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Abstract: In this paper we deal with the so-called Master Bay Plan (MBP)
Problem, that is the problem of stowing a given set of containers of different
types into the available cells of a containership, while not violating some
structural and operational constraints. We analyse in details the above
constraints and present a Constraint Satisfaction Programming (CSP) approach
for defining this combinatorial problem and finding good feasible solutions,
with respect to some optimisation criteria.

1. Introduction and problem definition

The stowage of a containership is one of the problem that has to be

solved daily by any company which manages a terminal container [1,7].

This problem, usually denoted Master Bay Plan (MBP), consists in

determining where to stow a given set of containers of different types

among a set of available locations (cells) of a containership in such a

way to satisfy some structural and operational constraints related to both

the containers and the ship. In particular, in looking for a solution of the

problem we have to take into a proper account, besides the structural

characteristics of the ship, such as type, size and capacity:

— the size, shape, weight and volume of the freight to be loaded (e.g.
cars, pallets and containers);

— the material handling system used for the loading / unloading
operations (e.g. forklifts and ship-to shore cranes),

— specific location requirements imposed by the shipping companies;

— the equilibrium and stability of the ship during its journey and after
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some unloading operations;
— the destination of the freight;
— the quality, quantity and type of the freight to be loaded at the next

harbours.
It can be easily noted that MBP is a NP-hard combinatorial problem; the
well known Assignment Problem (AP) and Knapsack Problem (KP) [5],
where the knapsack is the ship and the objects to be loaded are the
containers, that are both included in the definition of MBP, give an idea
of its complexity even if all the other constraints are not considered.
Presently, the stowage of containers is usually performed by the Captain
few hours before the ship arrival and it is evaluated with respect to some
stability rules also for allowing further containers to be loaded at the
very last moment. The main aim of this work is to derive and implement
some rules that may allow to determine good stowage plans. Such rules
can be thought as a prototype of a Decision Support System (DSS) that
can help Captains in this activity giving a good distribution of the
containers in the ship in a short computational time. Unfortunately there
is no, at least to the Authors’ knowledge, any computational approach
proposed in the recent literature for dealing with MBP. DSSs,
heuristics, mainly based on relaxation of Mixed Integer Programming
(MIP) models, and stochastic models have been suggested as the most
suitable approaches for solving problems that have only some
commonalties with MBP (see [2,3,4] among others).
We present a CSP approach that is mainly based on heuristic procedures
that rely on a specific knowledge of the problem and on the experience
of the Captains of the ships.
In Section 2 we present the main characteristics of a containership. A
CSP formulation of the problem is proposed in Section 3, while more
details about the constraints are given in Section 4. Finally, in Section 5
we present the algorithmic stucture of our resolution approach.

2. The basic structure of a containership

When solving MBP of particular interest are the constraints related to
the structure of the ship, its type and the size of the hold and upper deck.
We consider here two types of containerships, namely Ro-Ro (Roll on-
Roll off), which load / unload containers through the shutter located
either at bow or stern of the ship, and Lo-Lo (Lift on-Lift off), which
load / unload containers from the top (by using forklifts).

To give an idea of how a stowage takes place, let us consider the basic
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structure of a ship (see Figure 1) and its cross section; it consists of a
given number of cells where the containers are located, having variable
size depending on the ship (the most common one is 8 feet in height, 8
feet in largeness and 20 feet in depth). Each cell is addressed by the
following identifiers:

bay, that gives its position related to the cross section of the ship
(counted from bow to stern);

row, that gives its position related to the vertical section of the
corresponding bay (counted from the centre to outside);

tier, that gives its position related to the horizontal section of the
corresponding bay (counted from the bottom to the top of the ship).
A Ro-Ro ship has stern ramps through which trailers can stow the
containers and a forklift that allows to bring the containers from a truck
and moving them to their assigned cells. The holds are reached by mean
of stern ramps located in a cross way on each bay. They have some
special angular connections for helping the stowage of the containers to
be located in the upper deck. Note that the capacity of the upper deck is
usually greater than the capacity of the hold in both directions.
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Figure 1: Horizontal and cross sections of a standard containership.
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3. The proposed CSP formulation

A CSP problem is generally defined by a set X = {x;, x5, ..., x,,} of n
variables, their associated domain D;, D,, ..., D,, and a set C = {c, ¢,
..-» Cp} of p constraints. Each constraint ¢;, j = 1, ..., p, involves a specific
set X; ¢ X of argument variables and specifies which values of the
variables belonging to X; are compatibles. A constraint may be specified
in a great variety of forms, such as logical expressions, algebraic
equations or inequalities. A given variable can take only a finite number
of candidate values. The goal is to find an assignment to all variables
which does not violate any of the p constraints.

In the present case, let us denote a cell of a ship by x;, where indices i, j
and k give, respectively, its bay, row and tier position. x;; hence is our
variable of the problem taking value in a finite domain Dy of integer
numbers that identify a specific subset of containers; in particular,
Djjildest], Dyltypel, Diulsize] and Dy [weight] denote, respectively, the
set of destinations, types, sizes and weights of the containers that can be
possibly stowed in cell x;;,

In our CSP formulation we also have to specify sets {Bay}, split into
{odd-Bay} and {even-Bay}, {Tier} and {Row} that identify the cells’
numbers in the corresponding section. In what follows we will denote
by {A} \ {B} the set of available indices for {A} butnot {B}.

4. The constraints of the problem

As we have already mentioned, solving MBP means to take into account
both the constraints related to the particular ship under consideration
previously analysed and those of the containers, here below analysed.

Size of the containers. We consider here the standard sizes of a
container, namely 20 and 40 feet in length with a section of 8’x8’.
Containers of 40’ require two contiguous bow-stern locations of 20 feet
each that, for security reasons, have usually to be located in odd bays
(for instance bay02); consequently those cells of the same row and tier
belonging to bay01 and bay03 are not anymore available for stowing
container of 20°. Moreover, we assume, as it is always required, that
they can be stowed only in the third tier of the hold (tier06) or in any
other tier in the upper deck and cannot be located under cells where
containers of 20’ are already stowed or over empty cells. Referring to
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Figure 1 and using the notation given in the previous Section, we can
then express these constraints as:

if Dyy[size]= = 40’then D, jy[size] = 40’ or D;. ilsize] =407, (D
i in {odd-Bay}\{22,24};j in {Row} \ {05,06}; k in {Tier}\ {02,04}.

lij,'deiZ€]= =40’ then Di_,jk+2[size] 1=20" && D,-+,jk+2[size] 1= 20’, (2)
iin {odd-Bay};j in {Row}; kin {Tier}\ {02,04,06,82}.

if Dj[size]== 40’ then D jjxolsize] 1= O && D;. jjx-olsize] |= O, 3)
case hold: i in {odd-Bay} \ {22,24}; j in {Row}\ {05,06}; k= 6;
case upper deck: i in {odd-Bay}; j in {Row}; kin {Tier}\ {02,04,06,82}

Containers of 20’, instead, can be stowed in any cell but not over cells
with containers of 40’; more formally conditions 4) and the asymmetric
of 2) hold:

if Dy[size] == 20’ then Dy, ;[size] = &; 4)
case hold: i in {even-Bay}\ {21,23,25}; j in {Row} \ {05,06};
kin{Tier} \ {02,82,84,86};

case upper deck: i in {even-Bay}; j in{Row}; k in{Tier}\{02,04,06,82}.

Type of the containers. Let us have only three types of containers,
namely standard, carreageable and containers for dangerous loads. Note
that this last type of containers cannot be stowed in the upper deck and
in adjacent locations, while carreageable containers are considered as
containers of 40’ and then conditions 1) — 3) hold allowing both odd and
even bays. Moreover they must be located in the first tier in the upper
deck (tier02) and all the locations over them must be free, that is:

if Djy[type] = = carreageble then D Jtypel = D && Dips4ltypel = O
iin { Bay} \ {25};/ in {Row}; k= {82}. ®))

Weight of the containers. The standard weight of an empty container
ranges from 2 to 3,5 tons, while the maximum weight of a full container
to be stowed into a ship ranges from 20-32 and 30-48 tons. Usually, as
far as the unloading operation is concerned, containers are put on the
yard into different stacks on the basis of their size, destination and class,
that is derived according to their weights and allows to establish a priori
those containers that have to be located in the hold and those that have
to be located in the upper deck of the ship.
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Note that the weight constraint related to each container is strictly
dependent on the presence in the ship of shutters that enable the entry
from the hold, since they cannot support more than a given weight. In
particular, conditions 6) — 7) must be usually verified, saying that the
weight of a stack of 3 containers of 20’ and 40’ cannot be greater than
45 and 66 tons, respectively.

if Djsz[type] = Dyjsd|type] = Dyssltype] = = 20 (6)
then Djjs;[weight] + Dy [weight] + Dss[weight] < 45 tons;
i in {even-Bay} \ {21,23,25,27,29};j in {Row}.

if Dys;[type] = Dy type] = Djsstype] = = 40 @)
then Djg;[weight] + Dys[weight] + Djss[weight] < 66 tons;
i in {odd-Bay}\ {21,23,25,27,29}; j in {Row}.

Moreover, the weight of a container located in a tier cannot be greater
than the weight of the container located on the next tier having the same
row and bay, that is:

ng[weight] < Dijk-z [welght] (8)
iin {Bay} \ {21,23,25};j in{Row} \ {05,06}; k in {Tier}.

Destination of the containers. A part from the more general rule for
which we have to load first those containers having as destination the
final stop of the ship and for the last those containers that have to be
unloaded first (9), it is necessary to consider that in each odd bay there
are stern ramps that allow to entry in the hold from the upper deck and
hence we cannot load in the hold containers having a greater unload
priority than those located in the upper deck closed to the shutters. Then
we have condition (10)

Dyj+ [dest] < Dy [dest], 9
i in {Bay} ;jin {Row}; k in {Tier}\ {06,86}.

Djjjuldest] £ Dy, [dest]; (10)
case left shutter: i in {odd-Bay} \ {22,24}; jI in {02,04,06}; j2 in
{02,04}; kI in {82}; k2 in {06};

case central shutter: i in {odd-Bay} \ {22,24};j] in {01,02}; /2 in
{Row}; kI in {82}; k2 in {06};

case right shutter. i in {odd-Bay}\ {23,25}; I in {02,04,06}; /2 in
{02,04}; kI in {82}; k2 in {06}.
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Distribution of the containers. Such constraints are related to a proper
weight distribution that is the basic condition for a good stowage. Note
that it is possible to check the stability of the ship by using some
mathematical expressions only when the ship is completely loaded.
However, there are some rules, mainly derived from the experience and
the knowledge of the load, that help in establishing the most suitable
way for stowing the containers in such a way that there will be a well
balanced distribution of the weights. In practice, the most heavy
containers are located in the hold, while the others are located in the
upper deck.

After the loading operations we have to verify the cross and vertical
equilibrium conditions, that is the weight on the right side of the ship,
including rows 01-03 of the hold and rows 01-03-05 of the upper deck,
must be equal, within a given tolerance value, to the weight on the left
side of the ship, including rows 02-04 of the hold and rows 02-04-06 of
the upper deck, while the weight on each tier must be greater than the
weight on the tier immediately over it (condition 11).

i Dijos [weight 1 < Zjog[weight ] < 2joz[weight ] (11)
case hold: i in {Bay} \ {22,24};j in {Row};

Y Dyjs [weight ] < 2jjsqweight ] < 2.ij Dijs2 [weight ]

case upper deck: i in {Bay};j in {Row}.

Finally, note that a ship must be loaded in such a way to be able to
travel independently on the weather conditions and that the stability
constraint must be satisfied also after some possible unloads at
intermediate destinations. In fact, if some containers are moved from
only one side of the ship we would have an unbalanced load on the other
side of the ship.

A part from the specific constraints given above, we also have to give
the basic constraints of this combinatorial problem. First of all we have
to ask that a container is assigned to only one cell and that each cell can
store at most one container, that are the constraints of AP. Then we have
to consider the knapsack constraint, that is to force to total weight of the
container to be stowed in the ship to be not greater that the maximum
capacity Q of the ship, that is:

Zijk [weight] < O (12)
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S. The resolution approach

To find a solution of the present problem means to assign values to all
variables that satisfy the constraints. The search for a solution stops
when all variables are instantiated, that is when their domain is reduced
to only one value. Unfortunately, general approaches for solving CSPs
are not efficient from a computational point of view [6]. Efforts for
making more practical the process of finding a CSP solution are usually
devoted to the development of heuristics tailored for a specific
application. We propose a CSP approach consisting of two main phases,
namely domain reduction and value generation. In the reduction process
the constraints are used for tightening the feasible region of the problem
throughout the deletion of those values that do not allow any solution;
this reduction implies temporary assignments to variables that enable in
turn, by making active the related constraints, the reduction of the
current search space.

The domain reduction is here performed by removing from each
variable domain Dy those values that are not compatible with the type,
size and weight of the containers to be possibly stowed in the
corresponding cell. Note that as soon as a constraint is analysed the
domain of all the involved variables are reduced and consequently the
new values of the restricted domain are analysed for feasibility. This
«constraints propagation» mechanism plays a crucial role in improving
the computational performance of a CSP algorithm and in the
determination of a solution since it allows a fast reduction of the
variables’ domain deleting from them those values that are not globally
consistent and that cannot belong to any feasible solution of the
problem. If the domain of a variable becomes empty then the current
partial solution cannot originate any feasible solution and a backtrack is
required. Analogously, if the domain of a variable is reduced to only one
value then the variable is immediately instantiated. To be more precise,
let x; be the last variable for which a consistent value in Dy has been
found and let x’j; be the next selected variable. The first value in D’
such that constraints are satisfied is assigned to x’y;; if this assignment is
not consistent a backtrack is performed, looking for a new value for x
only among possible consistent values instead of proceeding in an
enumerative way.

The constraint propagation mechanism stops whenever there is not any
other possibility of reducing variables’ domain and all the constraints
are satisfied.

For obtaining a solution we then perform the «generation phase»,
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where we have to select a variable, to choose a value in its domain and
to temporary assign such value to it. If the value satisfies all constraints
the variable is considered to be instantiated and a new variable is chosen
for instantiation, otherwise a backtrack is performed.

To find an efficient ordering rule for selecting variables for their
instantiation is an essential point. The idea is to select first the variable
that would minimise the number of backtracks. In the present case our
first ordering rule has been to select first the variable having the smallest
domain, but it did not result to be a good strategy. In fact, using this
selection criterion the variables related to the hold located in the first
and second tiers were selected first since they allow only the stowage of
containers of 20’; then, after instantiating them in a bow-stern order
always a backtrack were required when the cells located in the upper
deck had to be considered. Finally, we decided to select first those
variables involved in the greater number of constraints, considering first
the weights constraints 6)-8), 11).

In looking for feasible solutions we analysed a number of alternatives
that could result or not into the desired solution, possible the optimal
one, when, besides the satisfability of the constraints, we had also to
maximise the total number of containers to be loaded and minimise the
number of shifts, that is the number of containers that it necessary to
move for loading / unloading other containers. In fact, shifts strongly
affect both the time and costs of the handling operations. It is worth
mentioning that the costs that are considered as our objective function
are directly proportional to the number of harbours to be visited and the
number of bays of the ship while inversely proportional to the tiers; in
fact, the minimisation of the empty moves of the containers can be
obtained by stowing the containers having priority of destination into
bays located closed to the exit and into higher tiers that are more easily
reachable.

The combined used of a backtracking algorithm and the Branch &
Bound in the optimisation phase has allowed us to find good feasible
solutions in a reasonable computational time (within 10 minutes of CPU
time on a IBM PC 486 for istances with 350 containers of 2 types and 3
destinations).

Note that the backtracking algorithm uses the same criterion than
Branch & Bound, that is the problem is split into different sub-problems
while generating a search tree, where nodes are partial solutions of the
problem, and adding some bounds for reducing as much as possible the
number of nodes to be analysed. The difference between the two
combined approaches used in our work is that the backtracking tree is
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explored in its depth while in the Branch & Bound tree we analyse the
nodes at the same level.

The above approach has been implemented in LPA Prolog under
Windows 3.1 with some procedures related to the definition of domain
Dy written in  C language (more details about implementation aspects
can be found in a forthcoming paper)

As a concluding remark we can say that the development of a DSS
based on the proposed CSP approach for solving MBP can be
considered very promising also in understanding the problem and in its
definition phase.
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