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The master bay plan problem: a solution method based on its
connection to the three-dimensional bin packing problem
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This paper addresses the problem of determining stowage plans for containers in a ship,
referred fo as the Master Bay Plan Problem (MBPP).

MBPP is NP-complete. We present a heuristic methed for solving MBPP based on
its relation with the three-dimensional bin packing problem (3D-BPP), where items are
containers and bins are different portions of the ship. Our aim is to find stowage plans,
taking into account structural and operational constraints related to both the containers and
the ship, that minimize the time required for loading all containers on board.

A validation of the proposed approach with some test cases is given. The results of real
instances of the problem involving more than 1400 containers show the effectiveness of
the proposed approach for large scale applications.
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1. Introduction

The stowage of a containership is one of the problems that has to be solved daily by any
company which manages a container terminal (Thomas, 1989). In the past, stowage plans
for containers were produced by the Captain of the ship; today, the maritime terminal has
to establish the master bay plan, in accordance with the stowage instruction of the ship
co-ordinator representing the company holding the ship.

The ship planning problem involves different objectives, such as optimal space
allocation, optimal synchronization among dispatching operations and minimization of the
berthing time (Atkins, 1991).

Formally, the stowage planning problem, known as the Master Bay Plan Problem
(MBPP), consists of determining how to stow a set C of n containers of different types into
m available locations of a containership, with respect to some structural and operational
constraints, related to both the containers and the ship, while minimizing the time required
for loading all containers on board.

MBPP is a NP-complete combinatorial optimization problem.

Interesting heuristics for dealing with the container loading problem can be found in
Bischoff & Mariott (1990), Bischoff & Ratcliff (1995), Bortfeldt & Gehring (2001), Davies
& Bischoff (1999), Gehring & Menscher e Meyer (1990), Gehring & Bortfeldt (1997) and
Raidl (1999) among others. Terno et al. (2000) consider many practical restrictions arising
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in the multi-pallet loading problem, such as weight, placement and stability conditions.
Crainic et al. (1993) present stochastic models for the allocation of empty containers.

The application of Mathematical Programming models to MBPP has been investigated
in Botter & Brinati (1992), Chen et al. (1995) and Imai ef al. (2002), but many
simplifications to the problem make the proposed Linear Integer Programming models
unsuitable for practical applications with respect to our specific problem.

Ambrosino et al. (2002) split the set of bays of a containership and solve a 0/1 Linear
Programming model for MBPP by using a Branch & Bound algorithm for each subset
of bays, looking successively for the global stability of the ship by performing multi-
exchanges.

Rule-based decision systems for dealing with MBPP are presented in Ambrosino &
Sciomachen (1998), where a constraint satisfaction approach is used for defining and
characterizing the space of feasible solutions without an objective function to optimize,
and in Wilson & Roach (2000), where the potential of applying the theory of artificial
intelligence to cargo stowage problems is explored.

Avriel & Penn (1993) consider the minimum shift problem, that is the problem of
finding stowage plans with the smallest number of shifts, and Avriel et al. (2000) connect
it to the colouring of circle graphs problem.

In this paper we show the connection between MBPP and 3D-BPP and introduce
a heuristic procedure, which is based on the framework of the exact branch-and-bound
algorithm for 3D-BPP presented by Martello et al. (2000).

A description of the practical details of MBPP is given in Section 2. The main
commonalties and differences between 3D-BPP and MBPP are shown in Section 3. The
main steps of our algorithm for MBPP are presented in Section 4. In Section 5 we report
some computational experiments performed with real life instances involving more than
1400 containers, showing the effectiveness of the proposed approach in terms of quality
of the solutions and computational time. Finally, in Section 6 we give some concluding
remarks and outline future work.

2. Definition of MBPP

The following points outline the main constraints which must be considered for the stowage
planning process for an individual port (Ambrosino ef al., 2004).

e The constraints related to the structure of the ship are focused on the type, size and
weight of the containers to be loaded. Each location of the ship is addressed by the
following identifiers (see Fig. 1): (a) bay, that gives its position related to the cross
section of the ship (counted from bow to stern); (b) row, that gives its position related to
the horizontal section of the corresponding bay (counted from the centre to the outside);
(c) tier, that gives its position related to the vertical section of the corresponding bay
(counted from the bottom to the top of the ship).

e As far as the type of containers, we consider dry containers, dry high cube containers,
open top containers, platforms, reefers and tank containers; the specifications of such
containers are given in Table 1. The exterior dimensions of containers conforming to
ISO standards are 10, 20, 30 and 40 feet long x 8 feet 6 inches high and 8 feet depth.
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o Standard locations are generally sought for dry 20’ containers and denoted as one
Twenty Equivalent Unit (TEU) location. Containers of 40’ require two contiguous
locations of 20. Moreover, smaller containers cannot be stacked above larger ones,
since each container needs to be fixed by four twisters to the upper corners of the
container below it. Note that in Figure 1 the location denoted by A representsa standard
TEU location, while those denoted by B are devoted to the stowage of 40" containers.

o Locations of reefers are usually defined in advance by the ship co-ordinator, and
are generally near plugs in order to maintain the required temperature during
transportation. Hazardous containers and tanks are predestined too by the harbour-
master’s office which authorizes their loading.

e Weight constraints force the weight of a stack of containers to be less than a given
tolerance value; moreover, the weight of a container located in a tier cannot be greater
than the weight of the container located below it in the same row and bay.

e Operational and security constraints are related to the weight distribution on the ship. In
particular, after any loading/unloading operations different kinds of equilibrium have
to be checked, namely: cross equilibrium, that is the weight on the right side of the
ship must be equal, within a given tolerance, to the weight on the left side of the ship;
borizontal equilibrium, that is the weight on the stern must be equal, within a given
tolerance, to the weight on the bow; vertical equilibrium, that is the weight on each tier
must be greater than the weight on the tier immediately over it.

o Finally, destination constraints give a general rule which suggests loading first those
containers having as destination the final stop of the ship and, consequently, loading
last those containers that have to be unloaded first. Without considering the unloading
port some containers loaded last could be necessarily moved for enabling the unloading
operations of some others. The ‘shifting moves” are very unproductive for any maritime
company since they increase the berthing time at port thus affecting the cost of the
whole trip of the containership.

3. The connection between 3D-BPP and MBPP

As has been already said, the proposed heuristic procedure for solving MBPP is based on
its relation with the three-dimensional bin packing problem.

Given a set of n rectangular-shaped items, each onc characterized by width w, height
h;, and depth di,GeJ={,..., n)), and a set of identical three-dimensional containers
(bins) having width W, height H, and depth D, 3D-BPP consists of orthogonally packing
all items into the minimum number of bins. Considering items as containers and bins as
different portions of the ship (see Section 4.1), our aim is to connect 3D-BPP to MBPP and
smoothing out all the differences between the problerns.

The basic idea of our solution method for MBPP starts from the exact branch-and-
bound algorithm for 3D-BPP presented by Martello et al. (2000), where it is assumed
that (a) items may not be rotated, (b) items are packed with each edge parallel to the
corresponding bin edge, (¢) all data are positive integers such that w; < W, hj < H,and
di<DVjeld.
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FIG. 1. Cross, vertical and horizontal sections of a standard containership.

TABLE 1 Container specifications

Container type  Container sizes Container applications
Dry 10/ x 8/ x 867,20 x 8 x 8’6", General purpose container
30’ x 8’ x 8/6",40" x 8’ x 8’6"
Dry high cube 20/ x 8/ x 9/6",40' x 8’ x 9’6" High container for over height and volu-
minous cargo
Open top 20/ x 8 x 8/6”,40 x 8’ x 8’6" Removable tarpaulin and roof bows. Easy -
top loading of over sized cargo
Platform 20’ x 8/ x2/,40' x 8 x 2’ For extra length and heavy cargo
Reefer 20’ x 8’ x 8/6",40' x 8 x 8'6", For cooling, freezing of foods or chemi-
40’ x 8’ x 9’6" cals
Tank 20/ x 8/ x 8’6" For transportation of liquid chemicals

These assumptions are necessary for MBPP. In particular, assumptions (a) and (b) are
not to be underestimated. These strong restrictions are usually not considered in the bin
packing problem and items can be rotated (see e.g. Bischoff & Mariott, 1990; Faina, 2000
Gehring & Menscher e Meyer, 1990; George & Robinson, 1980; Mohanty ef al., 1994 and
Pisinger, 1998). Assumption (b) is not really important in packing practice but is absolutely
necessary for the definition of stowage plans since containers have to be stowed only in one
orthogonal direction.

The mentioned enumerative algoritim for 3D-BPP iteratively solves associated
subproblems in which all items of a given subset J! C J have to be packed into a single
bin (if it is possible), with the aim of maximizing the total volume of the packed items. In
particular, a procedure called main branching tree assigns items to bins without specifying
their actual position, and a branch-and-bound algorithm, called onebin, verifies whether a
subset of items J’ C J can be placed inside a single bin and, if it is the case, finds the best
filling of the single bin using items belonging to J'.
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A considerable effort is required in order to ensure feasibility for MBPP optimal 3D-
BPP solutions; in fact, we have to consider all structural and operational constraints, related
to both the containers and the ship, that any final stowage plan has to satisfy. Moreover, our
goal is to minimize the total loading time, which is one of the most important productivity
indicators of maritime terminal competitiveness.

In practice, even if there is a general commonalty between MBPP and 3D-BPP, there
are many practical objections.

First, analysing the input data we can see that 3D-BPP considers only cubic bins, while
in our problem the shape and the structure of the ship are important factors that have
to be taken into account, as well as the characteristics of the containers (see Section 2).
Moreover, the dimensions of the items are different from the sizes of the containers. Note
that, even if in 3D-BPP it is usually assumed that a larger number of objects having
different sizes than in MBPP is given, the exact algorithm proposed by Martello et al.
(2000) is in any case an efficient basis for MBPP, where only the types of the containers
shown in Table 1 are considered.

Second, the 3D-BPP algorithm under consideration starts to position the items from
the back left bottom corner and continues to fill the bin ina vertical pattern; instead, in the
case of stowage plans it would be better to follow horizontal patterns due to the stability
of the ship. Moreover, in the 3D-BPP formulation the presence of empty spaces between
items is allowed.

Third, because of the characteristics of 3D-BPP, largest items are packed first, as they
have more difficulties in their placement, this order of preference applied to our problem
arises in stowing first the largest containers and, consequently, 10’ and 20’ containers are
often positioned over them, thus violating the size constraints (see Section 2).

Finally, in 3D-BPP the position of the items is given in a three-dimensional Cartesian
space, with the origin of the axis located at the back left bottom corner, while for the
definition of stowage plans we have to know the exact position of the containers, as has
been explained in Section 2.

4. The proposed heuristic algorithm for MBPP

The heuristic procedure presented here is intended to exploit the potential of the 3D-
BPP algorithm proposed by Martello et al. (2000) and find solutions structurally and
operationally feasible for the stowage of a containership. Our objective function is the
minimization of the total loading time, that is given by the sum of the times required for
loading all containers in their assigned location. We assume that the handling operations
are performed by yard cranes, whose exemplifying loading times are reported in Table 2;
we can see that the value between two contiguous locations increases when we move from
the quay side (odd rows) going to the bottom (see Fig. 1), since the locations are more
difficult to be reached. Note that any other linear function for the loading times, which
depends on the location where a container is put, can be properly used.

We consider the constraints described in Section 2 and use the positioning pattern, and
the corresponding ‘enumeration” of the containers, followed in the case of 3D-BPP for
*packing” subsets of containers into different portions of the ship, such that the feasibility
of the solution is not violated.

The main phases of our approach for finding feasible solutions are now stated.
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TABLE 2 Example of loading times (in
seconds) as a function of row and tier indices

T02 T04 T06 T72 T74
RO4 190 180 170 160 150
RO2 180 170 160 150 140
RO1 170 160 150 140 130
RO3 160 150 140 130 120

4.1 The complex structure of the ship

The shape of a ship is different from a standard six-face solid, which is utilized as the
bin in 3D-BPP. In fact, we have to distinguish the hold, the upper deck, the bow, the
stern and some particular zones where it is not possible to stow containers, moreover, we
have to consider the particular ‘slanting’ shape of the hold. We split the ship into different
sections in order to be able to distinguish the above components, each section can hence
be considered as a bin.

Consider, as a numerical example, how we can split the hold of a 5 12 TEU
containership, with four tiers, eight rows and 16 TEU bays, into different sections. Figure 2
show the tiers (02, 04, 06, 08) of the ship, the 20/ standard bays (01, 03,05, ...,31), the
corresponding 40’ bays (02, 06, 10, ..., 30) and the rows (08, 06, 04, 02, 01, 03, 05,07).
The ‘dark’ slots are not allowed for stowing containers (note that, because of the natural
‘slanting’ shape of the hold, the lowest tiers are narrower in the external parts). _

We call the biggest parallelepiped shape portion of the ship the main section. Usually,
the main section consists of about 80% of the total available stowing area (T EUs) of the
ship. The main section itself is successively split into % homogeneous sections, denoted
normal sections N;, i = 1,2,...,k, according to the stability requirements. We derive
value k from (1), where b and r are, respectively, the number of bays and rows of the main
section:

br
k= T ¢))

Let 7 be the number of TEUs available in any normal section N;, i =1,..., k.

We call the other portions of the ship special sections, they consist of the remaining
parts of the ship and are considered and loaded separately since they correspond to (see
Fig. 2): (a) the lowest tier/tiers that can be to small for belonging to the main section; (b)
portions of the sides of the main section at different tiers; (c) bays where it is possible to
stow only a few 10’ and 20’ containers. Special sections S;,i=12,...,q,are numbered

according to an increasing value of their tier and row, while alternating their bay index, due
to stability reasons.

4.2 The destination consitraints

The destination constraints are considered by using the ship co-ordinator’s instructions,
that assign the containers with a given destination to predetermined groups of locations
(identified by bays), in such a way that any section is stowed only with containers having
the same destination.
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B30 B10 BOS B02
T=04{ B31 [ B29 | B27 B13 | B11 | B0D | 807 | BOS | B03 | BO1

B30 B10 B06 B02
T=08[ B31 | B2 | 827 Bi3 | B11 | B09 | BO7 | BOS { BO3 | BOt

B10 B08 B02
B13 | B11 | 809 | BO7 | BOS | BO3 | BO1

|
Main Section  Special Section (1) Spechl Section (2) Special Section (3)

F1G. 2. Nomal and special sections of a 512 TEU hold containership.

We split the set C of all containers to be stowed in the ship into p subsets Cp, & =
1,..., p, where p is the number of different ports visited by the ship and Cj, is the set
of containers having port / as final destination. All containers are hence grouped together
according to their destination, such that { Jj, . ,Cs = C and Cg N Cj = @,V h#
g.hg=1...,p

Let T}, be the total number of TEUs related to the containers belonging to Cp, h =
1,..., p. We compute the number k; of normal sections required to stow all containers

belongingto Cp, h=1,..., p,as
Tn
kp=1—1\
A [T-‘ @

Note that if 3 7_, k» > k some special sections among the g available ones are
required for stowing containers belonging to Cp,h = 1,..., p. In this case we try to
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minimize the number of sections (bins) used for stowing all containers by following the
criterion used by the exact 3D-BPP algorithm. Note that the minimization of the special
sections filled implies the minimization of our obj ective function, that is the loading time,
since they are generally located in different zones of the ship that could be far from each
other; hence, an additional time, for positioning the yard cranes along the quay, could be
required for loading containers in §j, / = 1,2,....q.

After this partitioning phase, we assign containers with destinationh, 2 = 1,..., p,
to kj, normal sections according to stability considerations and using the bay assignment
procedure proposed in Ambrosino et al. (2002).

4.3 The ship stability constraints

We balance and share out the total weight of the loaded containers and satisfy the horizontal
and cross equilibrium of the ship by assigning a priori a given number of containers to
each normal section on the basis of their weight. For simplicity, let us consider set Cp,
h = 1,..., p, and suppose that normal sections N;, i = 1,...,ks, are devoted to the
stowage of containers having port / as final destination; the same consideration holds for
all the other sections.

We split set C, into three subsets Chw),w=1,2,3, such that Cp1) consists of ‘light’
containers (up to 15 tons), Cp(2) consists of “medium’ containers (ranging from 15 to 25
tons) and Cp(3) consists of ‘heavy’ containers (more than 25 tons). Then, we assign Xi
containers to N; such that

3 C »
=Y | Fal 4| ®

w=1

Note that x = Zf.‘___l xi < n.If x < n we assign the remaining containers to different
normal sections according to the destination and stability requirements and providing that
W — Wil < A,i #j.i,j=1,.. ., kn, where W; is the total weight of the containers in
section N; and A is a given tolerance value between the weight of different sections of the
ship.

Recalling that the 3D-BPP algorithm starts to position the items from the left bottom
comer of the bin (the origin (0, 0, 0)), and follows a vertical pattemn concentrating the items
near this starting point, now in each normal section Nj, i = 1, ..., ks, we have to find the
origin point to start loading containers. We use an alternate criterion that, starting from Ny,
determines the origin of each normal section according to the following pattern (see Fig. 3
in Section 4.6 and Fig. 5 in Section 5.1):

Normal section Origin

Np: smallest bays, even rows left bottom comner
N,: same bays, odd rows right top corner
N3: next bays, odd rows left bottom corner
Nj,: same bays, even rows right top corner
etc.

Successively, through an axis rotation we consider the x axis as the depth (instead of the
width), the y axis as the width (instead of the height) and the z axis as the height (instead

Supplied by The British Library - "The world's knowledge"



THE MASTER BAY PLAN PROBLEM 259

of the depth). Consequently, since the filling pattern follows a “y — x — 2z’ sequence,
the stowage of the containers will be first by width, then by depth and finally by height, so
achieving the horizontal pattern.

4.4  The size and weight constraints of the containers

In order to avoid putting smaller containers above larger ones, the containers assigned
to Nj,i = 1,...,k, are sorted in an increasing order of their size and in a decreasing
order of their weight, such that we choose first, for being loaded in the lowest tiers, the
smallest heaviest containers. By using this loading criterion we avoid the violation of the
size constraints (see Section 2) and the presence of empty spaces between containers (that
could occur by applying the 3D-BPP algorithm). Moreover, by using this ordering rule
we follow the ‘from bottom to top’ order utilized by the 3D-BPP algorithm as loading
sequence and satisfy the vertical equilibrium constraints. Note that, in this way, it is also
easy to check the weight tolerance of a stack of three containers.

4.5 The main steps of the algorithm

The first phase of the proposed solution method is the implementation of a procedure for
the acquisition of all input data related to the containers (their destination, size and weight)
and the structure of the ship. Then, the main steps of the algorithm can be synthesized as
follows.

Step 1. Identify the main section of the ship and compute according to (1) & normal
sections (bins) N, i = 1,...,k; consequently, derive those special sections Sj,
j=1,...,q, that, following conditions (a), (b) and (c) given in Section 4.1, cannot
belong to the main section;

Step 2. Split set C of containers into p subsets Cj, one for any given destination, and
compute from (2) the number & of normal sections required for stowing containers
with destination s, A= 1,..., p;-

Step3. Split Cp, h = 1,...,p, into three subsets according to the weight of the
containers belonging to it and assign x; containers given by (3) to normal section
Niji=1,....kp

Step 4. In normal section N;, i = 1,... , %, find the origin point following the criterion
given in Section 4.3;

Step 5. Sort the containers assigned to N;, i = 1,... , k, in an increasing order of their
size and in decreasing order of their weight, such that the smallest containers are
loaded first, starting from the origin and following the pattern used by the 3D-BPP
algorithm for the effective positioning of the containers;

Step 6. If all containers assigned to Ny, i = 1,... , k, are loaded in the corresponding bin
go to Step 8;
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TABLE 3 Containers specifications and ordered list of each section

Order in Order in
Port Type Section Weight section | Port  Type Section Weight  section

list list
1 10’ Ny 5 12 2 107 Ny 10 12
1 10/ M 10 13 2 10/ Ny 10 13
1 10 N3 5 12 2 10/ Ny 5 12
1 10/ N3 10 13 2 10/ Ny 10 13
1 20’ M 5 3 2 20'HC Ny 15 5
1 20/ N 10 4 2 20HC N, 15 6
1 20 nM 10 5 2 20/ N, 15 7
1 20 M 10 6 2 20" Ny 15 8
1 20/ M 10 7 2 20/ Ny 15 9
1 20’ Mz 15 8 2 20/ Ny 20 10
1 20/ Ny 15 9 2 20 Ny 25 11
1 20’ Ny 15 10 2 20/ Ny 15 5
1 20/ N 15 11 2 20/ Ny 15 6
1 20/ N3 5 3 2 20/ Ny 15 7
1 20 N3 5 4 2 20/ Ny 15 8
1 20'HC N3 10 5 2 20/ Ny 20 9
1 20HC N3 10 6 2 20/ Ny 20 10
1 20/ N3 10 7 2 20 Ny 25 11
1 20/ N3 15 8 2 40/ Ny 10 1
1 20/ N3 15 9 2 40'HC Ny 20 2
1 20 N3 15 10 2 40/ N, 25 3
1 20/ N3 15 11 2 40 Ny 25 4
1 40 Ny 10 1 2 40 Ny 20 1
1 40’'HC Np 10 2 2 40'HC Ny 25 2
1 40'HC N3 10 1 2 40/ Ny 25 3
1 40/ N3 10 2 2 40 Ny 25 4

Step 7. Let C be the set of all containers left out from the stowage in the normal sections
and sort it in decreasing order according to their size. Start to put containers in
special section Sj, j = 1,...,4¢, as in Section 4.2, starting from the origin
computed as in Section 4.3;

Step 8. Retum the final positions of the containers, originally given in the Cartesian
coordinates (%, y, z), in terms of their bay, row and tier indices (see Fig. 1) and
give a picture of the master bay plan.

Note that Steps 1-8 of our heuristic algorithm are used first for stowing the hold

and successively for the upper deck, thus guaranteeing that the heaviest containers are
positioned in the lowest tiers.

4.6 Asimple example

To give an idea of how the proposed approach for MBPP works, let us present a simple
case study. We are involved with a prototype of a 64 TEU containership with four bays,
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F1G. 3. Final MBP and global weight configuration of the simple case.

four rows and four tiers, where we have to stow #n = 52 containers split into 10/, 20/, 40’
standard dry containers, and 20’ and 40’ height cube; the ship visits two different ports,
namely ports 1 and 2 (see Table 3).

Following Steps 1-8 of our algorithm, we first identify the main section of the prototype
ship, that, due to the small size, represents the whole ship; therefore, according to (1), we
identify four normal sections (N1, N2, N3, Na).

Secondly, we split set C into two subsets Cy and C7, one for each given destination,
and, according to (2), assign sections Ny and N3 to containers destined to port 1, and
sections N, and Ny to containers destined to port 2. Successively, we find the origin points
depicted in Fig. 3.

Finally, we assign containers to each section without specifying their actual position,
and give their ordered list that is reported in Table 3.

Figure 3 reports the master bay plan obtained at the end of Steps 5 and 8, and the
corresponding weight configuration. In Fig. 4 we give its 3D representation.

5. Computational experiments

The proposed heuristic algorithm has been implemented in the C programming language
and used to solve real life instances of MPBB in order to test the feasibility and optimality
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FiG. 4. Final 3D representation of the same MBP.

of the solutions obtained. Here we present two different computational experiments
regarding:

(1) the comparison between the solutions of 18 instances related to a 198 TEU
containership obtained with the present approach and the optimal solutions of the
same instances solved with the 01 Linear Programming model for MBPP reported
in Ambrosino et al. (2004);

(2) the analysis of the results of large scale instances related to a 1800 TEU
containership, located in a maritime terminal in Genoa, and the comparison with
the operative reality.

5.1 First computational experiments

The first computational experiments refer to the test instances reported in Table 4 about the
stowage of the Chiwaua ship, that is a 198 TEU containership, with 11 bays, four rows and
five tiers (three in the hold and two in the upper deck, respectively). Such instances differ
from each other for the number of containers to be loaded, ranging from 100 to 163, their
size (10, 20’, 40/, 20’HC and 40'HC) and weight (light, medium and heavy), the number of
ports to be visited, that is either 2 or 3, and the number of TEUs to load on board, ranging
from 138 to 188. Column Full gives the ship occupation level, as percentages, when all
containers are loaded; note that we give a 100% occupation level when 188 TEUs are
loaded, since, conventionally, 10 TEU locations are operatively always let free for security
and possible emergency reasons.

Together with the ship profile, which contains the information related to both structural
and operational constraints of the ship, the terminal has the bay plan configuration that is
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TABLE 4 Input data of 18 instances of the Chiwaua containership

Container characteristics

Instance TEU n Size ___V\_feight Destination % Full
100 200 40" 20HC 40HC ] m h 1 2 3

1 133 100 0 62 38 0 0 46 50 4 47 53 0 7340
2 165 120 0 75 45 0 0 52 64 4 55 65 0 8777
3 165 123 6 70 40 2 5 55 64 4 57 66 0 8777
4 170 130 0 90 40 0 0 60 66 4 62 68 0 9043
5 175 130 0 85 45 0 0 58 68 4 62 68 0 93.09
6 175 132 4 80 38 3 7 60 68 4 64 68 0 9309
7 180 140 0 100 40 0 0 62 74 4 61 79 0 9574
8 180 150 0 120 30 0 0 70 76 4 65 85 0 9574
9 185 130 0 75 55 0 0 60 66 4 62 68 0 9840
10 185 140 0 95 45 0 0 58 78 4 65 75 0 9840
11 185 140 0 95 45 0 0 62 73 5 50 40 50 9840
12 185 143 6 90 43 2 2 65 73 5 50 40 53 9840
13 186 135 0 84 51 0 0 39 72 4 60 75 0 9894
14 18 139 8 75 45 5 6 63 72 4 63 76 0 9894
15 188 148 0 108 40 0 0 66 78 4 71 77 0 100-00
16 188 148 0 108 40 0 0 68 76 4 50 50 48 100-00
17 188 158 0O 128 30 0 0 72 82 4 75 83 0 10000
18 188 163 10 115 26 8 4 77 82 4 77 8 0 100-00

useful for establishing the stowage in the available locations of the ship and understanding
its shape. Looking at these documents we define the partition of the structure of the
Chiwaua ship and split it into different sections, that are used for stowing the containers.
As we have already said, this phase is really important for the quality and feasibility of
the final master bay plan. First, we identify the main section by searching for the largest
parallelepiped area; then, we split the main section into Jk = 8 normal sections and find the
origin of each normal section on the basis of stability and weight considerations according
to the alternate criterion given in Section 4.3 (see Fig. 5). The other g = 10 special sections
result from the remaining spaces of the ship and consist of the lowest tiers and lateral sea-
side bays. Note that in such special sections it is difficult to put containers; we put there 40"
containers, thus reducing the number of placements and consequently the loading time.

Table 5 reporls the results of the instances of the Chiwaua ship obtained by using
our heuristic and gives a comparison between the optimal solutions obtained with the
0-1 Linear Programming model for MBPP (column 0-1), reported in Ambrosino ef al.
(2004), and the solutions obtained by using the present algorithm (column OUR). All
computational experiments have been performed ona PC Pentium II of 350 Mhz.

It is interesting to analyse the difference between the optimal loading times (column
0-1) and those corresponding to the stowage plans obtained with our heuristic algorithm
(coluran OUR), that is, on average, 34 min, corresponding to an average optimality gap of
10-75%, with a maximum value of 39 min and a minimum value of 28 min.

With reference to the computational times, it can be easily seen that, in our heuristic
procedure, they are almost irrelevant; in fact in all instances they are always less than 1
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FIG. 5. Normal and special sections of the Chiwaua ship.

second. Instead, we can note how, in the case of the exact Linear Programming model,
the CPU time grows noticeably with the number of containers loaded, because of the NP-
hard nature of MBPP. It is worth mentioning that the planning office of the terminal that
has provided us the data of the Chiwaua containership takes from about one hour to one
and a half hours to manually compile the corresponding master bay plans. Operatively, the
time required to compile stowage plans increases with respect to the number of containers
to be stowed; therefore, the faster the solution time of any supporting software program
the lower is the berthing time (which is an important performance index of any maritime
terminal) required for loading containers on board.

5.2 Second computational experiments

In this section we present a case study which motivates our analysis about MBPP. In
particular, we consider the Europe containership, which is a ‘client’ of the maritime
terminal in Genoa (ltaly). It is a 1800 TEU containership, i.e. 10 times bigger than the
Chiwaua ship before analysed, with a more complex shape and structure.
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TABLE 5 Comparison of the loading times and the CPU times

Instance TEU n  %Full Loading time (min) Computatonal time (min)
' -1 OUR A A% 01 OUR A%
138 100 73.40 231.00 263.67 31.77 13.70%  2-85 0-009 99-7%
165 120 $7.77 27870 311.83 33.13 11.89% 828 0.012 999%
165 123 87.77 286.10 317.90 31.80 11.11% 8.58 0.012 99-9%
170 130 90.43 302-60 335-00 32-40 10.71% 10-32 0-011  99:9%
175 130 93.09 301.00 333.33 32-33 10.74% 5.76 0009 99-8%
175 132 03.09 306.70 338.65 31.95 1042% 621 0013  99-8%
180 140 05.74 324.40 358-50 34.10 10-51% 10.08 0012  99:9%
180 150 05.74 348.20 383.33 35.13 10:09% 14.27 0-009 999%
185 130 08.40 302-10 330-45 2835 9.38% 11.02 0-011 99.9%
10 185 140 98.40 324.90 359.00 34.10 10.50% 15-38 0010  99:9%
11 185 140 08.40 324-60 358.83 3423 10.55% 14.53 0012  999%
12 185 143 08.40 332-40 365.78 33.38 10-04% 15.20 0.012  99:9%
13 " 186 135 08.94 312.00 346.50 34.50 11.06%  8.56 0.013  99-8%
14 186 139 98.94 322-34 355-40 33.06 10-26%  5-52 0016 99-7%
15 188 148 100-00 342-40 379-17 36-77 10-74% 13.32 0.012 999%
16 188 148  100-00 342.30 379.67 37-37 10.92% 13-17 0.009  99:9%
17 188 158  100-00 366.80 405-33 38.53 10-50% 23.88 0.013  99-9%
18 188 163 100-00 37820 417-21 39.01 10-31% 25.82 0.012 100-0%

Average 178.44 137-17 94-92 31820 352.20 34.00 10-75% 11.82 0-01 99-87%

O W10 UH WK -

All structural and operational information about the Europe ship are available to
interested readers.

In the first computational experiments on the Europe ship we test our approach looking
for the master bay plan referring to 15 cases, reported in Table 6; the instances differ
from each other for the number of containers to load on board, ranging from 715 to 1413,
corresponding to a ship occupation level, as percentages, ranging from 52-50 to 100%. We
increase the number of heavy containers, until 50% of the total number of containers are
loaded (see instance 13), and change the size and the number of ports to be visited, which
is either 2 or 3. Note that there are only 20’ and 40’ dry containers, which in real cases
represent about 98% of the total TEUs loaded on board.

The rosults of the above instances, reported in Table 7, show that, as in the Chiwaua
ship, the computational times are not influenced by the ship dimensions.

Within the second group of computational experiments, we have used specific
professional software developed for the Europe ship by the terminal for checking the
stability, equilibrium, draft, inclinations and torsion of the ship with the stowage plans
obtained with our heuristic approach for the instances reported in Table 8. Starting from
these input data we compare the values of some quality indicators between the stowage
plans obtained by our algorithm and those that have been established by the planning
office of the terminal that has provided us with the data of the containers to be loaded.
Note that the exact Linear Programming model used in the first computational experiments
is impractical for these larger instances.
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TABLE 6 Input data of 15 instances of the Europe ship

Containers characteristics

0,
Instance TEU Size Weight Destination (TEU) % Full
" %4y % 1 m h 1 % 2 % 3 %
1645 715 485 68 230 32 215 420 71 463 49 482 51 — — 5250
2 1022 762 S02 66 260 34 228 458 76 501 49 521 51 — — 5678
3 1120 820 520 63 300 37 246 492 8 549 49 571 51 - - 6222
4 1218 898 S78 64 320 36 270 541 87 600 49 618 51 — — 67.67
5 1320 980 640 65 340 35 295 589 96 450 34 514 39 356 27 7333
& 1380 1000 800 73 290 27 327 654 109 676 49 704 51 — — 7667
7 1386 984 582 SO 402 41 296 590 98 680 49 706 51 — ~— 77:00
8 1415 1069 723 68 346 32 321 642 106 481 34 524 37 410 29 7861
o 1420 1060 700 66 360 34 318 636 106 696 49 724 51 — — 7889
10 1528 1202 876 73 326 27 361 721 120 749 49 779 51 — — 8489
11 1522 1138 754 66 384 34 341 683 114 524 34 586 39 412 27 84-56
12 1627 1215 803 66 412 34 365 729 121 804 49 823 51 — — 9039
13 1691 1280 887 69 402 31 172 512 605 835 49 856 51 — — 93.94
14 1724 1331 938 70 393 30 400 799 132 588 34 669 39 467 27 9578
15 1800 1413 1026 73 387 27 424 848 141 882 49 918 51 — — 100-00

TABLE 7 Results of the above instances

Instance TEU n Total loading time  Containers handled

(min) per hour
1 945 715 2979-67 28-80
2 1022 762 3149-33 29-03
3 1120 820 3339-83 29.46
4 1218 898 3600-67 29.93
5 1320 980 3861-50 3045
6 1380 1090 4250-83 30-77
7 1386 984 3864-00 30-56
8 1415 1069 4153-00 30-89
9 1420 1060 4110-83 30-94
10 1528 1202 4595-67 31.39
11 1522 1138 4371.00 31-24
12 1627 1215 4595.33 31.73
13 1691 1289 4839-00 3197
14 1724 1331 4994.83 31.98
15 1800 1413 5245-33 32-33

For an exact comparison of the results we recall the following assumptions that have
been taken in our resolution approach:

e we consider only three classes of weight (/, m, k);
o we have at most three destination ports;
e we have only ISO standard dry containers to be loaded (see Table 1);
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TABLE 8 Input data of two real instances

"~ Containers characteristics
Case TEU n Size Weight Port (TEU) ¢4 Full
200 % 400 % 1T % m % h % 1 2
1 1442 1070 698 6523 372 34.77 247 23 446 42 377 35 690 752 8011
2 1665 1233 801 64.96 432 35.04 209 17 290 24 734 60 841 823 92.50

TABLE 9 Comparison between some feasibility indicators for the Europe ship

Case 1
MBPP G°M Draught Propeller Rolling  Stability
Solutions FWD AFT Mean  water line (submersion) time range
Terminal 262m 693m 730m 7-12m 56% 15-6 sec 61.0°
Our 4.15m 590m 846m 7-18m 73% 123sec  70-0°
Case 2
MBPP G°M Draught Propeller Rolling ~ Stability
Solutions FWD AFT Mean  water line (submersion) time range
Termmal 174m 875m 878m 8.76m 7% 18-1 sec 56-0°
Our 206m 805m 926m 863m 84% 16-7 sec 58.0°

e we assume that the ship starts its journey in the port for which we are studying the
problem.

The values of the indicators in the official stowage plans produced by the planning office
and those obtained by the proposed approach are reported in Table 9.

The first index “G® m’ refers to the stability of the ship and represents the height of the
halfcentre; in general it is necessary that this index assumes positive value, with a minimum
value of 0-15 m, meaning that the ship is perfectly balanced. The Draught indicator shows
the inclinations of the ship with its three values Fwd, Afi, Mean regarding respectively the
bow, the stem and the central side; in good stowage plans these values have to be almost
the same. The ‘Propeller submersion’ is usually greater than 100%, but the above values
are influenced by the fact that we did not consider the weight of the ballast, the fuel and the
other equipment provided. The Rolling time index gives the oscillation of the ship during
navigation in normal weather conditions. Finally, the Stability range is used for checking
the positioning of the cargo and has to be greater than 50°.

Note that all the above values for the stowage plans obtained by our solution method
are positive and feasible thus confirming the goodness of the results.

As a fusther consideration we have computed the total loading time for the above cases
showing the very good performance of our algorithm in the minimization of the loading
time (see Table 10).

6. Concluding remarks

In this paper we have presented a heuristic algorithm for MBPP based on its connection to
3D-BPP. The proposed solution method, although it does not reach optimal values, has very
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TABLE 10 Comparison between loading

times
Loading time (min)
Case —Gor— Planning Office . 2
1 4169-3 4199-5 -0-72%
2 46483 4754-8 —2-24%

good performances in terms of both solution quality and computational time. In particular,
the most important consideration about the performance of our heuristic algorithm is the
possibility of finding stowage plans for big sizc ships and more than 1400 centainers to
be loaded. Therefore, we believe that the proposed approach is very valuable and that one
of the future directions of this research should be its application on the evaluation of the
impact of the ship system requirements in the whole organization of the yard.
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