the problem resolution. These
three objective function values are also graphically reported in Fig. 5. Notice the good behaviour
of our approach, expecially when containers are heterogeneous and belong to all classes of weight,



Table 3
Computational results of the different resolution approaches with two and three destinations
Case Destination ~ Weight Size Objective function (L) Aopt%o Computational time %Unfeas
(CPU)

d d dy Iw mw hw 20° 40 L L L e CPU* CPU° CPU
1—2dest 5 5 / /10 / 10 / 22.5 22.5 22.6 0.0 0.4 22.04" 12.34"  4.08" 10
1-—3dest 3 4 3 /[ 10 / 10 / 22.5 22.5 22.6 0.0 0.4 38.33" 13.26"  4.32" 20
2—2dest 5 5 |/ /10 |/ g 2 22.5 22.5 22.7 0.0 0.9 9.11" 356" 225 10
2—3dest 3 4 3 /10 / g 2 22.5 22.5 22.8 0.0 1.3 946" 4.06" 242 20
3—2dest 5 5 / /10 / 55 22.6 22.6 22.8 0.0 0.9 112.23" 55.18"°  6.02" 20
3—3dest 3 4 3 /10 / 55 22.6 22.6 229 0.0 1.3 146.15" 54.17°  7.16" 20
4 2dest 5 5 / /10 / 2 8 22.5 225 22.8 0.0 1.3 845 411" 245 0
4-—3dest 5 3 2 /10 / 2 8 22.5 22.5 22.8 0.0 1.3 8.52" 452" 253 10
5~2dest 5 5 / 4 4 2 10 / 22.5 222 22.5 1.4 0.0 45.23" 2435  5.15 10
5~3dest 3 4 3 4 4 2 10 / 22.6 222 22.7 1.8 0.4 88.52" 24.52" 6.01" 20
6—2dest 5 5 |/ 4 4 2 8 2 22.6 22.6 22.8 0.0 0.9 55.08" 22.58" 4.5 20
6—3dest 3 4 3 4 4 2 8 2 22.8 22.6 23.0 0.9 0.9 74.16" 22.52" 514 20
7—2dest 5 5 / 4 4 2 55 22.8 22.6 23.2 0.9 1.7 69.19" 31.51" 4.58" 20
7—3dest 3 4 3 4 4 2 55 22.9 22.6 23.0 1.3 0.4 98.35" 32.32" 549" 30
8—2dest 5 5 / 4 4 2 2 8 22.7 22.5 22.8 0.9 0.4 52.48" 2647 321 20
83dest 5 3 2 4 4 2 2 8 22.7 22.5 22.8 0.9 0.4 74.08" 28.02" 3.55" 30
9—2dest 5 5 / 2 4 4 10 / 23.0 22.8 23.0 0.9 0.0 1248 7.01" 2.8 10
9—3dest 3 4 3 2 4 4 10 / 23.0 22.8 23.2 0.9 0.9 15.03"  7.12" 3.2 20
10—2dest 5 5 / 2 4 4 8 2 22.8 22.8 23.2 0.0 1.7 23.16" 16.34"  4.12" 20
10—3dest 3 4 3 2 4 4 g8 2 23.0 22.8 23.2 0.9 0.9 31.05" 17.05" 5.29" 30
11—2dest 5 5 / 2 4 4 55 23.0 22.6 23.0 1.8 0.0 31.52" 11.53" 342 30
11—3dest 3 4 3 2 4 4 55 23.2 22.6 23.4 2.7 0.9 34.53" 10.58"  4.03" 40
12—2dest 5 5 / 2 4 4 2 8 22.9 22.5 22.9 1.8 0.0 88.02" 34.42" 550" 30
12—3dest 5 3 2 2 4 4 2 8 22.9 22.5 229 1.8 0.0 95.38" 34.16' 5.58" 30
Average 4 4 1 2 6 2 6 4 2273 2256 2290  0.78 0.73 51.777 20.90" 4.01" 20
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Fig. 5. Trend of the objective function’s value for the 12 considered classes of scenario.
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and how close is L to L* even in the worst case, that is 1.7% for cases 7 and 10. The good
performance of the heuristic approach can be observed in column 4, that reports the optimality
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gap as a percentage difference, between the optimal solution and both the relaxed and the heuristic
one, given respectively by the ratios =% and ££%.

CPU*, CPU”° and CPU are the computational times, in seconds, corresponding to the above
solutions. The computational times in the three cases are also graphically reported in Fig. 6, which
outlines the impressive reduction of the computational time when our approach is used.

As a further element of the analysis, a possible violation of destination constraints by the
optimal solution in the relaxed model has been detected. Such unfeasibilities, whose percentage is
reported in column % Unfeas, have been removed by changing the relative position of pairs of
containers, first in all tiers in each bay for all bays, and successively in each tier among different
bays. This search approach implies m(m — 1)/2 comparisons of values d., Vc € C. The next re-
search direction of the authors will be to investigate the applicability and the performance of
multiexchange local search techniques, as proposed in Ambrosino (2001), for removing unfeasi-
bilities and solving MBPP by a more ambitious research approach.

6. The operational scenario: a maritime terminal in genoa

In this section we present a case study which motivated our analysis of MBPP. In particular, we
consider the Chiwaua containership, that is a “client” of the maritime terminal in Genoa (Italy). It
is a 198 TEU containership, with 11 bays, four rows and five tiers (three in the hold and two in the
upper deck, respectively). All structural and operational information about the Chiwaua ship are
available to interested readers. We test our approach deducing the master bay plan by referring to
13 cases, reported in Table 4. As you can see, such cases differ from each other by the number of
containers to load, ranging from 100 to 158, their size and weight, the number of ports to be
visited, that is either 2 or 3, and the number of TEUs to load on board, ranging from 138 to 188.

Table 4
Data of the Chiwaua case under consideration
Case Container TEUs  Full (%)
Size Weight Destination
Tot 20/ 40’ Iw mw hw d d, ds
1 100 62 38 45 30 25 47 53 0 138 73.4
2 120 75 45 50 44 26 55 65 0 165 87.7
3 130 90 40 56 46 28 55 75 0 170 90.0
4 130 85 45 58 45 27 62 68 0 175 93.0
5 130 75 55 56 46 28 60 70 0 185 98.4
6 135 84 51 55 50 30 60 75 0 186 98.9
7 140 100 40 65 47 28 61 79 0 180 95.7
8 140 95 45 60 50 30 65 75 0 185 98.4
9 140 95 45 60 50 30 50 40 50 185 98.4
10 148 108 40 62 53 33 69 77 0 188 100
11 148 108 40 62 53 33 50 40 48 188 100
12 150 120 30 62 55 33 65 85 0 180 95.7
13 158 128 30 62 63 33 75 83 0 188 100
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Column Full gives the ship occupation level (in percentage terms) when all containers are loaded.
A 100% occupation level is allocated when 188 TEUs are loaded since, conventionally, 10 TEU
locations are operationally always kept free for security and possible emergency reasons. From
such as index, it is possible to derive the number of remaining free locations, considering that each
container of 40 feet needs two cells and hence two TEUs.

The computational results related to the cases described in Table 4 are reported in Table 5. As
before, Table 5 gives the loading time L* (in minutes) of the optimal value (1) obtained by solving
Model MBPP, the lower bound L° and the objective function value L obtained by applying the
approach presented in Section 4, as well as their relative optimality gaps, as described in Section
5.2. L is very close to L*, and differs from it by an average of 0.22%.

It is also interesting to analyse the loading time as a function of the percentage of occupation of
the ship (see column Full in Table 4). The difference in loading times between two contiguous
locations is generally of the order of 6 s (see Table 2) and increases when we move from the quay
side towards the bottom of the ship, since the locations become more difficult to reach (see Fig. 1).
This means that the optimal loading time, is in some sense, not too much affected by the chosen
approach when the ship occupation level is about 100%. This is because the problem is more
constrained and the choice with respect to the loading time minimization is very limited. In fact,
when the ship is full the value of the objective function is just the sum of the times, given as input
data, required for handling the containers by the available yard transtainers from the quay to their
location on the ship. The locations chosen for stowing 40’ containers play a relevant role in the
minimization criterion. Consequently, we try as far as possible to locate 40’ containers in lower
tiers on the seaside for reducing the handling operations in the most time expensive locations
for putting two 20’ containers.

In Table 5 columns CPU*, CPU° and CPU report the computational time, in minutes, of the
corresponding solution. The impact of the destination constraints (15) on it can easily be seen. For

Table 5
Computational results for the Chiwaua case
Case L L° L L (%) £ (%) CPU* CPU° CPU Handled
1 230.9 229.4 231.4 0.65 0.22 16’ 49" 12 16 251" 25.97
2 276.4 274.5 278.7 0.69 0.83 19 10" 17 10 8 17" 26.04
3 301.6 300.4 302.1 0.40 0.17 29’ 24" 22" 31" 10/ 19" 26.07
4 300.8 300.1 301.0 0.23 0.07 30" 48" 28" 41" 2 56" 26.10
5 300.8 299.8 302.1 0.33 0.62 33 44" 200 35 117 01" 26.20
6 312.0 311.1 312.0 0.29 0.00 29’ 30" 25" 31" 531" 25.96
7 323.3 323.1 324.4 0.06 0.34 46' 53" 28’ 58" 107 05" 26.00
8 324.0 324.0 324.9 0.00 0.28 26 21" 22/ 07" 15’ 23" 25.92
9 324.5 324.0 324.6 0.15 0.03 1h4y 2208 14’ 32" 25.88
0’
10 341.9 340.5 342.4 0.41 0.15 37" 43" 35 13 13 19" 25.97
11 342.3 340.5 342.3 0.53 0.00 1 h 352 35 21" 13’ 10" 25.94
05’
12 348.1 347.6 348.2 0.14 0.03 48 01" 46' 25" 14’ 16" 25.85
13 365.8 365.3 366.3 0.14 0.14 45 46" 40 15 33/ 53" 25.91

Average 291.7 290.8 292.2 0.31 0.22 44 34" 2729 11 58" 2599
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example, cases 9 and 11, both with three different ports to be visited by the ship it reduces
respectively from 103 to 22 min in the relaxed model, and from 112 to 35 min on the same
platform as in Section 5. Moreover, see how the proposed heuristic approach further improves the
computational time in all instances, even if CPU is just the time required by Cplex and does not
include the time of our preprocessing/prestowing procedures, which takes only few seconds in all
cases. It is worth mentioning that the planning office of the terminal that has provided the data for
the Chiwuaua containership takes about from 60 to 90 min for manually compiling the corre-
sponding master bay plans.

Finally, with reference to the objective function value (1) it is possible to evaluate a very
important terminal index, reported in column Handled in Table 5, that is the number of handling
operations per hour. Note that, on average, by applying our approach we have almost 26 con-
tainer movements/hour, while the same index in the present operational scenario at the maritime
terminal is about 24. This means that our approach not only enables the obtaining of good
solutions in a very short computational time but also guarantee better terminal performance
indices than those that are provided today.

As a further consideration related to the Chiwuaua containership, it is important to mention
that the implementation of Model MBP requires 28,500 variables for case 1 up to 45,030 for case
13, and from 14,015 to 18,231 constraints for the same cases.

7. Concluding remarks

In this paper the problem of stowing containers into a containership has been faced by eval-
uating an exact 0—1 Linear Programming model, that is not practically useful for large cases. This
has been modified by an approach proposed by the authors, consisting of heuristic preprocessing
and prestowing procedures that also allow the relaxation of some constraints of the exact model.
The proposed approach exhibits very good performance in terms of both solution precision and
computational time. Moreover, in the performance evaluation with real size cases, it also guar-
antees another very important maritime performance index, in term of handling operations/hour.

We think that the proposed approach is very valuable and that one of the future directions
of this study should be its application to evaluating the impact of the ship system requirements
on the whole organization of the yard.
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