
Comparing Two Implementations of a Complete
and Backtrack-Free Interactive Configurator

Sathiamoorthy Subbarayan1, Rune M. Jensen1, Tarik Hadzic1,
Henrik R. Andersen1, Henrik Hulgaard2, and Jesper Møller2

1 Department of Innovation, IT University of Copenhagen,
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

{sathi,rmj,tarik,hra}@itu.dk
2 Configit Software A/S,

Vermundsgade 38 B, DK-2100 Copenhagen Ø, Denmark
{jm,henrik}@configit-software.com

Abstract. A product configurator should be complete and backtrack
free in the sense that the user can choose freely between any valid con-
figuration and will be prevented from making choices that no valid con-
figuration satisfies. In this paper, we experimentally evaluate a symbolic
and search-based implementation of an interactive product configuration
algorithm with these properties. Our results show that the symbolic ap-
proach often has several orders of magnitude faster response time than
the search-based approach due to the precompilation of a symbolic rep-
resentation of the solution space. Moreover, the difference between the
average and worst response time for the symbolic approach is typically
within a factor of two, whereas it for the search-based approach may be
more than two orders of magnitude.

1 Introduction

Product configuration involves two major tasks: to define a modeling language
that makes it easy to specify and maintain a formal product model and to
develop a decision support tool that efficiently guides users to desirable product
configurations [1]. In this paper we focus on the latter task and investigate
a complete and backtrack-free approach to Interactive Product Configuration
(IPC). The input to our IPC algorithm is a product model that consists of
a set of product variables with finite domains and a set of product rules. A
valid product configuration is an assignment to each variable that satisfies the
product rules. The IPC algorithm initially has an empty set of user selected
assignments. In each iteration of the algorithm, invalid values in the domain of
the variables are pruned away such that each value in the domain of a variable is
part of at least one valid configuration satisfying the existing set of assignments.
The user then selects his preferred value for any free variable. The algorithm
terminates when each variable in the product model is assigned a value. The
IPC algorithm is complete in the sense that the user can choose freely between
any valid configuration. It is also backtrack-free since the user is prevented from

choosing a variable assignment for which no valid configuration exists. Hence
the algorithm never forces the user to go back to a previous configuration state
to explore alternative choices.

In this paper we experimentally evaluate a symbolic and search-based im-
plementation of the IPC algorithm. The symbolic implementation is using a
two-phase approach [2]. In the first phase, the product rules are compiled into
a reduced ordered Binary Decision Diagram (BDD) [3] representing the set of
valid configurations (the solution space). In the second phase, a fast specialized
BDD operation is used to prune the variable domains. The worst-case response
time only grows polynomially with the size of the BDD. Thus, the computation-
ally hard part of the configuration problem is fully solved in the offline phase
given that the compiled BDD is small. The search-based implementation prunes
variable domains by iterating over each possible assignment and searching for a
valid configuration satisfying it. This approach can be improved by memorizing
all assignments for which no solution exist across iterations and, within each
iteration, adding all assignments in a found solution (not just the one being
verified).

The symbolic approach has been implemented using Configit Developer 3.2
[4] that employs a BDD-derived symbolic representation called Virtual Tables
(VTs). The search-based approach has been implemented using ILOG Solver 5.3
[5]. We have developed a publicly available benchmark suite called CLib [6] for
the experiments that consists of 14 configuration problems. Our results show that
the symbolic approach often has several orders of magnitude faster response time
than the search based approach. In addition, the difference between average and
worst response time is often within a factor of two for the symbolic approach,
but some times more than two orders of magnitude for the search-based ap-
proach. Moreover, our results indicate that the configuration space of industrial
configuration problems often have small symbolic representations. This result is
somewhat surprising since BDDs blow up for many combinatorial problems in-
vestigated in AI (e.g., the n-queens problem and other permutation problems). It
may be the frequent hierarchical structure of real-world configuration problems
that make them particularly well-suited for BDDs.

The remainder of the paper is organized as follows. In Sect. 2, we define
product configuration and describe the IPC algorithm. The symbolic and search-
based implementation of the IPC algorithm are described in Sect. 3 and Sect. 4,
respectively. We focus on describing the symbolic implementation since we as-
sume that the search-based implementation is straight forward for most readers.
Section 5 presents experimental work. Finally, we describe related work in Sect. 6
and draw conclusions in Sect. 7.

2 Interactive Product Configuration

We can think of product configuration as a process of specifying a product de-
fined by a set of attributes, where attribute values can be combined only in
predefined ways. Our formal definition captures this as a mathematical object

with three elements: variables, domains for the variables defining the combina-
torial space of possible assignments and formulas defining which combinations
are valid assignments. Each variable represents a product attribute. The variable
domain refers to the options available for its attribute and formulas specify the
rules that the product must satisfy.

Definition 1. A configuration problem C is a triple (X,D,F), where X is a
set of variables x1, x2, · · · , xn, D is the Cartesian product of their finite domains
D1 ×D2 × · · · ×Dn, and F = {f1, f2, · · · , fm} is a set of propositional formulas
over atomic propositions xi = v, where v ∈ Di, specifying conditions that the
variable assignments must satisfy.

Each formula fi is a propositional expression inductively defined by

φ ≡ xi = v |φ ∧ ψ |φ ∨ ψ | ¬φ, (1)

where v ∈ Di. We use the abbreviation φ ⇒ ψ ≡ ¬φ ∨ ψ for logical implication.
For a configuration problem C, we define the solution space S(C) as the set of all
valid configurations, i.e. the set of all assignments to the variables X that satisfy
the rules F . Many interesting questions about configuration problems are hard
to answer. Just determining whether the solution space is empty is NP-complete,
since the Boolean satisfiability problem can be reduced to it in polynomial time.

Example 1. Consider specifying a T-shirt by choosing the color (black, white,
red, or blue), the size (small, medium, or large) and the print (”Men In Black”
- MIB or ”Save The Whales” - STW). There are two rules that we have to
observe: if we choose the MIB print then the color black has to be chosen as
well, and if we choose the small size then the STW print (including a big picture
of a whale) cannot be selected as the large whale does not fit on the small shirt.
The configuration problem (X,D,F) of the T-shirt example consists of variables
X = {x1, x2, x3} representing color, size and print. Variable domains are D1 =
{black ,white, red , blue}, D2 = {small ,medium, large}, and D3 = {MIB ,STW }.
The two rules translate to F = {f1, f2}, where f1 = (x3 = MIB) ⇒ (x1 = black)
and f2 = (x3 = STW) ⇒ (x2 �= small). There are |D1||D2||D3| = 24 possible
assignments. Eleven of these assignments are valid configurations and they form
the solution space shown in Fig. 1. ♦

(black , small ,MIB) (black , large,STW) (red , large,STW)
(black ,medium,MIB) (white,medium,STW) (blue,medium,STW)
(black ,medium,STW) (white, large,STW) (blue, large,STW)
(black , large,MIB) (red ,medium,STW)

Fig. 1. Solution space for the T-shirt example

By interactive product configuration we refer to the process of a user inter-
actively tailoring a product to his specific needs by using supporting software

called a configurator. Every time the user assigns a value to a variable, the con-
figurator restricts the possible solutions to configurations consistent with this
new condition. The user keeps selecting variable values until only one configu-
ration is left. The IPC algorithm in Fig. 2 illustrates this interactive process.
In line 1, the configurator takes a given configuration problem C and compiles

IPC(C)
1 R ← Compile(C)
2 while |R| > 1
3 do choose (xi = v) ∈ Valid-Assignments(R)
4 R ← R|xi=v

Fig. 2. The IPC Algorithm

it into an internal representation R. The procedure Valid-Assignments(R) in
line 3 extracts the set of valid assignments (choices) from the internal repre-
sentation. In line 4, the internal representation is restricted to configurations
satisfying the new condition. This behavior of the configurator enforces a very
important property of interactive configuration called completeness of inference.
The user cannot pick a value that is not a part of a valid solution, and further-
more, a user is able to pick all values that are part of at least one valid solution.
These two properties are often not satisfied in existing configurators, either ex-
posing the user to backtracking or making some valid choices unavailable. The
symbolic and search-based implementation of the IPC algorithm differ in their
internal representation and implementation of the valid assignment and restrict
operations.

Example 2. For the T-shirt problem, the assignment x2 = small will, by the
second rule, imply x3 �= STW and since there is only one possibility left for
variable x3, it follows that x3 = MIB . The first rule then implies x1 = black .
Unexpectedly, we have completely specified a T-shirt by just one assignment. ♦

From the user’s point of view, the configurator responds to the assignment by
calculating valid choices for undecided variables. It is important that the response
time is very short, offering the user a truly interactive experience. The demand
for short response-time and completeness of inference is difficult to satisfy due
to the hardness of the configuration problem.

3 Symbolic Implementation of the IPC Algorithm

Since checking whether the solution space is empty is NP-complete, it is unlikely
that we can construct a configurator that takes a configuration problem and
guarantees a response time that is polynomially bounded with respect to its
size. The symbolic approach is offline to compile the configuration problem to

a representation of the solution space that supports fast interaction algorithms.
The idea is to remove the hard part of the problem in the offline phase. This will
happen if the compiled representation is small. We cannot, however, in general
avoid exponentially large representations.

3.1 Symbolic Solution Space Representation

A configuration problem can be efficiently encoded using Boolean variables
and Boolean functions. We assume that domains Di contain successive inte-
gers starting from 0. For example we encode D2 = {small ,medium, large} as
D2 = {0, 1, 2}. Let li = �lg |Di|� denote the number of bits required to encode a
value in domain Di. Every value v ∈ Di can be represented in binary as a vector
of Boolean values v = (vli−1, · · · , v1, v0) ∈ B

li . Analogously, every variable xi

can be encoded by a vector of Boolean variables b = (bli−1, · · · , b1, b0). Now, the
formula xi = v can be represented as a Boolean function given by the expression
bli−1 = vli−1 ∧ · · · ∧ b1 = v1 ∧ b0 = v0 (written b = v). For the T-shirt example
we have, D2 = {small ,medium, large} and l2 = �lg 3� = 2, so we can encode
small ∈ D2 as 00 (b1 = 0, b0 = 0)) , medium as 01 and large as 10.

The translation to a Boolean domain is not surjective. There may exist as-
signments to the Boolean variables yielding invalid values. For example, the com-
bination 11 does not encode a valid value in D2. Therefore we introduce a domain
constraint that forbids these unwanted combinations FD =

∧n
i=1(

∨
v∈Di

xi = v).
Furthermore, we define a translation function τ that maps a propositional ex-
pression φ to the Boolean function it represents

τ(φ) :
n∏

i=1

B
li → B. (2)

The translation is defined inductively as follows

τ(xi = v) ≡ (bi = v) (3)
τ(φ ∧ ψ) ≡ τ(φ) ∧ τ(ψ) (4)
τ(φ ∨ ψ) ≡ τ(φ) ∨ τ(ψ) (5)

τ(¬φ) ≡ ¬τ(φ). (6)

Finally we can express a Boolean function representation S′(C) of the solution
space S(C).

S′(C) ≡ τ(FD) ∧
m∧

j=1

τ(fj). (7)

The resulting symbolic implementation of the IPC algorithm is shown in Fig. 3.
In this implementation, the internal representation is a Boolean encoding Sol of
the solution space. In order to restrict the solution space in line 4, it is conjoined
with the Boolean encoding of the assignment chosen by the user.

Symbolic-IPC(C)
1 Sol ← S′(C)
2 while |Sol | > 1
3 do choose (xi = v) ∈ Valid-Assignments(Sol)
4 Sol ← Sol ∧ τ(xi = v)

Fig. 3. Symbolic implementation of the IPC algorithm

3.2 Binary Decision Diagrams

A reduced ordered Binary Decision Diagram (BDD) is a rooted directed acyclic
graph representing a Boolean function on a set of linearly ordered Boolean vari-
ables. It has one or two terminal nodes labeled 1 or 0 and a set of variable
nodes. Each variable node is associated with a Boolean variable and has two
outgoing edges low and high. Given an assignment of the variables, the value
of the Boolean function is determined by a path starting at the root node and
recursively following the high edge, if the associated variable is true, and the low
edge, if the associated variable is false. The function value is true, if the label of
the reached terminal node is 1; otherwise it is false. The graph is ordered such
that all paths respect the ordering of the variables.

A BDD is reduced such that no pair of distinct nodes u and v are associated
with the same variable and low and high successors (Fig. 4a), and no variable
node u has identical low and high successors (Fig. 4b). Due to these reductions,

u v u
x x x

(a) (b)

Fig. 4. (a) nodes associated to the same variable with equal low and high successors
will be converted to a single node. (b) nodes causing redundant tests on a variable are
eliminated. High and low edges are drawn with solid and dashed lines, respectively

the number of nodes in a BDD for many functions encountered in practice is often
much smaller than the number of truth assignments of the function. Another
advantage is that the reductions make BDDs canonical [3]. Large space savings
can be obtained by representing a collection of BDDs in a single multi-rooted

graph where the sub-graphs of the BDDs are shared. Due to the canonicity,
two BDDs are identical if and only if they have the same root. Consequently,
when using this representation, equivalence checking between two BDDs can be
done in constant time. In addition, BDDs are easy to manipulate. Any Boolean
operation on two BDDs can be carried out in time proportional to the product
of their size. The size of a BDD can depend critically on the variable ordering.
To find an optimal ordering is a co-NP-complete problem in itself [3], but a good
heuristic for choosing an ordering is to locate dependent variables close to each
other in the ordering. For a comprehensive introduction to BDDs and branching
programs in general, we refer the reader to Bryant’s original paper [3] and the
books [7, 8].

3.3 BDD-Based Implementation of the IPC Algorithm

In the offline phase of BDD-based interactive configuration, we compile a BDD
S̃(C) of the Boolean function S′(C) of the solution space. The variable ordering
of Boolean variables of S̃(C) is identical to the ordering of the Boolean variables
of S′(C). S̃(C) can be compiled using a BDD version τ̃ of the function τ , where
each Boolean operation is translated to its corresponding BDD operation

τ̃(xi = v) ≡ BDD of τ(xi = v) (8)
τ̃(φ ∧ ψ) ≡ Op∧(τ̃(φ), τ̃(ψ)) (9)
τ̃(φ ∨ ψ) ≡ Op∨(τ̃(φ), τ̃(ψ)) (10)

τ̃(¬φ) ≡ Op¬(τ̃(φ)). (11)

In the base case (8), τ̃(xi = v) denotes a BDD of the Boolean function τ(xi = v)
as defined in Sec. 3.1. For each of the inductive cases, we first compile a BDD
for each sub-expression and then perform the BDD operation corresponding to
the Boolean operation on the sub-expressions. We have

S̃(C) ≡ Op∧(τ̃(FD), τ̃(f1), · · · , τ̃(fm)). (12)

Due to the polynomial complexity of BDD operations, the complexity of com-
puting S̃(C) may be exponential in the size of C.

Example 3. The BDD representing the solution space of the T-shirt example
introduced in Sect. 2 is shown in Fig. 5. In the T-shirt example there are three
variables: x1, x2 and x3, whose domain sizes are four, three and two, respectively.
As explained in Sect. 3.1, each variable is represented by a vector of Boolean
variables. In the figure the Boolean vector for the variable xi with domain Di

is (xli−1
i , · · · , x1

i , x
0
i), where li = �lg |Di|�. For example, in the figure, variable

x2 which corresponds to the size of the T-shirt is represented by the Boolean
vector (x1

2, x
0
2). In the BDD any path from the root node to the terminal node

1, corresponds to one or more valid configurations. For example, the path from
the root node to the terminal node 1, with all the variables taking low values
represents the valid configuration (black , small ,MIB). Another path with x1

1, x
0
1,

and x1
2 taking low values, and x0

2 taking high value represents two valid configu-
rations: (black ,medium,MIB) and (black ,medium,STW), namely. In this path
the variable x0

3 is a don’t care variable and hence can take both low and high
value, which leads to two valid configurations. Any path from the root node to
the terminal node 0 corresponds to invalid configurations. ♦

x1
1

x0
1

x1
2 x1

2

x0
2 x0

2 x0
2 x0

2

x0
3 x0

3

1 0

Fig. 5. BDD of the solution space of the T-shirt example. Variable xj
i denotes bit bj

of the Boolean encoding of product variable xi.

For a BDD version of the Symbolic-IPC algorithm, each Boolean oper-
ation is translated to its corresponding BDD operation. The response time is
determined by the complexity of performing a single iteration of the procedure.
All sub-operations can be done in time linear in the size of Sol except Valid-
Assignments in Line 3. This procedure can be realized by a specialized BDD
operation with worst-case complexity

O(
n∑

i=1

|Vi||Di|), (13)

where Vi denotes the nodes in Sol associated with BDD variables encoding the
domain of variable xi. As usual, Di denotes the domain of xi. For each value of
each variable, the procedure tracks whether the value is encoded by Sol. Due
to the ordering of the BDD variables, for each variable xi, this tracking can be
constrained to the nodes Vi.

4 Search-based Implementation of the IPC Algorithm

Search-based approaches like SAT techniques or CSP techniques can also be used
to implement the IPC algorithm. In such cases the first step of the algorithm is
to compile the configuration problem into an internal representation used by the
applied search technique. The internal representation implicitly represents the
set of valid configurations. The iterative step of the IPC algorithm is repeated
until all the variables in the product model are assigned a value. For search-based
techniques, the procedure for calculating Valid-Assignments is theoretically
intractable. Every time an assignment is made, propagation is applied to prune
the invalid values in the domain of all unselected variables. This can be done
by checking whether each value in the domain of all the variables has at least
one valid configuration satisfying the existing set of variable assignments. In the
worst case, the search-based configurator has to find 1 − m +

∑m
i=1 di solutions

for each iteration, where m is the number of unassigned variables during the
iteration, and di is the domain size of the unassigned variable i during the it-
eration. Improved average complexity of Valid-Assignments can be obtained
by memorizing invalid variable values. Since the solution space keeps decreas-
ing, an invalid value will remain invalid in later iterations. In addition, within
each iteration, whenever the search-based IPC finds a solution, it can mark all
the assignments in the solution as valid. This can remove redundant search for
solutions.

5 Experimental Evaluation

We use Configit Developer 3.2 [4] for the symbolic implementation of the IPC
algorithm. Configit Developer has a compiler which first checks for the semantic
correctness of the product model. If the semantics is valid, it creates a Vir-
tual Table (VT) that symbolically represents all valid solutions of the product
model. For the search-based implementation of the IPC algorithm we use ILOG
Solver 5.3 [5]. ILOG Solver is a commercial constraint programming based C++
library for solving constraint satisfaction/optimization problems. In a compar-
ative study, it has been shown to outperform a range of other CSP solvers [9].
The source code of our benchmarks for ILOG Solver has been constructed to the
best of our knowledge. But we are not experts on the ILOG Solver technology
and there may exist more efficient implementations. ILOG Configurator [5] is
another product from the same company which uses ILOG Solver for configura-
tion problems. ILOG Configurator, however, only does set bound propagation.
This means that it may be possible for a user to choose assignments for which
no valid configuration exists if the ILOG Configurator is used for interactive
configuration.

For each configuration benchmark used in the experiments, 1000 random
requests are generated using Configit Developer. There are several cycles of re-
quests. Each cycle contains a sequence of requests in increasing order. Each
request consists of a set of assignments to some of the variables in the product

model. Each cycle of requests simulates an interactive configuration process of
a product.

All the experiments were carried out on a Pentium-III 1 GHz machine with
2GB of memory, running Linux. The benchmarks used in the experiments are
available in the CLib benchmark suite [6] in the Configit input language and the
ILOG Solver source language.

The results are shown in Table 1. The first column in the table lists the
name of the benchmark. The second column lists the amount of CPU time in
seconds used by Configit Developer for generating the corresponding VT file.
The third column lists the size of the generated VT file in Kilo Bytes (KB). As
for BDDs (see Sect. 3), the variable ordering plays a crucial role in the size of
the VT files generated. Unless specified, the default variable order was used in
the experiments. The fourth column lists the number of solutions (#Sol) in the
generated VT file. After generating a VT, the number of solutions represented
by it can easily be counted. This is equivalent to the total number of valid
configurations for the instance. In the subsequent four columns, the CPU time
for Average response (Avg. RT) and Worst response (Wst. RT) are listed in
seconds for both Configit Developer and ILOG Solver. The response times listed
for Configit Developer include the time taken for the requests generation and
writing the requests into a file. The corresponding times listed for ILOG Solver
only include the time taken for reading the requests information from the file.
Requests are generated as specified above.

Table 1. Experimental Results

Virtual Table Avg. RT (sec) Wst. RT (sec)
Benchmark

Time(sec) Size(KB) #Sol Configit ILOG Configit ILOG

Renault 460.00 1292 2.8x1012 0.1273 489.29* 0.240 489.29*

Bike 0.45 22 1.3x108 0.0005 1.855 0.010 882.68
PC 0.89 24 1.1x106 0.0007 1.302 0.010 2.12
PSR 0.38 37 7.7x109 0.0014 2.398 0.010 486.12

Parity32 13 30.00 1219 2.0x108 0.0960 0.061 0.416 0.24

Big-PC 14.82 76 6.2x1019 0.0012 0.010

v1 5.67† 253 8.2x10123 0.1620 0.320

w1 56.52† 1347 1.0x1089 0.0680 0.160

ESVS 0.25 6.7 3.5x109 0.0004 0.059 0.010 0.14
FS 0.25 5.8 2.4x107 0.0003 0.036 0.010 0.21
FX 0.22 5.3 1.2x106 0.0003 0.029 0.010 0.10

Machine 0.14 6.7 4.7x108 0.0004 0.009 0.010 0.03

C169 FV 2.30 (144) 287 3.2x1015 0.0134 0.195 0.010 28.77
C211 FS 6.93 (957) 370 1.4x1067 0.0219 0.314 0.020 67.09
C250 FW 3.22 (111) 308 1.2x1037 0.0148 0.203 0.010 38.98
C638 FVK 16.53 (1980) 534 8.8x10123 0.0385 0.608 0.050 72.62

*For finding one solution only (i.e., not complete).
†The variable order file has been provided by Configit Software.

The Renault car configuration benchmark is described in [10]. Configit De-
veloper takes 460 seconds to generate the VT file containing 2.8x1012 solutions
for the Renault instance. But ILOG Solver takes 489 seconds just to solve the
problem represented as a CSP instance. The average response time obtained for
Renault by Configit Developer is 0.1273 second. Corresponding worst response
time is 0.240 second.

The Bike and PC instances are configuration examples provided along with
Configit Developer. They represent a bike and a personal computer configuration
problem. The size of the PC and Bike instances in the Configit language is around
500 and 700 lines of code, respectively. In both cases, the average response time
for Configit Developer is only a fraction of a millisecond. This is possible as
the sizes of the corresponding VT files are very small. The corresponding worst
response time for those two instances are 10 milliseconds only. But the average
and worst response times for ILOG Solver are comparatively very high. The
worst response time for ILOG Solver in case of Bike is 882.68 seconds, which
is more than 400 times the corresponding average response time. In case of the
PC example, there is not a large difference between the average and the worst
response time of ILOG Solver. But still the values are high when compared to the
corresponding values for Configit Developer. The PSR benchmark represents a
power supply restoration problem modelled as a configuration instance. Further
details about this problem is available in [11]. The performance of ILOG Solver
and Configit Developer on the PSR instance is similar to those obtained for the
Bike instance, with a large worst case response time by ILOG Solver. Parity32 13
represents a parity learning problem as a configuration instance. Information
about this problem is available in [12]. In case of the Parity32 13 problem, ILOG
Solver has better performance compared to Configit Developer. The difference
is not large though. It is interesting that the VT files for Bike, PC, and PSR are
compiled faster than the corresponding average response times given by ILOG
Solver.

Big-PC represents the configuration problem of a personal computer with
several additional features than those of the previous PC instance. The v1 and
w1 instances represent real configuration problems of some of the customers of
Configit Software. They are anonymized by renaming.3 For these two instances,
the corresponding variable order file was also provided by Configit Software.
These instances have very large product models. For example, the Big-PC has
2500 lines of code in the Configit language. The w1 instance has more than
66,000 lines of code. It is very hard and error prone to convert them manually to
ILOG Solver code. Hence for those instances Table 1 only has results obtained
for Configit Developer. Even though these instances represent very large product
models, Configit Developer has fast average and worst response times.

The ESVS, FS, FX, and Machine instances are from [13]. The first three in-
stances represent screw compressor configuration problems. The last one repre-
sents parts of a real-world 4-wheeled vehicle configuration problem, anonymized
by renaming. These four instances are easy compared to the previous 8 instances.

3 Due to legal issues, v1 and w1 are not available in CLib.

This is reflected by their VT file sizes. The VT files for these instances are gener-
ated in a fraction of a second. In case of the FS instance, the VT file generation
time is almost equal to the corresponding worst response time by ILOG Solver.

The last four instances are automotive product configuration problems from
[14]. The original instances are in DIMACS CNF format. Good variable orders
for these instances are obtained with the BuDDy BDD package [15] using the
sift dynamic variable ordering heuristic. Configit Developer uses these variable
orders for efficient VT file generation. The time taken by BuDDy to find a good
variable order is listed in brackets in the second column of the table. For some
large CNF files in [14], we did not do experiments as it took a lot of time to
find good variable orders. For those instances, the average response time and the
worst response time given by ILOG Solver are very large.

6 Related Work

Compilation techniques have also been studied for search techniques. In [16],
the authors presented Minimal Synthesis Trees (MSTs), a data structure to
compactly represent the set of all solutions in a CSP. It takes advantage of com-
bining the consistency techniques with a decomposition and interchangeability
idea. The MST is a polynomial-size structure. Operations on the MSTs, how-
ever, are of exponential time complexity. This may lead to long response times
for an interactive configurator based on MSTs.

Acyclic constraint networks and the tree clustering algorithm [17, 18] rep-
resent a CSP solution space in a more compact way, organizing it as a tree of
solved sub-problems. For extracting a solution, the generated structure offers
polynomial time guarantees in the size of the structure. The size of the sub-
problems, however, cannot be controlled for all instances and might lead to an
exponential blow-up. The complexity of the original problem is dominated by the
complexity of the sub-problems, which are exponential in both space and time.
Nevertheless, this is one of the first compilation approaches used to solve CSP
problems. There are efforts to cope with this exponential blow-up by additional
compression using Cartesian product representation [19].

We are only aware of one other symbolic precompilation technique. In [10],
the authors present a method which compiles all valid solutions of a configuration
problem into an automaton. After compiling the solutions into an automaton,
functions required for interactive configuration, like implications, explanations,
and valid-domain-calculations can be done efficiently. They also present a theo-
retical view of all the complexity issues involved in their approach. They show
that all the tasks involved in an interactive configuration process are intractable
in the worst case. The BDD and automata approach to two-phase interactive
configuration may perform equally well. A major advantage of using BDDs,
however, is that this data structure has been studied intensely in formal verifi-
cation for representing formal models of large systems [20, 21]. In particular, the
variable ordering problem is well studied [7]. Furthermore a range of powerful

software packages have been developed for manipulating BDDs [15, 22]. To our
knowledge, automata compilation has not reached this level of maturity.

Previous work comparing symbolic and search-based approaches is very lim-
ited. Comparative studies of the SAT search engine zChaff [23] and BDD com-
pilation show that neither approach has generally better performance than the
other [24]. Similarly, a comparison of the Davis-Putnam procedure and BDDs
shows complementary strengths of the two approaches rather than one dominat-
ing the other [25]. For interactive configuration, though, an important advantage
of the BDD approach is that it is possible to compile the solution space prior to
user interaction whereas search must be interleaved with user requests.

7 Conclusion

In this paper we have compared a symbolic and search-based implementation of
a complete and backtrack-free interactive product configuration algorithm. Our
experimental results show that the symbolic approach often has several orders
of magnitude faster response time than the search based approach due to the
precompilation of the solution space into a symbolic representation. In addition,
the difference between average and worst response time is often much smaller
for the symbolic approach than for the search-based approach. Our results in-
dicate that BDD-derived representations often are small for real-world configu-
ration instances. We believe that this may be due to the modular structure of
configuration problems with a frequent hierarchical tree-like decomposition of
dependencies that BDDs are particularly well-suited for.

We are currently working on an open source C++ Library for BDD-based
interactive configuration for research and education purposes (CLab, [26]) and a
comprehensive benchmark suite of industrial configuration problems (CLib, [6]).
Future work includes developing specialized BDD operations to support both
the compilation phase and interactive phase of product configuration.

Acknowledgments

We would like to thank ILOG for their elaborate answers to our user questions
for ILOG Solver 5.3. We also thank Erik R. van der Meer for providing the
T-shirt example.

References

1. Sabin, D., Weigel, R.: Product configuration frameworks - a survey. Intelligent
Systems, IEEE 13 (1998) 42–49

2. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard, H.:
Fast backtrack-free product configuration using a precompiled solution space repre-
sentation. In: Proceedings of the International Conference on Economic, Technical
and Organizational aspects of Product Configuration Systems, DTU-tryk (2004)
131–138

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 8 (1986) 677–691

4. Configit Software A/S. http://www.configit-software.com (online)
5. ILOG. http://www.ilog.com (online)
6. CLib: Configuration benchmarks library. http://www.itu.dk/doi/VeCoS/clib/

(online)
7. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design.

Springer (1998)
8. Wegener, I.: Branching Programs and Binary Decision Diagrams. Society for

Industrial and Applied Mathematics (SIAM) (2000)
9. Fernández, A.J., Hill, P.M.: A comparative study of eight constraint programming

languages over the boolean and finite domains. Constraints 5 (2000) 275–301
10. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations

in dynamic CSPs-application to configuration. Artificial Intelligence 1-2 (2002)
199–234 ftp://fpt.irit.fr/pub/IRIT/RPDMP/Configuration/.

11. Thiébaux, S., Cordier, M.O.: Supply restoration in power distribution systems
– a benchmark for planning under uncertainty. In: Pre-Proceedings of the 6th
European Conference on Planning (ECP-01). (2001) 85–96

12. Parity-Function. ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/

contributed/crawford/README (online)
13. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: Empirical testing of a weight

constraint rule based configurator. In: ECAI 2002 Configuration Workshop. (2002)
17–22 http://www.soberit.hut.fi/pdmg/Empirical/index.html.

14. Sinz, C., Kaiser, A., Kchlin, W.: Formal methods for the validation of auto-
motive product configuration data. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing 17 (2003) 75–97 Special issue on configuration
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/.

15. Lind-Nielsen, J.: BuDDy - A Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy (online)

16. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial
Intelligence 115 (1999) 257–287

17. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence 34 (1987) 1–38

18. Dechter, R., Pearl, J.: Tree-clustering schemes for constraint-processing. Artificial
Intelligence 38 (1989) 353–366

19. Madsen, J.N.: Methods for interactive constraint satisfaction. Master’s thesis,
Department of Computer Science, University of Copenhagen (2003)

20. Burch, J.R., Clarke, E.M., McMillan, K.: Symbolic model checking: 1020 states
and beyond. In: Proceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science. (1990) 428–439

21. Yang, B., Bryant, R.E., O’Hallaron, D.R., Biere, A., Coudert, O., Janssen, G.,
Ranjan, R.K., Somenzi, F.: A performance study of BDD-based model checking.
In: Formal Methods in Computer-Aided Design FMCAD’98. (1998) 255–289

22. Somenzi, F.: CUDD: Colorado university decision diagram package. ftp://vlsi

.colorado.edu/pub/ (1996)
23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-

neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC’01). (2001)

24. Pan, G.and Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In:
Proceedings of the Seventh International Conference on Theory and Applications
of Satisfiability Testing (SAT 2004). (2004)

25. Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-
Putnam procedure. In Jouannaud, J.P., ed.: Proceedings of the 1st International
Conference on Constraints in Computational Logics. Volume 845 of Lecture Notes
in Computer Science., Springer (1994)

26. Jensen, R.M.: CLab: A C++ library for fast backtrack-free interactive product
configuration. http://www.itu.dk/people/rmj/clab/ (online)

