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NINIMIZATION OF OVERSTOWAGE IN CONTAINERSHIP OPERATIONS

RINIMISATION DU DEPASSEMENT DE LA CAPACITE UTILISABLE DANS
LES OPERATIONS DE CHARGEMENT DE CONTAINERS

ANASTASBIOS H. ASLIDIS
. Marsoft, Ine.
Cambridge, Massachusetts, U.S.A.

ABSTRACT

Overstowage is a situation arising in stacking operations when the storing and
retrieval sequences do not obey the "last-in first-out” rule. In this paper we
model overstowage as it appears in containership operations by taking into
account placement constraints, specifically, stability requirements of the
vessel. The latter translates into a constraint on the vertical center of weight
of the containers. A polynomial-time recursive algorithm is developed for the
one-stack case. Features of multistack problems ars presented.

RESUNE

Le dépassement de capacité utilisable est un phénoméne qui se produit lorsque
les opérations de stockage et d’enlévement n'obéissent pas A la régle LIFO. Dans
cet article, nous modélisons le dépassement de capacité, tel qu’il appareit dans
les opérations de chargement de containers, en temant compte des contraintes de
placement et des contraintes de stabilité du navire. Ces dernidres contraintes
sont représentées par une contrainte liée au centre de gravité des contailners.
Nous avons élaboré un algorithme récursif polynomial pour résoudre le cas du
monostockage, et nous présentons quelques résultats dans le cas de problémes de
multistockage.

KEYWORDS

Containership Operations, Recursive Algorithms, Stack, Storage, Stowage,
Warshouse
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458 Operational Research '90
DEFINITION OF OVERSTOWAGE PROBLEMS

This paper deals with the management of overstowage in containership operations,
Overstowage is a condition that arises very often in operations which involve
stacking of items. There are innumerable occasions in which a group of items
(usually boxes or containers) has to be stored for future use. Storing contain-
ers in stacks is the cheapest alternative because no extensive supporting struc-
ture {cells) is required, and minimum space is occupied, since the stacks can be
placed very close to each other. The low cost of storing items in stacks is
counterbalanced by the 1imited accessibility of the items. To see the latter,
suppose that boxes {A, B, C, and D} of equal size are stored in a stack as in
Fig. 1. Box A is on top of the stack and it can be retrieved very easily. It is
not the same with any of the other boxes, though. Retrieval of box B requires
first the removal of box A. Similarly, to retrieve box C requires removal of
boxes A and B and to retrieve box D it takes the removal of A, B, and C first.

Top of stack (access point)

A
B
c

D

Fig.1 A Stack with Four jtems

The apparent reason for the inconvenience in retrieving the items of a stack is
the one point of access to the item through the top of the stack only. If item
B in Fig.1l needs to be retrieved before item A, then item A has to be removed to
allow retrieval of B. After B is removed, A can be placed back on the stack.
In a situation Tike this, item A is said to be overstowed. The temporary remov-
al from and placement back onto the stack of item A is called rehang}e or rear-
rangement of item A. We can describe the problem in terms of storing agd re-
irieving of the items; if, at any moment, these sequences do not abey the "lasi-
in-first-out" rule, then overstowage occurs.

The main theme of this paper is the minimization of overstowage within the
different contexts in which it occurs. The objective is to choose when and what
items to rearrange in order to minimize the total number of item rearrangements
over a certain period.

An item of a stack is overstowed when it blocks the retrieval of
another item scheduled to be retrieved while the former is still in the stack.

Definition 2 Rearrangement (or rehandle) of an item is the temporary removal
from and replacement back onto the stack of that item (source of cost).

0 in Containershi i

The work of this paper has been motivated by an application in the mariiime
field. The containers on besard a containership Ere,plébed in stacks. There are
stacks beTow and above the deck of the vessel. Access to these stacks is possi-
ble only from the top of them. The mere existence of stacks on board cteates
“potential” for overstowage. The nature of containership operations contributes
to the latter. Containerships visit ports at which they pick up and deliver
containers. If the ports a vessel visits are numbered as 0, 1, 2, .. M, M¢l, 10
general, there are ¢jj containers going from port i 1o J.

If the storing and retrieving sequences of the containers are not identical,
then occurrence of overstowage is very likely. In fact, overstowage would be
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unavoidable, had only one stack to be used on board. The existence of more than
one stack makes the situation Tess severe in terms of the number of overstowed
containers. Nevertheless, independently of how many stacks exist on board,
minimization of overstowage is our objective.

Particularly in containership stacking operations, stowage of containers is not
arbitrary. That is, there exists sets of rules, guidelines, and constraints
which.must be met. Such are:

i. Stability constraints due to stability requirements of the vessel.
i, i of the vessel’s structure. This transiates into
a requirement for the weight distribution along the vessel.
iii. Cargo placement constraints (cargo in refrigerated containers).
iv. Cargo adjacency constraints due to regulations about hazardous cargo.
v. Container strength constraints.

vi. .
The above 1ist is by no means exhaustive. However, it indicates the complexity
of the problem, if all constraints are to be considered explicitly. In fact,
the containership case is the most intricate among the occasions in which over-
sto?age occurs, In most other cases, very few or none of the above constraints
apply.

Overstowage is present in all circumstances invelving stacking operations.
Stacking operations in warehouses is one area in which the phenomenon of over-
stowage is very common. The operation of warehouses involves the arrival of
items for storage and their subsequent retrieval later on. If the items are
stored in stacks, overstowage is possible and should be minimized. A case simi-
lar to a containership visiting a series of ports comes up when a truck visits a
series of locations where it loads and/or unloads boxes stored in stacks. Of
course, the scale of the problem is smaller (fewer stacks) and most of the
previous constraints do not apply. In fact, the concept of stacking does not
require the stack to be physically vertical. Any linear arrangement with only
one-point access can be modeled as a stack.

Overstowage problems are of a combinatorial nature. Consequently, their solu-
tion requires techniques from the field of discrete optimization. Although the
general overstowage problem is difficult to solve (Aslidis 1989), special or
restricted versions of it can be solved efficiently.
: i

It appears that very little has been published on this problem. The main contri-
butions come from the maritime field. The first researchers who dealt with the
problem are W. C. Webster and P. Van Dyke [1970a, 1970b}. Their approach is
aimed at the loading/unloading process, but it could be extended to include the
allecation and storage of containers. The stability constraints of the vessel
are among the primary factors considered, while placement of containers is of
secondavy importance. The authors report that a small number of trials showed
good results ("qualitatively good results”) as far as the water ballast and
overstowage cost are concerned.

Scott and Chen [1978] attempted another heuristic approach te the same problem.
They adopted three heuristic rules which are used to implicitly satisfy the
constraints. Containers are aggregated into homogeneous groups based on some
container characteristics {such as type, length, height, weight, strength, and
destination) and also on placement restrictions. Among the advantages of their
approach is the consideration of many constraints, but they also treat minimiza-
tion of overstowage as a secondary objective.

Shields [1984] followed a different path to solving the container stowage prob-
lem. The basic idea in this approach is the random generation and evaluation of
many different possible loadings. The criterion through which a specific load-
ing is generated is selected randomly among a set of criteria. The evaluation
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of the loading is done by imposing penalties each time an increase in the con-
tainer handling cost occurs or each time a constraint is violated. The three
top (less costly) solutions are approved. The algorithm commences the ]oadtng
of containers destined to the next port using the three selected Toadings as
starting points. Again, the three best loadings are chosen. The procedure is
repeated at each subsequent port. At the final port, the less costly solution,
as well as the resulting intermediate loadings are adopted.

Aslidis [1984] examined a simplified version of containership operations. It
was assumed that a vessel visits a series of ports, at which she only picks up
containers (one destination problem). Overstowage is not a factor except when
some constraint is violated, in which case already stored containers need to be
rearranged. A heuristic approach is proposed aiming mainly at satisfying the
trim and metacentric height requirements with the minimum rearrangement costs.
In another work, Asiidis [1989] provides analytical solution to the one-stack
overstowage problem. A1l the containers are placed onto a single stack and no
other constraints apply. This case represents a pure overstowage problem and
should be contrasted to situations in which the overstowage cost also depends on
the assignment of contajners te stacks (multistack problem). The algorithm runs
in polynomial time (O(M°)}), where M is the number of ports to be visited, and it
is used as part of many algorithms for the multi-stack case. This paper solves
the one-stack overstowage problem with constraints imposed on the vert{ca1
center of weight of the stack. First, we review the unconstrained case algorithm
{Aslidis 1990).

0S0P: Definiti i A 4

Stacks can be defined as one-dimensional storage systems with one access poeint.
In this paper, we employ uncapacitated stacks, that is, stacks with no Timit on
the items stowed. We call top of the stack the end of it closer to the access
point and bottom of the stack the least accessible end.

The problem is defined as follows: a vessel {containership) is scheduled to
visit a series of ports 0,1,2,...,M-1, M, M+l. The vessel can only carry one
stack of containers, all of which are assumed to be of equal size. It is as-
sumed that the vessel arrives at port 0 empty. At port 0, and at all subsequent
ports up to port M, she picks up containers shipped to other ports of the ser-
ies. For example, at port 0, she picks up containers going to ports 1, 2,..,M
and M+l. If c;; denotes the number of containers going from port i to port'J,
then the conta}%er shipments can be represented by a lower triangular matrix,
called the shipment matrix. We deal only with deterministic shipment matrices,
that are known at the beginning of the trip.

Definition 3 Containers with the same origin and destination belong to the same

group of containers. There are N={M+1}(M+2)/2 groups. Containers with the same

?estination belong to the same type of containers. There are (M+1) types
1,2,...8,M41).

Definition 4 A stack s in "in-order" condition if the containers of the §ta§k
are placed in ascending order of destination from top to bottom. A stack is n
"out-of-order" condition when it is not "in-order".

It can be assumed without loss of generality that the stack is
"in-order” as the vessel arrives at port 1 (or equivalently, she is empty of
containers at port 0}.

At each port, the vessel delivers some containers and picks up some others.
Along with the above, there might be yet some other containers that must be
temporarily unloaded because they block the discharge of the containers destined
to the port. These containers need to be placed back onto the stack along with
the "new" ones; they are overstowed containers.
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Our objective is to minimize the number of overstowed containers during the trip
of the vessel. To that extent, we might need to rearrange some containers at a
port at which they do not block any other container in order to save a larger
number of rehandles in later ports. That is, we look for a vearrangement policy
(P) which results in the minimum number of additional rehandles of containers.
The rearrangeément policy should specify what containers of the stack should be
rearranged at each port and how they should be placed back onto the stack at
every port. Let RP(C) be the number of rearrangements that result if we apply
policy P on the shipment matrix C, and let R(C) correspond to the optimal policy
PX(R(C) = Ryx(C)). We will also refer to Ry(C) as the overstowage cost.

A_Recursiye Algorithm for the 0SOP

It is proven (Aslidis 1990) that the optimal policy is expressed as an array
with M components satisfying the condition P(i) >= i, i=1,..M. P{i) = k indi-
cates that at port i all containers destined to ports i+l, i+2,.,.k must be
rearranged, These containers {and the containers having destination ports k+l to
M+l which block them) must be removed from the stack, join the new shipments
Ebat originate at port i at the gquay, and then be placed back onto the stack

in-order™. In addition, it can be shown that for all (i,j) such that i < j and
P{i) >= 3, it should be P(i) >= P{J).

A subproblem PR(7,j) for the same port series, 0 to M+l, and shipment matrix, €,
is dgfined as one in which the vessel visits ports i, i+l, i+2,...,j, and facing
a shipment matrix in which all containers originating from port 0 to i are
shtpped from port i, and, all containers destined to ports j to M+l assume
de]1vgry at port j. Let ¥{(i,j) represent the minimum overstowage cost of problem
PR(1,J), and v(i,k,j) be the number of rearrangements (rearrangement cost} at
port k of containers of type k+l,..,j-1, for the problem PR(i,3j) [ V(i,J) =
R P(C of PR(i,j)) J. Then, it is shown {Aslidis 1989, 1990} that:

Ihggrgm_; The minimum overstowage cost and ‘the corresponding optimal rearrange-
ment policy of the one-stack overstowage problem, for an initial empty stack

visitiqg a sgries of ports 0,1,2,...M,M+l and facing a shipment matrix C can be
found in O(M°) by solving the following recursive eguation,

VL dlmemin . §Y0HR + ek d) + Vi) ),
J
and V{1,i+1) = V{(i,i+2) = 0, i = 0,1,...M

0,1,..M
i+1, .., MM (1)

nou

Transformation ] Given a rearrangement policy, P, with the properties discussed
@bove (not necessarily optimal), we can define a shipment matrix C’, such that
it results in zero overstowage cost. This is based on the observation that when
a group of containers, say {i,j), gets rearranged at port k, it is treated no
differently from the group (k,j) from that point on. This allows us to replace
the containers of group {i,j) with equal number of containers of groups {i,k)
and (k,J). By construction the transformed shipment matrix results in no over-
stowage; however, the number of containers shipped (sum of all c’y3) is greater
than that of the original matrix exactly by the overstowage cost of the rear-
rangement policy, P.

THE ONE-STACK OVERSTOWAGE PROBLEM WITH PLACEMENT CONSTRAINTS

As a first step towards solving the containership problem, we solve the one-
stack one with placement constraints. It is useful to see how such constraints
can be implemented, particularly in the single stack case for which a complete
analytical solution is possible.

The only placement constraint which is relevant to the one stack case is the
stabitity constraint. This constraint refers to the center of weight (hence,
C.0.w.} of the containers in the stack. In ship operations, this is the well
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known GM requirement, that is the c.o.w. of the stack should be low enough {GM
high enough) so the vessel does not capsize.

It is clear that we must now treat each container separately, because each one

has its own weight. Let n; be the number of containers to be picked up at port
i, and n the total number of containers handled,

. o= . = : 2
nj kg§i1c1k n 1gbn1 (2)

Since this is an operational constraint it has to be satisfied at each port.
tet ry be the maximum permissible value for the c.o.w. of the stack upon her
departure from port i. The value of r; depends among others on the displacement
of the vessel, her volume distribution under the waterline, her vertical distri-
bution of weight and the minimum required metacentric height (GM)Z In this
section we ignore how the ry’s are calculated and we assume them as given. Let
also x; denote the vertical c.o.w. of the stack at the time of departure from
port i. Then the stability constraints can be written as

Xj £ry, 1=1,2,...,M {3)

It is quite obvious that since (3) must be observed, it is very rational to
place the heavier containers among those picked up at each port, lower positions
in the stack. If we follow this policy from the first port, where the stack is
assumed empty, then the profile of the vessel in terms of the weight distribu-
tion locks as in Fig. 2.

| containers picked at

/ | N\ port 4

Z{r 2; \\ port 3
4(/// ; \\\\\ port 2
4?7 port 1
/ ; \ port 0
I
i Distributi c rt

The above policy does not result in a single container rearrangement as long as
constraints (3) are satisfied. If some of (3) are not met, then we must move
heavy containers to lower positions to satisfy them.

Since all containers of the stack have the same destination, the effect of
rearrangements made at early ports of the seguence {that is the decrease in xi)
is observed at later ports, too. For example, it may be optimal to perform
rearrangements at port 2 in order to satisfy the stability constraint at port 5.
In other words, if x; is greater than ry and must be reduced by at least g
(=xg-rg)» it suffices to reduce any combination of the xj’s (i=1,...k) by a
total of gy. We would like to achieve that by doing the minimum number of
container rearrangements.

Let us formally define gy as the amount by which (3) is violated at port k, if
no rearrangement is done at any port.

gk = max(0, xi --rg) » k=1,2,...M 4)




Overstowage in Containership Operations 463

We define bi{m) as the maximum possible improvement (decrease) of Xy, With at
most m container rearrangements performed at ports 0,1,2,...,k-1,k. Also let
Sk,m denote the stack profile at port k, corresponding to bp(m). Sy n is a
veéghr with as many components as the total number of containers onboardm(=n).
Each component holds the weggpt of the container placed in the corresponding
positions of the stack (the n'® component corresponds to the bottom position).

Since the effects of a rearrangement are permanent then by{m) can be calculated
as

by (m} = max {bg.1(m-1) + fy (1)}, m=1,2,...By {5)
where, 1 may assume values from 0 to Ly = min{ m,?é% ny)
By is equal to]go(k-i)*n,‘

Te,m{1) is the improvement in x at port k, with 1
additional rearrangemen%s given that m-1 rearrangements
have been performed at ports 1 to (k-1).
and, bo(m) = 0, for a1l m, by{0) = 0, k=1,...M. {6)

Let us now show how fy n(1) can be calculated. Given that we know that m-1
rearrangements have been optimally performed at ports 1 to {k-1) (resulting in a
total improvement in the ¢.o.w. of bg-1{m-1), we also know Sy_j 1. Then,
performing 1 additional rearrangements simply means that we take’o?f from the
stack the top 1 containers, which we place back along with the group of new
containers (that is a total of ny+1) in decreasing order of weight. The differ-
ence between the c.o.w. of the stack as calculated above from the c.o.w. that
would result, did we not perform the 1 rearrangements is the value of fr,m(1)-

Lemma 1 Functions bk(m), k=1,...m; m=0,1,...By are correctly calculated by‘using
the recursive equat1gn {5) and the boundary condition (6). The time it takes to
compute by(m) is O(Mn3}.

Let us now examine how we can take advantage of the method to compute bK(m)’s to
satisfy those of (4) which are violated. The values of gk, k=1,...M dictate by
ho¥ much the c.o.w. of the stack should be decreased up to port k. Then, by
solving

9k = bg(m), k=1,...,H {7)

we find.the minimum number of required rearrangements up to port k to achieve

zgetdes1red reduction of x. Let my denote this value of m. From (7) we find
at, .

M = b ly(gp)s kel,... M (8)

As Tong as my is known, the only thing that remains to be found is how my is
distributed over the ports 1 to (k-1). This information can be found by re-
trieving the value of 1 that achieves the maximum in the corresponding recursive
equation (5), and then working backwards in a recursive manner. The information
about the above mentioned value of 1 can be stored at the same time (5) is
evaluated and consequently retrieved in 0(1) time. If t*_  stands for the opti-
mal number of rearrangement at each port, k=1,...,m, that satisfy (after per-
formed) constraints (3}, it must be

K

g1t
Knowing my helps reducing the number of states in the next stages of the recur-
sive algorithm (i.e. calculation of b 1{m)). Specifically if we know that m
cannot be less than my, and consequeJ%%y 1 cannot be larger than m-m* we can
reduce both the number of values of by,1(m) to be compyted and the number of
-terms to be compared. Algorithm GM-1 implements the above analysis to solve the
one-destination one-stack problem. Theorem 2 below summarizes the result.

=M, k=1, ...,M (9)
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Algorithm GM-1

Input: - (M+l) groups of ny containers, i=1, M with destination
port M+l R

The weight of each container

- vy, i=1,...M, the upper limit for the c.o.w. of the
s%ack after port i

Qutput: - A rearrangement plan expressed in the number of top
containers of the stack to be rearranged at each
port, so that r;'s are observed. Containers are
always pushed onto the stack in decreasing order of

weight.
Step 1 - Initialization-boundary conditions
Set by{m) = 0, m=1,...n
Mg =0

for i=1 to M do
calculate xy, gj = max {0,x-rj);

Step 2 - Basic recursion
For k=1 to M do
for m=m, to By
for 1=0 to B-m
compute f.{1};
compute bk(éT = m?x [bg.1(m-1) + fia(1)]

1k(mi = T* such that by(m)=by_j(m-1*)+f},,(1*)
me = b7 plgK)s
Step 3 - Constraint checking

For k=1 to M do
if gy < bgmye_y) then my = my_ 3

Step 4 - Distribution of rearrangements
th = Tpimy)
for k = (ﬂ-l) down to 1 do ty = Ty(mg,p - tyei)s
END.

Theorem 2 Algorithm GM-1 correctly solves sing1e-§t3ck singie-destination over-
stowage problems with stability Eonstraints in 0(M°n°) time. The space require-
ments of algorithm GM-1 are Q(Mn<). .

- Stabili int

Our approach in this section is going to be similar to the one in the previous
section. In fact, the formulation of the problem in terms of the satisfaction
of the stability constraint is going to resemble the one-destination case. This
is achieved through the following steps.

First, we solve the 0SOP as if no stability constraint exists. Let P* be the
optimal policy and R*(C) the corresponding minimum rearrangement cost. At this
paint we perform the transformation of the shipment matrix described above as
Transformation 1 in reference to policy P*. Recall that this transformation is
always done in conjunction with a specific rearrangement policy. The result is
a shipment matrix L’ of which the minimum overstowage cost is zero and the
optimal policy is the one with no rearrangements at all (P*/(i)=i). However,
the number of containers shipped under matrix C’ is greater than under C by
exactly the overstowage cost of the policy P*. According to Transformation 1,
if n and n’ are the number of containers handled under shipment matrices C and
C’ correspondingly it holds that n’ = n + R,x{C). By definition P*,‘ang conse-
quently, C’, correspond to the minimum ové?stowage cost. Any deviation from

<
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them ig going to increase the latter. Thus, we must satisfy the stability
constraints with the minimum deviation from the above.

Since thg transformed shipment matrix results in zero overstowage, the vertical
we1gh@ distribution of the stack Tooks as shown in Fig. 3. Again we assume that
containers within each group are placed in decreasing order of weight.

Bestination Origin
K 5 (5<K)
| K+1 5
[ K+2 4
| K+2 3
N " .
M+l 0

Fig. 3 Weight Distribution of Stack After Port 5

The definition of ry, xi, and g) is_the same as in the one-destination case,
that is xy, k=1,...,h, is the vertical c.o.w. after port k, if no rearrangements
are performed under shipment matrix C’. (Remember that from now on we always
refer to C’.) The stability constraints can be written again as

X; & r5 o, d=1,...,0 (3)

One of the properties of the one-destination case is that the effect of rear-
rangements at earlier ports last for the entire sequence. In the multidestina-
tion case though, when a group with some intermediate destination is delivered,
any improvement in the c.o.w. due to rearrangements involving this group in the
previous ports is lost. This is unfortunate because by{(m) cannot be defined in
the same manner as before, since its value depends on what containers of those
rearranged are stil] on board at port K. ;

As we mentioned a few paragraphs above, there is zero overstowage cost under the
shipment matrix C’, if the stability constraints are ignored. It can be proven
that C’ can have a total of (M+l) groups at most. This is so because groups
with the same origin have (obviously) different destinations and groups with
later origins can have po iater destinations than groups from earlier ports.
So, the difference "earlier destination-origin" decreases at least by one, as
the vessel moves to the next port. The Tatter is a consequence of the zero
overstowage condition {in the absence of the stability constraints). '

Fig. 4 shows how the origin and destinations of the groups may look. What is
missing from the figure is groups of the form {i, i+l). We are going to take
care of these groups soon; for the time being we ignore them because they are
toot;temporary”, that is they have a very short presence on board (just for one
port). .

Let us take the example of Fig. 4 and determine which groups are on board along
every leg of the sequence { assume that port {M-1) comes directly after 6).

BN
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Lleg

0-1 (0,M+1), (O,M)

1-2 (0,M+1), (O,M), (1,M-1), (1,6)

2-3 (0,M+1), (0,M), (1,M-1), (1,6), (2,6), (2,5)

3-4 (0’M+1), (OQM)Q (lyM'l)5 (1:6): (2,6), (2,5), (3’5)
4-5 (0,M+1), (0,M), (1,M-1), (1,6), (2,6), (2,5), (3,5)
5-6 (07M+1)’ (01M)’ (lsM’1)7 (1)6)> (2>6)

6'("'}) (09M+1), (D,M), (I)M"})

(H-1)-M  (0,M+1}, (0,M)

M- (M+1) {0,M+1)

As it is evident from the above different groups of containers are present at
different legs of the trip, however, if we reorder the legs then it appears as
if the vessel only picks up containers having the same destination. For the
above example the reordering has as follows.

r 0
M-(M+1) {0,M+1)
0-1,{N-1) {0,M+1), (0,M}
6'(”‘1) (0!M+1)7 (O:M)s (I’M’lj
1-2 (0,M+1), {O,M), (1,M-1), (1,6)
5-6 (07M+1)$ (O’M): (I’M'l), (las)a (2’6)
2-3 (0,Me1), (0,M), (1,M-1), (1,6), (2,6), (2,5)
3-4, 4-5 {0,M+1), (O,M), (1,M-1}, (1,6), (2,6), (2,5), (3,5)
groups
(3, 9) 35
(2, 5 2 .5
(2, 6) Al 6
(1, 6) 1 6
(1, M-1) 1 M-1
(0, M) [\ M
(0, M+1) 0 Mil
ports: 6 1 2 3 4 5 6 ... M-1 M M+l
i ro hipment Matri

A more careful examination of the above ordering reveals that it is done in an
increasing origin-decreasing destination manner of the top group of con@a1ngrs
of the stack in that particular leg. The similarities to the one-destination
case become now clear. In principle an equation like {5) can be written for
this case, too, with the functions byg(m) similarly defined. There are still
some differences though that are not as simple. These are: .
(i) The existence of groups of the form (i, i+1), i=0,1,...m, that is
groups that stay on board only for one leg. . .
(i1) The complication in computing functions fx m{1). This compliication
is due to the different destinations that some groups of containers may have.
For example, in terms of the previous example, if at port 2, we "mix" one - the
1ightest - container of group (2,6) with group {2,5), it will cost us one rear-
rangement. If we "mix" one of {1,6)’s with group (2.5}, it will cost us two
rearrangements - one at port 2 and one ‘at port 5. -

From now on we always refer to the reordered trip. In doing so-we restore the
very important property of the one-destination case that the effects of rear-
rangements at the early ports last until the.end of the trip. The latter is
true for rearrangements involving all groups except from groups of (i,i+1) type,
the effects of which are short-lasting.

Let us now see how we can account for tﬁe two differences from the one-
destination case discussed above. We deal first with the second one. In.fact,
it is straightforward to implement the requirement of different costs.in the
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calculation of functions fi(1). We must simply keep track of the origin and
destination of each contatner (along with its weight), and, when a container
already on board is “"intermixed” with the group of new containers (and there is
always one such group in the reordered trip), the resulting number of rearrange-
ments is one, if the container and the group have common origin or destination
(in terms of the original trip), and, two, otherwise. This becomes obvious by
looking at Fig. 5 below.

2,6
ey
(a) (b)

In Fig. 5(a) group (2,6) is the newcoming group. If we "mix” one container of
group (1,6) with {2,6)'s, we "pay" only for the rearrangement of the (1,6)-
container at port 2. If we "mix" an (1,M-1)-container with those of group (2,6)
we "pay" for one rearrangement at port 2 and one at port 6 of the (1,M-1)-con-
tainer. Even if the {1,M-1)-container js already "mixed" within the (1,6)’s we
"pay" for two rearrangements {at port 2 and &) in addition to the one “paid” at
g?rt é(gyd which has been accounted for. Similar observations can be made in
g. <

Definition 5 The reordered port sequence of an initial one with C’ (transformed
C under the optimal rearrangement policy) is one in which the vessel picks up
the groups of containers in increasing order of origin and, among those with the
same origin, decreasing order of destination. It may have up to {M+2) ports.

Lemma 2 In the reordered port sequence gains from rearrangements in early ports
are maintained throughout the (reordered) port sequence.

Lemma 3 In calculating the ?km(1) functions for the reordering port sequence, we
muist count twice the rearrangements that do not result in "mixing" (i.e. over-
stowing) containers of groups with the same origin or destination.

Based on the above results we can define (always in reference to the reordered

port series), by(m} as the maximum improvement in x if m rearrangements are
performed, or more accurately charged, aleng ports I to k. Then we can write

Bi(m) = max { by_y{m-1) + fip(1) 3 » m=1,2, ..,B (10)

where now m and 1 stand for the rearrangement cost (at most twice as much as the
number of rearrangements), and

K-
1 may assume values from 0 ‘to Lg = min{ m, 2* ]%"i)
- By is equal to 2* {é%(k-i)*ni (11)
fx,m(1)  is the improvement in xi at port k, with 1
additional rearrangemeng cost given that m-1 rearrangements
have been performed at ports 1 to {(k-1).
Conditions (6) hold as well.

So if the groups (i,i+1) are ignored, we can solve the recursive equation (10)
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along with (11), and (6) and get an optimal rearrangement policy which satisfies
the stability requirement. The latter process has three possible outcomes.
{a) A1l stability requirements are satisfied and the solution is optimal
even if groups {i,i+1) are considered.
(b) A1l stability requirements are satisfied but a better (cheaper)
solution is possible if groups (i,i+1) are considered.
{c) Some stability constraints are not satisfied. .
In any event, it appears that we should check how much the consideration qf
groups {i,i+l) affects the splution. This is mandatory in case (c); also, it is
worth examining whether and to what extent the optimal solution changes even
when the stability constraints are satisfied.

Definition 6 Groups (i,i+1}, i = 0,1,..,m are called one-leg groups.

A preliminary analysis indicates that no significant savings should be expected
through rearrangements of the containers of groups (i,i+1), simply because the
effect of their rearrangement lasts only for one leg of the trip, while rear-
rangements of the other groups last for the remaining part of the trip (again,
referring to the reordered port sequence). Figure 6 shows the gi’s as well as
the resulting change 1in X;, d(x3}, after rearrangements of containers except
one-leg ones are performed (it refers to the "original” port series).

A methodology to use the one-leg groups to satisfy the stability constraints is
described below. The main idea is to reduce one or some of the g;’s that are
positive; let d(gy) be such a decrease in one g;. Then we solve the problem
without groups (1,i+1) but with reduced g’; (=gi-J(g;)). Any remaining required
decrease in x;’s, if any, is going to be provided by local rearrangements of
one-Teg groups. The following definition is going to make notation simpler.

Let Cy(m) be the cost of satisfying the stability constraints in ports 1,2,...K

with m rearrangements performed on containers of groups other than one-leg

groups. That is Cy(m)-m is the minimum number of rearrangements involving one-

legtgroups that are required to satisfy the stability constraints. Then we can

write;

cx(m) = min . { cg1(m-1) + 1 + hye(m-1,1) ) (12)
1= 0,..,1%01

where
hg{m-1,1) s the cost of rearrangements involving group
{k,k+1} of port k in order to satisfy the
, stability constraint, given that (m-1)

rearrangements not involving one-leg groups have
been performed at ports 1 to (k-1) and 1 at port k,

and, h*,(m) correspoends to the value of 1 that achieves the
minimum.

(3
L—‘j \2
% F :d@wb -____}"jgi

9 : 3|] % 3\;]
%, %
v |9 ¥ B
0 1 2 3 4 5 [ 7 8 9 10 11 12 13
Groups (i,i+l) - Original Peri Series

The stack profile as the vessel arrives at‘port k is known, since we have as-
sumed that (12) has been solved up to port {k-1). Then, knowing the number of
rearrangements of containers of groups other than (k,k+1), we can construct the
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profile of the stack as leaving port k. Yet we have not considered any rear-
rangements of containers of the (k,k+1) group. In fact, we are going to perform
as many of those as required to satisfy the stability constraint at port k. If
the constraint is already satisfied, then hy(m-1,1) = 0. If the constraint
cannot be satisfied then hg(m-1,1) =c0. In gil other cases, hy{m-1,1) is the
rearrangement cost corresponding to the rearrangements required to achieve the
desired remaining decrease in Xg- ¢

At port 0, where there is only one group on board, there is no way to change X;
by rearrangement; so the boundary condition for ck(m) is

Ci{m) = m+hy(0,m) , m=0,1,...,n (13)

Equations (12) and (13) along with the way of calculating hy(m-1,1) constitute a
recursive algorithm, that evaluates the minimum rearrangement cost to satisfy
the stability constraints of the full one-stack overstowage problem. It is
interesting to notice that this recursion is the “dual” of the one presented in
aTg?rjthm GM-1. The former minimizes rearrangement costs, while the latter
maximizes rearrangement benefits.

We must deal now in a more systematic way with the transformation of the origi-
nal to the "reordered" port sequence, The recursive algorithms developed above
refer_to the "reordered” port sequence which, as we mentioned earlier, can
contain up to (M+2) ports. However, if the shipment matrix contains less than
{M+1) groups other than one-leg groups the "reordered” port sequence will con-
sist of Tess than (M+2) ports. The example of Fig. 4 represents such a case.
Two legs of the original series, 0-1 and {M-1)-M correspond to the same leg of
the."reordered“ port sequence. If, for some reason, r, and ry. of the original
seéries are different, then we use the maximum of them in running (12), (13), and
{6) - that is when the one-leg groups are ignored. This is sufficient, since
the profile of the stack is the same in the two legs and we satisfy the stronger
requivement. In the case that more than two legs share the same leg of the
reordered” port sequence, the maximum rj is again used.

The above requirement traaslates slightly differently in the "dual" recursion,
(12) and (13), Since hy(m-1,1) measures the cost to satisfy the stability
constraint, we must account for its satisfaction along each Teg of the trip.
That §s, again in terms of the above example, we must account for the cost of
satisfying the stability constraints along leg 0-1 and {M-1)-M. These costs may
well be different, because {i) ry, and rp_y may be different, and/or (ii) one-leg
groups (0,1) and {M-1, M) may contain i}ferent numbers and weights of contain-
ers. The above observations are taken into account by replacing (12) by

cg(m) = o m;n { ck-1{m-1) +1 +jg% hjk(m-],l) ), k=2,3,..,M (14)
<=l<=L =
where J§ is the number of legs of the original trip that correspond to the kth
leg of the “reordered” port sequence, and {13) by

cp{m) = m +j%% h31(0,m), m=1,2,...,n (15)

%f M’iis the last port of the "reordered" port sequence, then the optimal solu-
on is

oy (m*) = min { ey {m) ) (186)

Recursive equations (14), (15), and (16) obviously solve the one-destination
problem. This can be seen easily if we consider only groups of type (i, M+l),
1=0,1,...M. Then we observe that no reordering of the port sequence is re-
quired, and, that all rearrangements contribute one unit to the rearrangement
cost (because all the containers have the same destination) as it happens with
the one-destination problem. Of course, in the latter, there are no one-leg
groups. This does not mean that functions hg{m-1,1) are of no use. In fact,
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they are used to indicate whether the stability constraints are satisfied. As
it was mentioned when hy(m-1,1) were introduced, h {m-1,1) = 0 indicates that no
rearrangements involving containers of group (k,k+}) are required to satisfy the
constraints. Also, hy(m-1,1) =co indicates that the constraints cannot be
satisfied. So in the special case of the one-destination problem function,
hy(m-1,1) takes on two values, 0 oroo , depending on whether the stability
constraint is satisfied or not. Then it turns out that cy{m) can be equal
either to m or infinity. Nevertheless cy{m) sti1l depends on 1 through its
dependence on hy(m-1,1), which depends on 1.

After the above remarks that 1ink our two approaches developed in this chapter
we formalize our analysis by presenting an algorithm for solving the 0SOP with
stability constraints. This algorithm is called GM-0SOP. The correctness of
the algorithm as proven above is summarized “in Theorem 3.

Theorem 3 Algorithm GM-0SOP corrgc}]y solves the one stack overstowage problem
with stability constraints in O{M“n°} time.

Algorithm GM-0SOP
Inpyt

Shipment matrix C for a given port sequence 0,1,...M,M+l.
Weights of the individual containers.

A vessel that can carry containers in one stack only.

- A requirement (r;) for the c.o.w. of the containers of
the stack at each port.

E

A rearrangement plan that minimizes the total number of
container rearrangements due to overstowage and to the
constraint for the c.o.w. of the stack.

Step 1 - For the port sequence 0,1,...M,M+l and shipment
matrix C, compute the optimal policy
P*{C), in absence of the c.o.w. constraints.
Rearrangement cost R*{C).

Step 2 - Perform Transformation 1 on shipment matrix C for
the optimal policy P*(C). Output a shipment matrix C
resulting in zero overstowage under the no-
rearrangement policy.

Step 3 - Apply the procedure described in Definition & and
veorder the port sequence based on matrix C',
{0,1,...M, M +1) .

Step 4 - Run recursion (14), (15}, and (16) for the
"reordered" port sequence to get rearrangement
cost Cys(m*) and the distribution of rearrangements
m*), k=1,...M’, of groups other than {k,k+1) and
h* {m* ) of group (k,k+l), k=1,...M".

Step 5 - Optimal rearrangement policy: P*{C}), superimposed
by m*; rearrangements of the top containers of groups
other than {k,k+1) and by h* (m*;) ones involving group (K, k+1).
g;eraT? rearrangement cost: ﬁ*(c§ + Cyr (M*)
D.

FURTHER RESEARCH ON OVERSTOWAGE PROBLEMS
In this paper we have dealt with the one-stack overstowage problem and extended

the algorithm developed by Aslidis [1989, 1990] to take into account placement
constraints on the containers in the stack. In particular, we have examined the
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vestrictions about the vertical center of weight. A new level of complexity is
introduced when multistack problems are considered. There, each container or
group of containers must be assigned to a stack. Also, when a container is
rearranged, it does not have to return to the same stack. Furthermore, stacks
may have finite capacity; or, the shipment matrix may be stochastic (the Tatter
is very often the case). :

As_it appears that the multistack problems are significantly more difficult to
solve with exact polynomial-time algorithms [Aslidis, 1989] the importance of
developing "effective" heuristic methods increases. The solution of the one-
stack problem is essential for the development of such heuristics. In fact,
further modeling efforts of the one-stack case might be helpful in solving the
multistack one.

Containership operations may result in overstowage not only on board a vessel,
but also at the storage area of the port terminal. Consequently, one might
attempt to minimize overstowage in the combined ship-port system.

Finally, the concept of stack can be generalized to include tree or multi-level
stacks. Stacking containers on board a vessel requires indeed the multi-level
stack concept, because we can stack containers above and below the deck. Other
s@ackjng models can be also defined (i.e. two-way access stacks) with applica-
tion in various disciplines.
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